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Inessentiality with respect to subspaces

by

Michael L e v i n (Haifa)

Abstract. Let X be a compactum and let A = {(Ai, Bi) : i = 1, 2, . . .} be a countable
family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for
every closed Fi separating Ai and Bi the intersection (

⋂
Fi) ∩ Y is not empty. So A is

inessential on Y if there exist closed Fi separating Ai and Bi such that
⋂
Fi does not

intersect Y .
Properties of inessentiality are studied and applied to prove:

Theorem. For every countable family A of pairs of disjoint open subsets of a com-
pactum X there exists an open set G ⊂ X on which A is inessential and for every positive-
dimensional Y ⊂ X \G there exists an infinite subfamily B ⊂ A which is essential on Y .

This theorem and its generalization provide a new approach for constructing heredi-
tarily infinite-dimensional compacta not containing subspaces of positive dimension which
are weakly infinite-dimensional or C-spaces.

1. Introduction

Definition 1.1. A family A = {(Ai, Bi) : i = 1, 2, . . .} of pairs of
disjoint subsets of a separable metric space X is said to be essential on
Y ⊂ X if for every closed Fi separating Ai and Bi the intersection (

⋂
Fi)∩Y

is not empty. So A is inessential on Y if there exist closed Fi separating Ai
and Bi such that (

⋂
Fi) ∩ Y = ∅.

In Section 2 we study basic properties of inessentiality which are applied
in Section 3 (together with some ideas presented in [3]) to prove our main
result:

Theorem 1.2. For every countable family A of pairs of disjoint open
subsets of a compactum X there exists an open set G ⊂ X on which A is
inessential and for every Y ⊂ X \ G of positive dimension there exists an
infinite subfamily B ⊂ A which is essential on Y .
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This theorem provides a new approach for constructing hereditarily in-
finite-dimensional compacta. The first example of such compacta was given
by Walsh in 1979 [7] (see also [4]).

Definition 1.3. An infinite-dimensional compactum X is called heredi-
tarily infinite-dimensional if every subspace of X is either zero-dimensional
or infinite-dimensional.

Definition 1.4. A separable metric space X is said to be strongly
infinite-dimensional if there exists a countable family of pairs of disjoint
closed subsets of X which is essential on X.

The Hilbert cube [0, 1]× [0, 1]× . . . is an example of a strongly infinite-
dimensional compactum (as the family of pairs of opposite faces Ai =
{(x1, x2, . . .) : xi = 0} and Bi = {(x1, x2, . . .) : xi = 1} is essential on
the Hilbert cube (see [2])).

It is easy to see that X is strongly infinite-dimensional if and only if
there exists a countable family of pairs of open sets with disjoint closures
which is essential on X. So let X be a strongly infinite-dimensional com-
pactum and let D = {(Vi, Ui) : i = 0, 1, 2, . . .} be a family of pairs of
open subsets of X with disjoint closures which is essential on X. Define
A = {(Vi, Ui) : i = 1, 2, . . .} and let G be as in the conclusion of Theo-
rem 1.2. Then every subspace of Z = X \ G is either zero-dimensional or
strongly infinite-dimensional.

Indeed, if Y ⊂ Z is of positive dimension then there is an infinite B ⊂ A
which is essential on Y . It is easy to check that C = {(Y ∩ V, Y ∩ U) :
(V,U) ∈ B} is a family of pairs of open subsets of Y with disjoint closures
which is essential on Y and therefore Y is strongly infinite-dimensional.

Hence Z is hereditarily strongly infinite-dimensional provided dimZ > 0.
Aiming at a contradiction suppose dimZ ≤ 0. Then V0 and U0 can be
separated by some closed F0 not intersecting Z. As A is inessential on G
take closed sets Fi, i ≥ 1, separating the pairs of A such that

⋂
i≥1 Fi

does not intersect G. Then
⋂
i≥0 Fi = ∅. This contradicts the assumption of

essentiality of D and shows that dimZ > 0. So we have proved

Theorem 1.5 (Rubin [6]). Every strongly infinite-dimensional compac-
tum contains a hereditarily strongly infinite-dimensional compactum.

In the end of Section 3 we will point out a connection of our approach
with C-spaces.

Finally, I wish to thank Prof. R. Pol for encouraging me to write this note.

2. Basic properties of inessentiality. Throughout this section X is
assumed to be a compactum and A,B are two countable families of pairs of
disjoint open subsets of X.
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We say that Y1, Y2, . . . ⊂ X are discrete if Yi can be enlarged to disjoint
neighbourhoods Yi ⊂ Gi.

For Y ⊂ X define

Hc(A, Y ) = the union of all components of Y on which A is inessential,

Hq(A, Y ) = the union of all quasi-components of Y
on which A is inessential.

Proposition 2.1. Let A be inessential on Y ⊂ X. Then there is a
neighbourhood V of Y on which A is also inessential.

P r o o f. Take closed partitions Fi for the pairs of A = {(Vi, Ui) : i =
1, 2, . . .} such that Y ∩ (

⋂
Fi) = ∅ and define V = X \⋂Fi.

Proposition 2.2. Let A be inessential on each set of a discrete family
Y1, Y2, . . . ⊂ X. Then A is also inessential on

⋃
Yi.

P r o o f. Enlarge Yi to disjoint neighbourhoods Yi ⊂ Gi; by Proposi-
tion 2.1 we can assume without loss of generality that A = {(Vj , Uj) : j =
1, 2, . . .} is inessential on each Gi. For every i take a partition Fij between
Vj and Uj such that (

⋂
j Fij) ∩ Gi = ∅. Let Vij and Uij be disjoint neigh-

bourhoods of Vj and Uj respectively such that X \ Fij = Vij ∪ Uij . Define

V ∗j = Vj ∪
⋃

i

(Vij ∩Gi) and U∗j = Uj ∪
⋃

i

(Uij ∩Gi).

It is not difficult to show that Fj = X \ (V ∗j ∪U∗j ) is a partition between
Vj and Uj such that

⋂
Fj does not meet

⋃
Gi which contains

⋃
Yi.

Proposition 2.3. Let Y be a closed subset of X. Then A is inessential
on Hc(A, Y ).

P r o o f. Let A be a component of Y contained in Hc(A, Y ). Then by
Proposition 2.1 one can find a clopen subset VA of Y with A ⊂ VA on which
A is inessential. Hc(A, Y ) is covered by {VA : A ⊂ Hc(A, Y )} and hence
we can choose a sequence VA1 , VA2 , . . . which also covers Hc(A, Y ). Define
Y1 = VA1 , Y2 = VA2 \ Y1, . . . , Yi+1 = VAi+1 \ (Y1 ∪ . . .∪ Yi), . . . The sequence
Y1, Y2, . . . is discrete and by Proposition 2.2, A is inessential on

⋃
Yi which

contains Hc(A, Y ).

Proposition 2.4. Let Y ⊂ X be open in clY . Then A∪B is inessential
on Hq(A, Y ) ∩Hq(B, Y ).

P r o o f. Let f : clY → [0, 1] be a continuous map with Y = f−1(0, 1]
and consider the compact “rings” Kn = f−1[1/(n + 1), 1/n], n = 1, 2, . . .
Take a point x ∈ Kn and let A be the quasi-component of Y containing x.
Then A is the intersection of all clopen subsets of Y which contain x. Hence
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the component of Kn containing x is contained in A. So we have

(∗) Hq(A, Y ) ∩Kn ⊂ Hc(A,Kn) and Hq(B, Y ) ∩Kn ⊂ Hc(B,Kn).

The collections of “odd rings” K1,K3,K5, . . . and of “even rings”
K2,K4,K6, . . . are discrete and by Proposition 2.3, A and B are inessen-
tial on Hc(A,Kn) and Hc(B,Kn) respectively. So by Proposition 2.2, A
is inessential on Y1 =

⋃
i≥1Hc(A,K2i−1) and B is inessential on Y2 =⋃

i≥1Hc(B,K2i). From (∗) it follows that Hq(A, Y ) ∩ Hq(B, Y ) ⊂ Y1 ∪ Y2

and since A ∪ B is inessential on Y1 ∪ Y2 we get the required result.

3. Proof of Theorem 1.2. Take any countable decomposition of A into
disjoint infinite subfamilies A = A1 ∪ B1 ∪ A2 ∪ B2 ∪ . . .

Let F be a countable family of continuous functions from X to [0, 1]
which distinguish the points of X and let C be a countable family of Cantor
sets in [0, 1] such that every non-degenerate interval in [0, 1] contains some
Cantor set from C. Arrange F × C into a sequence (f1, C1), (f2, C2), . . . ,
where fi ∈ F and Ci ∈ C.

Let gi : Ci → 2X be continuous and onto.
Define

Yi =
⋃
{f−1
i (c) \ gi(c) : c ∈ Ci} = f−1

i (Ci) \
⋃
{f−1
i (c) ∩ gi(c) : c ∈ Ci}.

It is not difficult to see that
⋃{f−1

i (c) ∩ gi(c) : c ∈ Ci} is closed in X and
therefore Yi is open in clYi. Hence by Proposition 2.4, Ai ∪Bi is inessential
on Zi = Hq(Ai, Yi) ∩ Hq(Bi, Yi). So A is inessential on Z = Z1 ∪ Z2 ∪ . . .
Thus by Proposition 2.1 there is a neighbourhood G of Z on which A is
inessential and we claim that G is the desired set.

Indeed, let Y ∩G = ∅ and dimY > 0.
Since F distinguishes the points of X, the map x → (f(x))f∈F embeds

X in
∏
f∈F f(X) and so Y is embedded in

∏
f∈F f(Y ). Hence dimY > 0

implies that there is some f ∈ F such that dim f(Y ) > 0, so f(Y ) contains a
non-degenerate interval and we can choose some C ∈ C such that C ⊂ f(Y ).
Take i such that (fi, Ci) = (f, C); we are going to show that either Ai or Bi
is essential on Y .

Assume the contrary. Then by Proposition 2.1 there is a neighbourhood
Y ⊂ V on which both Ai and Bi are inessential. Let c in Ci be such that
gi(c) = X\V . SetDi = f−1

i (c)\gi(c). It is obvious thatDi =
⋂{f−1

i (U)∩Yi :
U contains c and U is clopen in Ci} and since for U clopen in Ci, f−1

i (U)∩Yi
is clopen in Yi, it follows that Di equals the intersection of all clopen subsets
of Yi containing Di. Therefore the quasi-components of Yi intersecting Di

are contained in Di. Both Ai and Bi are inessential on Di as Di ⊂ V . Hence
Di ⊂ Hq(Ai, Yi) andDi ⊂ Hq(Bi, Yi), that is,Di ⊂ Zi. Clearly,Di intersects
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Y and so Y intersects Zi. This contradicts the assumption Y ∩ G = ∅ and
proves the theorem.

As a matter of fact we have proved the following version of Theorem 1.2:

Theorem 3.1. Let A be a countable family of pairs of disjoint open
subsets of a compactum X. Then for every countable decomposition of A
into disjoint subfamilies A = A1 ∪ A2 ∪ . . . there exists an open set G ⊂ X
such that A is inessential on G and for every Y with dimY > 0 not meeting
G there is some Ai which is essential on Y .

A remark concerning C-spaces. R. Pol noticed that the approach of this
note admits a more general setting.

Definition 3.2. We will call a family P of subsets of a separable metric
space X admissible for X if

(i) A ∈ P and B ⊂ A imply that B ∈ P,
(ii) for every A ∈ P there is a neighbourhood A ⊂ V which belongs

to P,
(iii) for disjoint open sets Vi ∈ P, i = 1, 2, . . . , the union

⋃
Vi belongs

to P.

Let A be a family of pairs of disjoint open subsets of X. Denote by PA
the family of all subsets of X on which A is inessential. We have shown that
PA is admissible for X.

The following example of admissible families is based on the notion of
C-spaces (for more information see [1]).

Definition 3.3. Let A = {U1,U2, . . .} be a countable family of open
covers of a separable metric space X. We will say that A is inessential on
Y ⊂ X if there exist families V1,V2, . . . of disjoint open sets such that Vi
refines Ui and V1,V2, . . . cover Y . Otherwise A is essential on Y . More-
over, X is called a C-space if every countable family of open covers of X is
inessential on X.

For a family A of open covers of X we will use the same notation PA
that we have used for a family of pairs to denote the family of all subsets of
X on which A is inessential. It is easy to verify that in this case PA is also
admissible.

For families P1,P2, . . . of subsets of X define P1 ∨P2 = {A1 ∪A2 : Ai ∈
Pi} and

∨Pi =
∨∞
i=1 Pi = {⋃Ai : Ai ∈ Pi}. It is not difficult to check that

for a family of pairs or covers A and every decomposition of A into disjoint
subfamilies A = A1 ∪A2 ∪ . . . we have

∨PAi ⊂ PA. Now Theorem 3.1 can
be reformulated as follows.
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Theorem 3.4. Let P1,P2, . . . be admissible families for a compactum X.
Then there is an open set G ∈ ∨Pi such that for every Y ⊂ X \G of positive
dimension there is some Pi which does not contain Y.

Theorem 3.5. Let A be a countable family of open covers of a compactum
X. Then for every countable decomposition of A into disjoint subfamilies
A = A1 ∪A2 ∪ . . . there exists an open set G ⊂ X such that A is inessential
on G and for every Y with dimY > 0 not meeting G there is some Ai which
is essential on Y.

And Theorem 1.5 can be stated as

Theorem 3.6. Suppose a compactum X is not a C-space. Then X con-
tains a compactum Z ⊂ X which is not a C-space such that no Y ⊂ Z of
positive dimension is a C-space.

This theorem generalizes the analogous result of [5] where Y is assumed
to be a closed subset of Z.
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