Inessentiality with respect to subspaces

by

Michael Levin (Haifa)

Abstract. Let X be a compactum and let $\mathcal{A} = \{(A_i, B_i) : i = 1, 2, ...\}$ be a countable family of pairs of disjoint subsets of X. Then \mathcal{A} is said to be essential on $Y \subset X$ if for every closed F_i separating A_i and B_i the intersection $(\bigcap F_i) \cap Y$ is not empty. So \mathcal{A} is inessential on Y if there exist closed F_i separating A_i and B_i such that $\bigcap F_i$ does not intersect Y.

Properties of inessentiality are studied and applied to prove:

THEOREM. For every countable family \mathcal{A} of pairs of disjoint open subsets of a compactum X there exists an open set $G \subset X$ on which \mathcal{A} is inessential and for every positivedimensional $Y \subset X \setminus G$ there exists an infinite subfamily $\mathcal{B} \subset \mathcal{A}$ which is essential on Y.

This theorem and its generalization provide a new approach for constructing hereditarily infinite-dimensional compacta not containing subspaces of positive dimension which are weakly infinite-dimensional or C-spaces.

1. Introduction

DEFINITION 1.1. A family $\mathcal{A} = \{(A_i, B_i) : i = 1, 2, ...\}$ of pairs of disjoint subsets of a separable metric space X is said to be essential on $Y \subset X$ if for every closed F_i separating A_i and B_i the intersection $(\bigcap F_i) \cap Y$ is not empty. So \mathcal{A} is inessential on Y if there exist closed F_i separating A_i and B_i such that $(\bigcap F_i) \cap Y = \emptyset$.

In Section 2 we study basic properties of inessentiality which are applied in Section 3 (together with some ideas presented in [3]) to prove our main result:

THEOREM 1.2. For every countable family \mathcal{A} of pairs of disjoint open subsets of a compactum X there exists an open set $G \subset X$ on which \mathcal{A} is inessential and for every $Y \subset X \setminus G$ of positive dimension there exists an infinite subfamily $\mathcal{B} \subset \mathcal{A}$ which is essential on Y.

¹⁹⁹¹ Mathematics Subject Classification: Primary 54F45.

^[93]

This theorem provides a new approach for constructing hereditarily infinite-dimensional compacta. The first example of such compacta was given by Walsh in 1979 [7] (see also [4]).

DEFINITION 1.3. An infinite-dimensional compactum X is called *hereditarily infinite-dimensional* if every subspace of X is either zero-dimensional or infinite-dimensional.

DEFINITION 1.4. A separable metric space X is said to be *strongly infinite-dimensional* if there exists a countable family of pairs of disjoint closed subsets of X which is essential on X.

The Hilbert cube $[0,1] \times [0,1] \times ...$ is an example of a strongly infinitedimensional compactum (as the family of pairs of opposite faces $A_i = \{(x_1, x_2, ...) : x_i = 0\}$ and $B_i = \{(x_1, x_2, ...) : x_i = 1\}$ is essential on the Hilbert cube (see [2])).

It is easy to see that X is strongly infinite-dimensional if and only if there exists a countable family of pairs of open sets with disjoint closures which is essential on X. So let X be a strongly infinite-dimensional compactum and let $\mathcal{D} = \{(V_i, U_i) : i = 0, 1, 2, ...\}$ be a family of pairs of open subsets of X with disjoint closures which is essential on X. Define $\mathcal{A} = \{(V_i, U_i) : i = 1, 2, ...\}$ and let G be as in the conclusion of Theorem 1.2. Then every subspace of $Z = X \setminus G$ is either zero-dimensional or strongly infinite-dimensional.

Indeed, if $Y \subset Z$ is of positive dimension then there is an infinite $\mathcal{B} \subset \mathcal{A}$ which is essential on Y. It is easy to check that $\mathcal{C} = \{(Y \cap V, Y \cap U) : (V, U) \in \mathcal{B}\}$ is a family of pairs of open subsets of Y with disjoint closures which is essential on Y and therefore Y is strongly infinite-dimensional.

Hence Z is hereditarily strongly infinite-dimensional provided dim Z > 0. Aiming at a contradiction suppose dim $Z \leq 0$. Then V_0 and U_0 can be separated by some closed F_0 not intersecting Z. As \mathcal{A} is inessential on G take closed sets F_i , $i \geq 1$, separating the pairs of \mathcal{A} such that $\bigcap_{i\geq 1} F_i$ does not intersect G. Then $\bigcap_{i\geq 0} F_i = \emptyset$. This contradicts the assumption of essentiality of \mathcal{D} and shows that dim Z > 0. So we have proved

THEOREM 1.5 (Rubin [6]). Every strongly infinite-dimensional compactum contains a hereditarily strongly infinite-dimensional compactum.

In the end of Section 3 we will point out a connection of our approach with C-spaces.

Finally, I wish to thank Prof. R. Pol for encouraging me to write this note.

2. Basic properties of inessentiality. Throughout this section X is assumed to be a compactum and \mathcal{A}, \mathcal{B} are two countable families of pairs of disjoint open subsets of X.

We say that $Y_1, Y_2, \ldots \subset X$ are *discrete* if Y_i can be enlarged to disjoint neighbourhoods $Y_i \subset G_i$.

For $Y \subset X$ define

 $H_c(\mathcal{A}, Y)$ = the union of all components of Y on which \mathcal{A} is inessential,

 $H_q(\mathcal{A}, Y)$ = the union of all quasi-components of Y

on which \mathcal{A} is inessential.

PROPOSITION 2.1. Let \mathcal{A} be inessential on $Y \subset X$. Then there is a neighbourhood V of Y on which \mathcal{A} is also inessential.

Proof. Take closed partitions F_i for the pairs of $\mathcal{A} = \{(V_i, U_i) : i = 1, 2, \ldots\}$ such that $Y \cap (\bigcap F_i) = \emptyset$ and define $V = X \setminus \bigcap F_i$.

PROPOSITION 2.2. Let \mathcal{A} be inessential on each set of a discrete family $Y_1, Y_2, \ldots \subset X$. Then \mathcal{A} is also inessential on $\bigcup Y_i$.

Proof. Enlarge Y_i to disjoint neighbourhoods $Y_i \subset G_i$; by Proposition 2.1 we can assume without loss of generality that $\mathcal{A} = \{(V_j, U_j) : j = 1, 2, ...\}$ is inessential on each G_i . For every *i* take a partition F_{ij} between V_j and U_j such that $(\bigcap_j F_{ij}) \cap G_i = \emptyset$. Let V_{ij} and U_{ij} be disjoint neighbourhoods of V_j and U_j respectively such that $X \setminus F_{ij} = V_{ij} \cup U_{ij}$. Define

$$V_j^* = V_j \cup \bigcup_i (V_{ij} \cap G_i)$$
 and $U_j^* = U_j \cup \bigcup_i (U_{ij} \cap G_i)$.

It is not difficult to show that $F_j = X \setminus (V_j^* \cup U_j^*)$ is a partition between V_j and U_j such that $\bigcap F_j$ does not meet $\bigcup G_i$ which contains $\bigcup Y_i$.

PROPOSITION 2.3. Let Y be a closed subset of X. Then \mathcal{A} is inessential on $H_c(\mathcal{A}, Y)$.

Proof. Let A be a component of Y contained in $H_c(\mathcal{A}, Y)$. Then by Proposition 2.1 one can find a clopen subset V_A of Y with $A \subset V_A$ on which \mathcal{A} is inessential. $H_c(\mathcal{A}, Y)$ is covered by $\{V_A : A \subset H_c(\mathcal{A}, Y)\}$ and hence we can choose a sequence V_{A_1}, V_{A_2}, \ldots which also covers $H_c(\mathcal{A}, Y)$. Define $Y_1 = V_{A_1}, Y_2 = V_{A_2} \setminus Y_1, \ldots, Y_{i+1} = V_{A_{i+1}} \setminus (Y_1 \cup \ldots \cup Y_i), \ldots$ The sequence Y_1, Y_2, \ldots is discrete and by Proposition 2.2, \mathcal{A} is inessential on $\bigcup Y_i$ which contains $H_c(\mathcal{A}, Y)$.

PROPOSITION 2.4. Let $Y \subset X$ be open in cl Y. Then $\mathcal{A} \cup \mathcal{B}$ is inessential on $H_q(\mathcal{A}, Y) \cap H_q(\mathcal{B}, Y)$.

Proof. Let $f : \operatorname{cl} Y \to [0,1]$ be a continuous map with $Y = f^{-1}(0,1]$ and consider the compact "rings" $K_n = f^{-1}[1/(n+1), 1/n], n = 1, 2, ...$ Take a point $x \in K_n$ and let A be the quasi-component of Y containing x. Then A is the intersection of all clopen subsets of Y which contain x. Hence the component of K_n containing x is contained in A. So we have

(*)
$$H_q(\mathcal{A}, Y) \cap K_n \subset H_c(\mathcal{A}, K_n)$$
 and $H_q(\mathcal{B}, Y) \cap K_n \subset H_c(\mathcal{B}, K_n)$

The collections of "odd rings" K_1, K_3, K_5, \ldots and of "even rings" K_2, K_4, K_6, \ldots are discrete and by Proposition 2.3, \mathcal{A} and \mathcal{B} are inessential on $H_c(\mathcal{A}, K_n)$ and $H_c(\mathcal{B}, K_n)$ respectively. So by Proposition 2.2, \mathcal{A} is inessential on $Y_1 = \bigcup_{i\geq 1} H_c(\mathcal{A}, K_{2i-1})$ and \mathcal{B} is inessential on $Y_2 = \bigcup_{i\geq 1} H_c(\mathcal{B}, K_{2i})$. From (*) it follows that $H_q(\mathcal{A}, Y) \cap H_q(\mathcal{B}, Y) \subset Y_1 \cup Y_2$ and since $\mathcal{A} \cup \mathcal{B}$ is inessential on $Y_1 \cup Y_2$ we get the required result.

3. Proof of Theorem 1.2. Take any countable decomposition of \mathcal{A} into disjoint infinite subfamilies $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{B}_1 \cup \mathcal{A}_2 \cup \mathcal{B}_2 \cup \ldots$

Let \mathcal{F} be a countable family of continuous functions from X to [0,1]which distinguish the points of X and let \mathcal{C} be a countable family of Cantor sets in [0,1] such that every non-degenerate interval in [0,1] contains some Cantor set from \mathcal{C} . Arrange $\mathcal{F} \times \mathcal{C}$ into a sequence $(f_1, C_1), (f_2, C_2), \ldots$, where $f_i \in \mathcal{F}$ and $C_i \in \mathcal{C}$.

Let $g_i: C_i \to 2^X$ be continuous and onto.

Define

$$Y_i = \bigcup \{ f_i^{-1}(c) \setminus g_i(c) : c \in C_i \} = f_i^{-1}(C_i) \setminus \bigcup \{ f_i^{-1}(c) \cap g_i(c) : c \in C_i \}.$$

It is not difficult to see that $\bigcup \{f_i^{-1}(c) \cap g_i(c) : c \in C_i\}$ is closed in X and therefore Y_i is open in cl Y_i . Hence by Proposition 2.4, $\mathcal{A}_i \cup \mathcal{B}_i$ is inessential on $Z_i = H_q(\mathcal{A}_i, Y_i) \cap H_q(\mathcal{B}_i, Y_i)$. So \mathcal{A} is inessential on $Z = Z_1 \cup Z_2 \cup \ldots$ Thus by Proposition 2.1 there is a neighbourhood G of Z on which \mathcal{A} is inessential and we claim that G is the desired set.

Indeed, let $Y \cap G = \emptyset$ and dim Y > 0.

Since \mathcal{F} distinguishes the points of X, the map $x \to (f(x))_{f \in \mathcal{F}}$ embeds X in $\prod_{f \in \mathcal{F}} f(X)$ and so Y is embedded in $\prod_{f \in \mathcal{F}} f(Y)$. Hence dim Y > 0 implies that there is some $f \in \mathcal{F}$ such that dim f(Y) > 0, so f(Y) contains a non-degenerate interval and we can choose some $C \in \mathcal{C}$ such that $C \subset f(Y)$. Take i such that $(f_i, C_i) = (f, C)$; we are going to show that either \mathcal{A}_i or \mathcal{B}_i is essential on Y.

Assume the contrary. Then by Proposition 2.1 there is a neighbourhood $Y \subset V$ on which both \mathcal{A}_i and \mathcal{B}_i are inessential. Let c in C_i be such that $g_i(c) = X \setminus V$. Set $D_i = f_i^{-1}(c) \setminus g_i(c)$. It is obvious that $D_i = \bigcap \{f_i^{-1}(U) \cap Y_i : U \text{ contains } c \text{ and } U \text{ is clopen in } C_i\}$ and since for U clopen in $C_i, f_i^{-1}(U) \cap Y_i$ is clopen in Y_i , it follows that D_i equals the intersection of all clopen subsets of Y_i containing D_i . Therefore the quasi-components of Y_i intersecting D_i are contained in D_i . Both \mathcal{A}_i and \mathcal{B}_i are inessential on D_i as $D_i \subset V$. Hence $D_i \subset H_q(\mathcal{A}_i, Y_i)$ and $D_i \subset H_q(\mathcal{B}_i, Y_i)$, that is, $D_i \subset Z_i$. Clearly, D_i intersects

Y and so Y intersects Z_i . This contradicts the assumption $Y \cap G = \emptyset$ and proves the theorem.

As a matter of fact we have proved the following version of Theorem 1.2:

THEOREM 3.1. Let \mathcal{A} be a countable family of pairs of disjoint open subsets of a compactum X. Then for every countable decomposition of \mathcal{A} into disjoint subfamilies $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots$ there exists an open set $G \subset X$ such that \mathcal{A} is inessential on G and for every Y with dim Y > 0 not meeting G there is some \mathcal{A}_i which is essential on Y.

A remark concerning C-spaces. R. Pol noticed that the approach of this note admits a more general setting.

DEFINITION 3.2. We will call a family \mathcal{P} of subsets of a separable metric space X admissible for X if

(i) $A \in \mathcal{P}$ and $B \subset A$ imply that $B \in \mathcal{P}$,

(ii) for every $A \in \mathcal{P}$ there is a neighbourhood $A \subset V$ which belongs to \mathcal{P} ,

(iii) for disjoint open sets $V_i \in \mathcal{P}$, i = 1, 2, ..., the union $\bigcup V_i$ belongs to \mathcal{P} .

Let \mathcal{A} be a family of pairs of disjoint open subsets of X. Denote by $\mathcal{P}_{\mathcal{A}}$ the family of all subsets of X on which \mathcal{A} is inessential. We have shown that $\mathcal{P}_{\mathcal{A}}$ is admissible for X.

The following example of admissible families is based on the notion of C-spaces (for more information see [1]).

DEFINITION 3.3. Let $\mathcal{A} = \{\mathcal{U}_1, \mathcal{U}_2, \ldots\}$ be a countable family of open covers of a separable metric space X. We will say that \mathcal{A} is *inessential on* $Y \subset X$ if there exist families $\mathcal{V}_1, \mathcal{V}_2, \ldots$ of disjoint open sets such that \mathcal{V}_i refines \mathcal{U}_i and $\mathcal{V}_1, \mathcal{V}_2, \ldots$ cover Y. Otherwise \mathcal{A} is *essential on* Y. Moreover, X is called a C-space if every countable family of open covers of X is inessential on X.

For a family \mathcal{A} of open covers of X we will use the same notation $\mathcal{P}_{\mathcal{A}}$ that we have used for a family of pairs to denote the family of all subsets of X on which \mathcal{A} is inessential. It is easy to verify that in this case $\mathcal{P}_{\mathcal{A}}$ is also admissible.

For families $\mathcal{P}_1, \mathcal{P}_2, \ldots$ of subsets of X define $\mathcal{P}_1 \vee \mathcal{P}_2 = \{A_1 \cup A_2 : A_i \in \mathcal{P}_i\}$ and $\bigvee \mathcal{P}_i = \bigvee_{i=1}^{\infty} \mathcal{P}_i = \{\bigcup A_i : A_i \in \mathcal{P}_i\}$. It is not difficult to check that for a family of pairs or covers \mathcal{A} and every decomposition of \mathcal{A} into disjoint subfamilies $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots$ we have $\bigvee \mathcal{P}_{\mathcal{A}_i} \subset \mathcal{P}_{\mathcal{A}}$. Now Theorem 3.1 can be reformulated as follows.

THEOREM 3.4. Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ be admissible families for a compactum X. Then there is an open set $G \in \bigvee \mathcal{P}_i$ such that for every $Y \subset X \setminus G$ of positive dimension there is some \mathcal{P}_i which does not contain Y.

THEOREM 3.5. Let \mathcal{A} be a countable family of open covers of a compactum X. Then for every countable decomposition of \mathcal{A} into disjoint subfamilies $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \ldots$ there exists an open set $G \subset X$ such that \mathcal{A} is inessential on G and for every Y with dim Y > 0 not meeting G there is some \mathcal{A}_i which is essential on Y.

And Theorem 1.5 can be stated as

THEOREM 3.6. Suppose a compactum X is not a C-space. Then X contains a compactum $Z \subset X$ which is not a C-space such that no $Y \subset Z$ of positive dimension is a C-space.

This theorem generalizes the analogous result of [5] where Y is assumed to be a closed subset of Z.

References

- V. A. Chatyrko, Weakly infinite-dimensional spaces, Russian Math. Surveys 46 (3) (1991), 191-210.
- [2] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, 1974.
- [3] R. Pol, Selected topics related to countable-dimensional metrizable spaces, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium 1986, Academia, Prague, 421–436.
- [4] —, Countable dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), 255–268.
- [5] —, On light mappings without perfect fibers on compacta, preprint.
- [6] L. R. Rubin, Hereditarily strongly infinite dimensional spaces, Michigan Math. J. 27 (1980), 65–73.
- [7] J. J. Walsh, Infinite dimensional compacta containing no n-dimensional $(n \ge 1)$ subsets, Topology 18 (1979), 91–95.

DEPARTMENT OF MATHEMATICS HAIFA UNIVERSITY MOUNT CARMEL HAIFA 31905, ISRAEL E-mail: LEVIN@MATHCS2.HAIFA.AC.IL

Received 29 August 1994