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Abstract. Let X be a compactum and let A = {(A4;, B;) : 4 =1,2,...} be a countable
family of pairs of disjoint subsets of X. Then A is said to be essential on Y C X if for
every closed F; separating A; and B; the intersection (ﬂ F;)NY is not empty. So A is
inessential on Y if there exist closed F; separating A; and B; such that ﬂ F; does not
intersect Y.

Properties of inessentiality are studied and applied to prove:
THEOREM. For every countable family A of pairs of disjoint open subsets of a com-

pactum X there exists an open set G C X on which A is inessential and for every positive-
dimensional Y C X \ G there exists an infinite subfamily B C A which is essential on'Y .

This theorem and its generalization provide a new approach for constructing heredi-
tarily infinite-dimensional compacta not containing subspaces of positive dimension which
are weakly infinite-dimensional or C-spaces.

1. Introduction

DEFINITION 1.1. A family A = {(A4;,B;) : i = 1,2,...} of pairs of
disjoint subsets of a separable metric space X is said to be essential on
Y C X if for every closed F; separating A; and B; the intersection ([ F;)NY
is not empty. So A is inessential on Y if there exist closed F; separating A;
and B; such that (N F;)NY = 0.

In Section 2 we study basic properties of inessentiality which are applied
in Section 3 (together with some ideas presented in [3]) to prove our main
result:

THEOREM 1.2. For every countable family A of pairs of disjoint open
subsets of a compactum X there exists an open set G C X on which A is
inessential and for every Y C X \ G of positive dimension there exists an
infinite subfamily B C A which is essential on Y .
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This theorem provides a new approach for constructing hereditarily in-
finite-dimensional compacta. The first example of such compacta was given
by Walsh in 1979 [7] (see also [4]).

DEFINITION 1.3. An infinite-dimensional compactum X is called heredi-
tarily infinite-dimensional if every subspace of X is either zero-dimensional
or infinite-dimensional.

DEFINITION 1.4. A separable metric space X is said to be strongly
infinite-dimensional if there exists a countable family of pairs of disjoint
closed subsets of X which is essential on X.

The Hilbert cube [0,1] x [0,1] x ... is an example of a strongly infinite-
dimensional compactum (as the family of pairs of opposite faces A; =
{(z1,29,...) : &; = 0} and B; = {(x1,22,...) : x; = 1} is essential on
the Hilbert cube (see [2])).

It is easy to see that X is strongly infinite-dimensional if and only if
there exists a countable family of pairs of open sets with disjoint closures
which is essential on X. So let X be a strongly infinite-dimensional com-
pactum and let D = {(V;,U;) : i = 0,1,2,...} be a family of pairs of
open subsets of X with disjoint closures which is essential on X. Define
A={(V;,U;) : i =1,2,...} and let G be as in the conclusion of Theo-
rem 1.2. Then every subspace of Z = X \ G is either zero-dimensional or
strongly infinite-dimensional.

Indeed, if Y C Z is of positive dimension then there is an infinite B C A
which is essential on Y. It is easy to check that C = {(Y NV, Y NnU) :
(V,U) € B} is a family of pairs of open subsets of Y with disjoint closures
which is essential on Y and therefore Y is strongly infinite-dimensional.

Hence Z is hereditarily strongly infinite-dimensional provided dim Z > 0.
Aiming at a contradiction suppose dimZ < 0. Then Vj and Uy can be
separated by some closed Fy not intersecting Z. As A is inessential on G
take closed sets Fj, ¢ > 1, separating the pairs of A such that (), F;
does not intersect G. Then (1,5, F; = 0. This contradicts the assumption of
essentiality of D and shows that dim Z > 0. So we have proved

THEOREM 1.5 (Rubin [6]). Every strongly infinite-dimensional compac-
tum contains a hereditarily strongly infinite-dimensional compactum.

In the end of Section 3 we will point out a connection of our approach
with C-spaces.

Finally, I wish to thank Prof. R. Pol for encouraging me to write this note.

2. Basic properties of inessentiality. Throughout this section X is
assumed to be a compactum and A, B are two countable families of pairs of
disjoint open subsets of X.
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We say that Y1,Ys,... C X are discrete if Y; can be enlarged to disjoint
neighbourhoods Y; C G;.
For Y C X define

H.(A,Y) = the union of all components of ¥ on which A is inessential,

H,(A,Y) = the union of all quasi-components of ¥’
on which A is inessential.

PRrROPOSITION 2.1. Let A be inessential on Y C X. Then there is a
neighbourhood V of Y on which A is also inessential.

Proof. Take closed partitions F; for the pairs of A = {(V;,U;) : i =
1,2,...} such that Y N (N F;) = 0 and define V =X\ F,. »

PROPOSITION 2.2. Let A be inessential on each set of a discrete family
Y1,Y5,... C X. Then A is also inessential on |JY;.

Proof. Enlarge Y; to disjoint neighbourhoods Y; C G;; by Proposi-
tion 2.1 we can assume without loss of generality that A = {(V},U;) : j =
1,2,...} is inessential on each G;. For every i take a partition F;; between
V; and Uj; such that (ﬂj F;;) N G; = 0. Let V;; and U;; be disjoint neigh-
bourhoods of V; and Uj respectively such that X \ F;; = V;; U U;;. Define

Vi=V;U U(Vij NG;) and U; =U;U U(Uij NG).

It is not difficult to show that F; = X'\ (V" UU7) is a partition between
V; and U; such that (| F; does not meet | JG; which contains JY;. =

PROPOSITION 2.3. Let Y be a closed subset of X. Then A is inessential
on H.(AY).

Proof. Let A be a component of Y contained in H.(A,Y). Then by
Proposition 2.1 one can find a clopen subset V4 of Y with A C V4 on which
A is inessential. H.(A,Y) is covered by {V4 : A C H.(A,Y)} and hence
we can choose a sequence Vya,,Vy,,... which also covers H.(A,Y). Define
Yi=Va,Yo=Va, \Y1,.... Y1 =V, \(Y1U...UY)),... The sequence
Y71,Y5, ... is discrete and by Proposition 2.2, A is inessential on |JY; which
contains H.(A,Y). m

PROPOSITION 2.4. Let Y C X be open in clY. Then AUB is inessential
on Hy (A Y)NHy(B,Y).

Proof. Let f : clY — [0,1] be a continuous map with Y = f71(0,1]
and consider the compact “rings” K, = f~[1/(n+1),1/n], n = 1,2,...
Take a point z € K,, and let A be the quasi-component of Y containing x.
Then A is the intersection of all clopen subsets of Y which contain x. Hence
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the component of K,, containing x is contained in A. So we have
(x) HyAY)NK, C H(A K,) and H,B,Y)NK, C H.(B,K,).

The collections of “odd rings” Ki, K3, Ks5,... and of “even rings”
Ky, K4, Kg, ... are discrete and by Proposition 2.3, A and B are inessen-
tial on H.(A, K,,) and H.(B, K,) respectively. So by Proposition 2.2, A
is inessential on Y7 = J;»; Hc(A, K2;—1) and B is inessential on Y, =
U1 He(B, K2;). From (x) it follows that Hy(A,Y) N H,(B,Y) C Y1 UY>
and since A U B is inessential on Y1 UY5 we get the required result. m

3. Proof of Theorem 1.2. Take any countable decomposition of A into
disjoint infinite subfamilies A = A1 UB, UA3UBy U ...

Let F be a countable family of continuous functions from X to [0, 1]
which distinguish the points of X and let C be a countable family of Cantor
sets in [0, 1] such that every non-degenerate interval in [0, 1] contains some
Cantor set from C. Arrange F X C into a sequence (f1,C1), (f2,C2),...,
where f; € F and C; € C.

Let g; : C; — 2% be continuous and onto.

Define

Yo =@\ aie) i ce Gy = frHC)N UL (0 Ngile) : c € i}

It is not difficult to see that (J{f; ' (c) Ngi(c) : ¢ € C;} is closed in X and
therefore Y; is open in clY;. Hence by Proposition 2.4, A; U B; is inessential
on Z; = Hy(A;,Y;) N Hy(B;,Y;). So A is inessential on Z = Z; U Zy U ...
Thus by Proposition 2.1 there is a neighbourhood G of Z on which A is
inessential and we claim that G is the desired set.

Indeed, let Y NG = () and dimY > 0.

Since F distinguishes the points of X, the map z — (f(z)) fer embeds
X in [;er f(X) and so Y is embedded in [[;.» f(V). Hence dimY > 0
implies that there is some f € F such that dim f(Y) > 0, so f(Y) contains a
non-degenerate interval and we can choose some C' € C such that C' C f(Y).
Take i such that (f;, C;) = (f,C); we are going to show that either A; or B;
is essential on Y.

Assume the contrary. Then by Proposition 2.1 there is a neighbourhood
Y C V on which both A; and B; are inessential. Let ¢ in C; be such that
gi(c) = X\V.Set D; = f; ' (c)\gi(c). It is obvious that D; = N{f; *(U)NY; :
U contains ¢ and U is clopen in C;} and since for U clopen in C;, f;(U)NY;
is clopen in Yj, it follows that D; equals the intersection of all clopen subsets
of Y; containing D;. Therefore the quasi-components of Y; intersecting D;
are contained in D;. Both A; and B; are inessential on D; as D; C V. Hence
D, C Hy(A;,Y;) and D; C Hy(B;,Y;), that is, D; C Z;. Clearly, D; intersects
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Y and so Y intersects Z;. This contradicts the assumption Y NG = () and
proves the theorem. m

As a matter of fact we have proved the following version of Theorem 1.2:

THEOREM 3.1. Let A be a countable family of pairs of disjoint open
subsets of a compactum X. Then for every countable decomposition of A
into disjoint subfamilies A = A1 U As U... there exists an open set G C X
such that A is inessential on G and for every Y with dimY > 0 not meeting
G there is some A; which is essential on'Y .

A remark concerning C-spaces. R. Pol noticed that the approach of this
note admits a more general setting.

DEFINITION 3.2. We will call a family P of subsets of a separable metric
space X admissible for X if

(i) A€ P and B C A imply that B € P,
(ii) for every A € P there is a neighbourhood A C V which belongs
to P,
(iii) for disjoint open sets V; € P, i = 1,2,..., the union |JV; belongs
to P.

Let A be a family of pairs of disjoint open subsets of X. Denote by P4
the family of all subsets of X on which A is inessential. We have shown that
P4 is admissible for X.

The following example of admissible families is based on the notion of
C-spaces (for more information see [1]).

DEFINITION 3.3. Let A = {U;,Us,...} be a countable family of open
covers of a separable metric space X. We will say that A is inessential on
Y C X if there exist families V;, Vs, ... of disjoint open sets such that V;
refines U; and Vi,Vs,... cover Y. Otherwise A is essential on Y. More-
over, X is called a C-space if every countable family of open covers of X is
inessential on X.

For a family A of open covers of X we will use the same notation P4
that we have used for a family of pairs to denote the family of all subsets of
X on which A is inessential. It is easy to verify that in this case P4 is also
admissible.

For families Py, Po, ... of subsets of X define Py VPy = {41 UAy: A; €
Pi}and \VP; = Vi, Pi = {UA; : A; € P;}. It is not difficult to check that
for a family of pairs or covers A and every decomposition of A into disjoint
subfamilies A = A; U Ay U... we have \/ P4, C P4. Now Theorem 3.1 can
be reformulated as follows.
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THEOREM 3.4. Let Py, P, ... be admissible families for a compactum X .
Then there is an open set G € \/ P; such that for everyY C X\ G of positive
dimension there is some P; which does not contain Y.

THEOREM 3.5. Let A be a countable family of open covers of a compactum
X. Then for every countable decomposition of A into disjoint subfamilies
A=A1UAsU... there exists an open set G C X such that A is inessential
on G and for every Y with dimY > 0 not meeting G there is some A; which
1s essential on Y.

And Theorem 1.5 can be stated as

THEOREM 3.6. Suppose a compactum X is not a C-space. Then X con-
tains a compactum Z C X which is not a C-space such that no Y C Z of
positive dimension is a C-space.

This theorem generalizes the analogous result of [5] where Y is assumed
to be a closed subset of Z.
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