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Multifractal properties
of the sets of zeroes of Brownian paths

by

Dmitry D o l g o p y a t (Princeton, N.J.)
and Vadim S i d o r o v (Moscow)

Abstract. We study Brownian zeroes in the neighborhood of which one can observe a
non-typical growth rate of Brownian excursions. We interpret the multifractal curve for the
Brownian zeroes calculated in [6] as the Hausdorff dimension of certain sets. This provides
an example of the multifractal analysis of a statistically self-similar random fractal when
both the spacing and the size of the corresponding nested sets are random.

1. Introduction

1.1. Notations. In this article we deal with the multifractal structure of
zeroes of a Brownian path. A Brownian path, denoted by ω(t), is a point
of the space C[0, 1] equipped with the Wiener measure denoted by P . Re-
call that this measure is specified by the condition that for disjoint inter-
vals [t11, t

1
2], [t21, t

2
2], . . . , [tn1 , t

n
2 ] the corresponding increments of the Brownian

curve ω(t12)−ω(t11), ω(t22)−ω(t21), . . . , ω(tn2 )−ω(tn1 ) are independent normal
variables with mean values 0 and variances tk2 − tk1 .

The set of zeroes {t : ω(t) = 0} is denoted by Z[0, 1]. It is random as long
as ω is random. It is also well known that Z[0, 1] is closed, nowhere dense and
its Hausdorff dimension h-dim(Z[0, 1]) is 1/2 for a.e. ω. The purpose of this
paper is to study the fine structure of Z[0, 1]. Denote by Cm[0, 1] the com-
plement to Z[0, 1]. It is an open set consisting of a countable set of intervals.
Take ε > 0 and delete from [0,1] all intervals of that set whose length is not
less than ε. The connected components of the remaining set will be called
ε-clusters. We denote them by Ki(ε) (counting from left to right). Sometimes
it will be convenient to consider ε-clusters on the whole halfline, assuming
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that the Wiener measure is considered on the space C[0,∞). We denote the
ε-cluster containing t ∈ [0, 1] by K(ε, t). We also use the following notation:

• L(t) is the local time on Z[0, 1] (for the definition and basic properties
of the local time see [5]); in Subsection 1.2 we discuss some properties of the
local time connected with the fractal structure of Z[0, 1];
• li(ε), l(ε, t) are the increments of the local time on Ki(ε) and K(ε, t)

respectively;
• δi(ε), δ(ε, t) are the lengths of Ki(ε) and K(ε, t);
• ∆i(ε) is the distance between Ki(ε) and Ki+1(ε);
• Hs is the s-dimensional Hausdorff measure; Hs

ε is the corresponding
ε-measure (Hs

ε (A) = inf
∑
i |Ii|s, where the infimum is taken over all cov-

erings of the set A with sets of diameter less than ε and | · | denotes the
diameter);
• εm=(1/2)m;

• Am(γ) =
{
t :

ln l(εm, t)
ln δ(εm, t)

≥ 1
2

+ γ

}
;

• Bm(γ) = {t : δ(εm, t) ≤ ε1+γ
m };

• Cm(γ) = {t : l(εm, t) ≤ ε1/2+γ
m };

• νm([a, b]) is the number of εm-clusters intersecting the segment [a, b].

During the proofs we omit some indices if it does not lead to misunder-
standing (for example we usually write δ(t) and Am). All statements about
Z[0, 1] hold only for a subset of probability 1 even if we do not mention that
explicitly.

1.2. Fractal geometry of Z[0, 1] and local time. As was already men-
tioned, h-dim(Z[0, 1]) = 1/2. This fact follows from a stronger theorem.
Define φ(s) =

√
s ln ln s and put

φ-m(A) = lim
ε→0

inf
∑

i

φ(|Ii|),

where the infimum is taken over all coverings of the set A by intervals of
length less than ε. Then

(1.1) φ-m(Z[0, 1]) = const ·L(1) (see [9]).

There is another curious property of the local time. According to the
Frostman lemma (see [3]), for a given set A, for any s < h-dim(A) one can
find a measure µ(s) and a constant c(s) such that µ([x, y]) < c(s) |x− y|s
for any x, y. For A = Z[0, 1] we can describe this measure explicitly. Indeed,
for sufficiently small ε the following inequality holds for a set of Wiener
measure 1:

(1.2) L(t+ ε)− L(t) <
√

3ε ln(1/ε) (see [5]).
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1.3. Main result. (1.2) implies that for all t ∈ Z[0, 1],

lim inf
ε→0

ln(L(t+ ε)− L(t))
ln ε

≥ 1
2
.

This can be reformulated in the following way: for all t ∈ Z[0, 1],

lim inf
m→∞

ln l(εm, t)
ln δ(εm, t)

≥ 1
2
.

The goal of this paper is to strengthen the last inequality.

Theorem 1. For any γ with 0 < γ < 1/4 and for a.e. ω,

h-dim
{
t : lim inf

m→∞
ln l(εm, t)
ln δ(εm, t)

≥ 1
2

+ γ

}
= 0,

h-dim
{
t : lim sup

m→∞
ln l(εm, t)
ln δ(εm, t)

≥ 1
2

+ γ

}
=

1
2
− 2γ,

or equivalently ,

h-dim lim inf
m→∞

Am(γ) = 0, h-dim lim sup
m→∞

Am(γ) =
1
2
− 2γ.

This theorem implies that

H1/2
{
t : lim

m→∞
ln l(εm, t)
ln δ(εm, t)

6= 1
2

or the limit of this ratio fails to exist
}

= 0,

while H1/2(Z[0, 1]) =∞ by (1.1).

1.4. Dimension of other singularities. The method used to prove
Theorem 1 is also applicable to the investigation of lim infm→∞Bm,
lim infm→∞ Cm, lim supm→∞Bm, lim supm→∞ Cm, that is, respectively,

{
t : lim inf

m→∞
ln δ(εm, t)

ln εm
≥ 1 + γ

}
,

{
t : lim inf

m→∞
ln l(εm, t)

ln εm
≥ 1

2
+ γ

}
,

{
t : lim sup

m→∞
ln δ(εm, t)

ln εm
≥ 1 + γ

}
,

{
t : lim sup

m→∞
ln l(εm, t)

ln εm
≥ 1

2
+ γ

}
.

Roughly speaking, the structure of these sets is the following. Each Xm

consists of about (1/εm)% segments (where X is any of A, B or C), which
are “almost equidistributed” on the segment [0,1], and most of these seg-
ments have length of order εθm. In this case h-dim(lim inf Xm) = 0 and
h-dim(lim supXm) = %/θ.
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Moreover, one can deduce from the proof that if we replace εm = (1/2)m

by an arbitrary sequence ε̃m, then the following statements hold with prob-
ability 1:

• if limm→∞ ε̃m−1/ε̃m =∞, then h-dim(lim inf Xm) = %/θ;
• if ε̃m−1/ε̃m remains bounded then h-dim(lim inf Xm) = 0. (Of course,

the exceptional sets of measure 0 where neither of the statements above
holds may be different for different sequences).

The plan of our paper is the following. In Subsection 1.5 we explain our
results using the notion of multifractality applied to the set Z[0, 1] (equipped
with L(t)). In Section 2 we present some facts about the distribution of li(ε),
δi(ε), and ∆i(ε). The proof of Theorem 1 is contained in Sections 3 and 4. In
Section 3 we describe the set of Wiener measure 1 for which the statement
of Theorem 1 is true. In Section 4 we give the proof of the main statement
for this set. Essentially it does not differ too much from the one in the case
when Xm is the union of (1/εm)% equidistributed segments of length εθm.
Finally, in Section 5 we calculate the above stated dimensions for Bm and
Cm. Since the proof in this case almost completely coincides with the proof
of Theorem 1, we restrict ourselves to the calculations of % and θ. The answer
is the following:

Proposition 1. With probability 1, for 0 < γ ≤ 1,

h-dim (lim inf Bm) = 0, h-dim (lim supBm) =
1
2
· 1− γ

1 + γ
.

Proposition 2. With probability 1, for 0 < γ ≤ 1/2,

h-dim (lim inf Cm) = 0, h-dim (lim supCm) =
1
2
· 1− 2γ

1 + 2γ
.

1.5. Singular points and the multifractal structure of Z[0, 1]. As one will
see in Section 2, typical εm-clusters have size of order εm and for most of
them

ln li
ln δi

≈ 1
2
.

At the same time there exist few εm-clusters for which

α <
ln li
ln δi

≤ α+∆α, where α 6= 1
2
.

For some α the share of such clusters varies polynomially with εm, i.e.
it approximately equals ε

f(α)
m (f(α) = 3/2 − 2α, where α ∈ [1/2, 3/4]

(cf. [6])). In this case one says that f(α) lies in the multifractal spectrum
of Z[0, 1]. The multifractal structure of Z[0, 1] is studied in a different
way in [6].
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In our paper we interpret f(α) as the Hausdorff dimension of lim supAm.
It is quite clear why we use lim sup (instead of lim inf). Indeed, it reflects
the very complicated behavior of

rt(ε) =
ln l(ε, t)
ln δ(ε, t)

as a function of ε. Really, rt(ε) is piecewise constant, and it grows up
at points whose coordinates are equal to the length of the intervals from
Cm[0, 1], lying close to t. The quite complicated structure of Cm[0, 1] as
compared with the complement to Cantor dust, for example, explains the
chaotic behavior of rt(ε).

2. Basic distributions related to ε-clusters. Here we give some
properties of the distributions related to ε-clusters which will be used in the
following sections. The proofs can be found in [6].

Proposition 3. (a) The triples (∆i, δi, li) are independent and identi-
cally distributed.

(b) The pair (δi, li) of random variables does not depend on ∆i for any i.
(c) Introduce new random variables ξ−i , ξ+

i , and ηi, where δi(ε) = εξ−i ,
∆i(ε) = εξ+

i , and li(ε) =
√
πε/2 ηi. Then the distribution of ξ+

i , ξ−i and ηi
does not depend on ε and :

(d) ηi has exponential distribution with mean value 1, i.e. Fηi(x) = 1−
exp{−x}.

(e) The distribution function of ξ+
i is Fξ+

i
(x) = 1− 1/

√
x, x > 1.

(f) ξ−i all have positive moments and

Fξ−
i

(x) =
1√
π
√
x

(1 +O(1)), x→ 0.

(g) P (ξ−i > sβ , η < sγ) ∼ const(γ, β) · s2γ−β/2, s → 0, 0 < β/2 < γ <
1/2.

(h) Fix γ, 0 < γ < 1. Call an εm-cluster poor in zeroes if it belongs to
Am(γ). The probability of the event “Ki(ε) is poor in zeroes” has asymptotics
const · ε2γ as ε→ 0 when γ 6= 1/2, γ < 1 (we are only interested in a dense
set of γ).

(i) A cluster which is poor in zeroes and satisfies the inequality ε/2 <
δi < ε will be called a standard εm-cluster. Then the probability of a standard
cluster has the same asymptotics as in (h), i.e. const · ε2γ .

3. Description of the set of full measure where our results are
valid

3.1. Number of ε-clusters. Recall that νm([a, b]) is the number of
εm-clusters intersecting the interval [a, b].
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Lemma 1. For any given δ and a.e. ω, and for almost all m (i.e. all m
except a finite set),

(
1
εm

)1/2−δ
< νm([0, 1]) <

(
1
εm

)1/2+δ

.

P r o o f. We have

νm([0, 1]) = min
{
n :

n∑

i=1

li(ε) ≥ L(1)
}

= min
{
n :

n∑

i=1

ηi ≥
√

2
πε
L(1)

}
.

We shall use Bernstein’s inequality in the following form: let Zi be inde-
pendent and exponentially distributed random variables with mean value 1;
then there are positive constants c1, c2, c3, c4 such that

(3.1) P
(
c1n <

n∑

i=1

Zi < c2n
)
> 1− c3 exp{−c4n}.

In particular,

(3.2) P

( (1/εm)1/2−δ∑

i=1

ηi(εm) > c2

(
1
εm

)1/2−δ)
< c3 exp

{
−c4

(
1
εm

)1/2−δ}

and

(3.3) P

( (1/εm)1/2+δ∑

i=1

ηi(εm) < c1

(
1
εm

)1/2+δ)
< c3 exp

{
−c4

(
1
εm

)1/2+δ}
.

By the Borel–Cantelli lemma, the inequalities in (3.2) and (3.3) with
probability 1 take place only a finite number of times.

Since

c2

(
1
εm

)1/2−δ
< L(1)

√
1
εm

< c1

(
1
εm

)1/2+δ

if m is large enough, the lemma is proven.

Lemma 2. For any given δ, with probability 1, for all m large enough
the number of εm-clusters poor in zeroes is between (1/εm)1/2−2γ−δ and
(1/εm)1/2−2γ+δ.

P r o o f. Let us prove, for example, the lower estimate. In view of Lem-
ma 1 it is sufficient to show that for all m except a finite number, no less
than (1/εm)1/2−2γ−δ εm-clusters of the first (1/εm)(1−δ)/2 of them are poor
in zeroes. The probability of the complementary event is

P (m) =
(1/εm)1/2−2γ−δ∑

k=0

b

((
1
εm

)(1−δ)/2
, k, pm

)
,
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where b(n, k, p) = Cknp
k(1 − p)n−k and pm = P{εm-cluster with a given

number is poor in zeroes} ∼ const · ε2γ (see Proposition 3(h)). The inequal-
ity

l∑

k=0

b(n, k, p) < b(n, l, p)
np− k
np− kp ,

which is valid for k < np, in our case gives

P (m) <
c(1/εm)1/2−2γ−γ/2 − (1/εm)1/2−2γ−δ

c((1/εm)1/2−2γ−δ/2 − (1/εm)1/2−4γ−δ)
(3.4)

× const · b
((

1
εm

)(1−δ)/2
,

(
1
εm

)1/2−2γ−δ
, pm

)
.

It is easy to show (using Stirling’s formula) that

P (m) < c5(δ)
(

1
εm

)c6(δ)

exp
{
− c7

(
1
εm

)1/2−δ/2−2γ}
.

Hence,
∞∑
m=1

P (m) <∞.

In the same way, if we define P (m) as

P (m) = P{no less than (1/εm)1/2−2γ+δ of the first (1/εm)1/2+δ/2

εm-clusters are poor in zeroes},
using again Stirling’s formula and the inequality

n∑

k=l

b(n, k, p) < b(n, l, p)
k − np
k − kp

(which is valid for k > np), we obtain

P (m) < c8(δ)
(

1
εm

)c9(δ)

exp
{
− c10

(
1
εm

)1/2−δ/2−2γ}
,

and therefore
∑∞
m=1 P (m) <∞. Lemma 2 is proven.

Proposition 4. The statement of Lemma 2 also holds for standard
εm-clusters.

P r o o f. P{a certain εm-cluster is standard} has the same asymptotics
as pm.

3.2. Decay of εm-clusters’ size. Denote by rm the maximal size of
εm-clusters in [0,1].
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Lemma 3. With probability 1,

lim sup
m→∞

ln rm
ln εm

≥ 1 (and , therefore, lim sup
m→∞

ln rm
ln εm

= 1).

P r o o f. Fix δ > 0. It is sufficient to show that rm ≤ ε1−δ for all m large
enough. By Lemma 1 it is sufficient to prove that for all m large enough,

max
j≤(1/εm)1/2+δ

δj(εm) ≤ ε1−δ
m , i.e. max

j≤(1/εm)1/2+δ
ξ−j ≤

(
1
εm

)δ
.

Now,

P

(
max

j≤(1/εm)1/2+δ
ξ−j ≤

(
1
εm

)δ)
≤
(

1
εm

)1/2+δ

P

(
ξ−j ≥

(
1
εm

)δ)

≤ ε3/2−δE((ξ−j )2/δ).
So,

∞∑
m=1

P ( max
j≤(1/εm)1/2+δ

δj(εm) ≤ ε1−δ
m ) <∞

and the lemma is proven.

Now we introduce two sequences of numbers:

kn =
(

1/2 + γ + δ

1/2− 2γ − δ
)n

and ε(n) = 2−2n
2

.

3.3. Equidistribution of ε-clusters

Lemma 4. Fix δ > 0. Then the following statements hold a.e.:

(a) Fix a natural n. Then for almost all m and for any j (1 ≤ j ≤ n),
any εkj−1

m -cluster poor in zeroes contains no more than
(

1
εm

)[(kj−kj−1)/2−γkj−2γkj−1+δ(kj+kj−1)]

ε
kj
m -clusters which are poor in zeroes.

(b) For almost all n the number of standard ε(n)-clusters falling inside
any standard ε(n)-cluster lies between

2[(2n
2−2(n−1)2 )/2−γ2(n−1)2−2γ2n

2−δ2n2
]

and
2[(2n

2−2(n−1)2 )/2−γ2(n−1)2−2γ2n
2
+δ2n

2
].
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P r o o f. We only prove the statement (a) (the proof of (b) is similar).
By Lemma 3, if m is large enough, the increment of the local time on

any ε
kj−1
m -cluster poor in zeroes is less than (εkj−1

m )1/2+γ−δ, since other-
wise

rmkj−1 > εkj−1(1/2+γ−δ)/(1/2+γ)
m

and the number of these clusters is less than (1/εm)kj−1(1/2−2γ+δ). Let l(K)
be the number of εkjm -clusters whose left end point coincides with the left end
point of the εkj−1

m -cluster K. Then the number n(K) of εkjm -clusters lying
inside K is less than

min
{
n :

n+l∑

i=l

li(εkjm ) ≥ (εkj−1
m )1/2+γ−δ

}

= min
{ n+l∑

i=l

ηi ≥
(

1
εm

)[(kj−kj−1)/2−γkj−1+δkj−1]}
.

By the estimate (3.2),

∞∑
m=1

(
1
εm

)kj(1/2−2γ+δ)

P

{
n(K) >

(
1
εm

)[(kj−kj−1)/2−γkj−1+δkj−1+δkj/2]}

<∞.
So, for all m large enough,

n(K) <
(

1
εm

)[(kj−kj−1)/2−γkj−1+δkj−1+δkj/2]

and the estimate (3.2) implies that

∞∑
m=1

(
1
εm

)kj(1/2−2γ+δ)

P{#{i : l(K) ≤ i ≤
l(K) + (1/εm)[(kj−kj−1)/2−γkj−1−δkj−1−δkj/2]

and Ki(εkjm ) is poor in zeroes} >
(1/εm)[(kj−kj−1)/2−γkj−1−2γkj−δkj−1−δkj/2]}<∞.

The lemma is proven.

Lemma 5. For any positive δ there is a constant c(δ) such that for a.e. ω
and almost all n, any interval in [0, 1] containing c(δ) standard ε(n)-clusters
contains no less than (1/ε(n))2γ−δ ε(n)-clusters.

P r o o f. By Lemma 2 it is sufficient to consider the case when the number
of standard ε(n)-clusters does not exceed (1/ε(n))1/2−2γ+δ. Then
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P{there exists an interval containing less than (1/ε(n))1/2−2γ+δ

ε(n)-clusters among which c(δ) are standard}
≤ P{the interval beginning from a given standard ε(n)-cluster and

containing c(δ) of them does not cover (1/ε(n))2γ−δ ε(n)-clusters}
× (1/ε(n))1/2−2γ+δ

≤ [P{there are less than (1/ε(n))2γ−δ ε(n)-clusters

falling between two neighboring standard ones}]c(δ)

× (1/ε(n))1/2−2γ+δ

≤ (c11ε(n)2γ)c(δ)−1(1/ε(n))1/2−2γ+δ ≤ cc(δ)−1
11 ε(n)2γc(δ)−1/2+δ,

i.e. for example, 1/γ + 1 is a possible value for c(δ) and the lemma is
proven.

Lemma 6. Fix δ > 0. For a.e. ω and almost all n, any interval I on the
t-axis containing k standard ε(n)-clusters has length exceeding

ε(n)
{[

k

c(δ)

](
1

ε(n)

)2γ−δ}2−δ
.

P r o o f. By Lemma 5 it is sufficient to give the proof in the case when
the number of ε(n)-clusters in I is more than [k/c(δ)](1/ε(n))2γ−δ.

Let us number the standard ε(n)-clusters and denote by pjk(n) the prob-
ability of the event that the maximal distance between neighboring ε(n)-
clusters in the interval beginning from the jth standard ε(n)-cluster and
containing [k/c(δ)](1/ε(n))2γ−δ ε(n)-clusters, is less than

ε(n){[k/c(δ)](1/ε(n))2γ−δ}2−δ.
It is sufficient to check the convergence of the series

∞∑
n=1

(1/ε(n))1/2−2γ+δ∑

j=1

(1/ε(n))1/2−2γ+δ∑

k=1

pkj(n)

≤
∞∑
n=1

( (1/ε(n))1/2−2γ+δ∑

k=1

p1k(n)
)( 1

ε(n)

)1/2−2γ+δ

.

Now,

p1k(n) =
[
P

{
∆ < ε(n)

{[
k

c(δ)

](
1

ε(n)

)2γ−δ}2−δ}][k/c(δ)](1/ε(n))2γ−δ
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∼
(

1− 1√
{[k/c(δ)](1/ε(n))2γ−δ}2−δ

)[k/c(δ)](1/ε(n))2γ−δ

< exp
{
− c12

([
k

c(δ)

](
1

ε(n)

)2γ−δ)δ/2−δ/4}

= exp
{
− c12

([
k

c(δ)

](
1

ε(n)

)2γ−δ)δ/4}
.

The last inequality is valid when n is large enough (we have used the asymp-
totics ln p1k(n) ∼ ([k/c(δ)](1/ε(n))2γ−δ)δ/4).

4. Geometrical considerations. In this part we consider those Brow-
nian paths where the statements of Lemmas 1–6 and Proposition 4 are valid
for all positive δ.

4.1. Dimension of the lower limit of Am

Lemma 7. h-dim(lim infm→∞Am) = 0.

P r o o f. Denote by A(m,n) the set {t : K(εkjm , t) is poor in zeroes for all
j with 0 ≤ j ≤ n}. Denote by Nm(n) the number of εknm -clusters included
in A(m,n). Then

Nm(n) ≤ (the number of εm-clusters poor in zeroes)

×
n∏

j=1

(the maximal number of εkjm -clusters

poor in zeroes inside an εkj−1
m -cluster)

≤
(

1
εm

)1/2−2γ+δ n∏

j=1

(
1
εm

)kj(1/2−2γ+δ)−kj−1(1/2+γ−δ)
=
(

1
εm

)ϕ
,

where

ϕ =
(

1
2
− 2γ + δ

)
+
δ

[
3

1/2 + γ + δ

1/2− 2γ − δ + 2
]
(kn − 1)

1/2 + γ + δ

1/2− 2γ − δ − 1
.

By Lemma 3,

Hs

(εknm )
1−δ(A(m,n)) ≤ εkn(1−δ)s−ϕ

m .

Since δ is arbitrarily small, we conclude that h-dim(
⋂∞
k=m

⋂∞
n=1A(k, n)) =

0. But lim inf Am ⊂
⋃∞
m=1

⋂∞
k=m

⋂∞
n=1A(k, n), and the lemma is proven.

4.2. Upper estimate for the upper limit’s dimension. To obtain an upper
estimate of h-dim(lim supAm) we need the following lemma.
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Lemma 8. Let sets Xn and a sequence εn → 0 be such that
∞∑
n=1

Hs
εn(Xn) <∞.

Then h-dim(lim supXn) ≤ s.
P r o o f. We have

Hs
εn(lim supXn) ≤ Hs

εn

( ∞⋃

k=n

Xk

)
≤
∞∑

k=n

Hs
εk

(Xk)→ 0.

Corollary 1. h-dim(lim supAm) ≤ 1/2− 2γ.

P r o o f. For any positive s,

Hs
εm(Am) ≤ const(s)

(
1
εm

)1/2−2γ+δ

ε(1−δ)s
m ,

i.e.

if s >
1/2− 2γ + δ

1− δ , then h-dim(lim supAm) ≤ s.
Since δ is arbitrarily small, the proof is complete.

4.3. Lower estimate for the upper limit’s dimension. Let us now consider
the n from which on the statement of Lemma 4(b) is true. Take an arbi-
trary standard ε(n)-cluster. We introduce a probability measure µ on the
set {t : for any k ≥ n,K(ε(k), t) is a standard ε(k)-cluster and K(ε(n), t)
= K} satisfying the following condition: all standard ε(l+1)-clusters falling
inside the same ε(l)-cluster have equal measure.

By Lemma 4(b), for any standard ε(l)-cluster (l > n),

µ(Kl) ≤
l∑

k=n+1

(
1

ε(n)

)[(1/2)(2k
2−2(k−1)2 )−γ2(k−1)2−2γ2k

2−δ2k2
]

≤ const ·
(

1
2

)2l
2
(1/2−2γ−2δ)

.

Lemma 9. For every interval I, we have |I|1/2−2γ−2δ ≥ const · µ(I).

P r o o f. Let j be the minimal natural number such that I covers an
entire standard ε(j)-cluster with positive measure, and let k be the number
of ε(j)-clusters inside I. There are two possibilities:

a) k < c(δ). Then

µ(I) < (c(δ) + 2) const ·
(

1
2

)2j
2
(1/2−2γ−2δ)
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(c(δ) + 2 takes account of more fine clusters as well) and

|I| > 1
2
·
(

1
2

)2j
2

.

b) k > c(δ). In this case the statement follows from Lemma 6 and the
estimate

µ(I) ≤ (k + 2) const ·
(

1
2

)2j
2
(1/2−2γ−2δ)

.

Corollary 2. h-dim(lim supAm) ≥ 1/2− 2γ.

P r o o f. The implication (Lemma 9) ⇒ (Corollary 2) is well known in
fractal geometry. We present the proof here, because it is short enough.

Let {Ij} be an ε-cover of (
⋂∞
k=nAk) ∩K. Then

∞∑

j=1

|Ij |1/2−2γ−2δ ≥ const ·
∞∑

j=1

µ(Ij) ≥ const · µ
(( ∞⋂

k=n

Ak

)
∩K

)
= const,

i.e. for any ε > 0,

H1/2−2γ−2δ
ε

(( ∞⋂

k=n

Ak

)
∩K

)
≥ const

and so

h-dim
(( ∞⋂

k=n

Ak

)
∩K

)
≥ 1

2
− 2γ − 2δ.

This completes the proof of Theorem 1.

5. Dimension of other sets of singular points of the Brownian
zeroes

5.1. Small size clusters. The proof of h-dim(lim inf Bm) = 0 is similar to
the proof of Lemma 7.

The probability of small size clusters (belonging to Bm) has asymptotics
const · εγ/2. Hence, the number of those clusters has order (1/ε)1/2−γ/2 in
the sense of Lemma 2. The length of clusters is bounded by ε1+γ , therefore

h-dim(lim supBm) ≤ 1
2
· 1− γ

1 + γ
.

To prove the reverse inequality one defines a standard small cluster to be
one with length between 1

2ε
1+γ and ε1+γ , and proceeds in a similar way to

what we did with Lemmas 4–6, 9 and Corollary 2.

5.2. Small local time increment clusters. In the same way as in 4.1 and
5.1 we get h-dim(lim inf Cm) = 0.
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To study the upper limit divide [0, 2γ] into subintervals of length 1/n.
Define β(n)

i = i/n and

Cm(i, n) = {t : ε
1+β(n)

i+1
m < δ(εm, t) ≤ ε1+β(n)

i
m ; li(εm, t) < ε1/2+γ}.

The probability of clusters from Cm(i, n) has asymptotics const · ε2γ−β(n)
i

/2.
Similarly to Lemma 3, with probability 1,

Cm ⊂
[2(1/2−γ)n]+1⋃

i=1

Cm(i, n)

if m is large enough. So

h-dim(lim supCm) = max
i
h-dim(lim supCm(i, n)).

Similarly to 4.2–4.3 and 5.1 we have the inequality

(5.1)
1/2− 2γ − β(n)

i /2

1 + β
(n)
i+1

≤ h-dim(lim supCm(i, n)) ≤ 1/2− 2γ − β(n)
i /2

1 + β
(n)
i

.

Since n is arbitrarily large, (5.1) implies that

h-dim(lim supCm) = sup
β∈[0,2γ]

1/2− 2γ − β/2
1 + β

=
1
2
· 1− 2γ

1 + 2γ
.
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