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A remark concerning random walks
with random potentials

by

Yakov G. S i n a i (Princeton, N.J., and Moscow)

Abstract. We consider random walks where each path is equipped with a random
weight which is stationary and independent in space and time. We show that under some
assumptions the arising probability distributions are in a sense uniformly absolutely con-
tinuous with respect to the usual probability distribution for symmetric random walks.

We consider random walks on the d-dimensional lattice Zd with each
path having a random statistical weight. Paths starting at (x, k) and ending
at (y, n) will be denoted by ωy,nx,k , i.e. ωy,nx,k = {ω(t) ∈ Zd, k ≤ t ≤ n ,
ω(k) = x, ω(n) = y, ‖ω(t + 1) − ω(t)‖ = 1}. To define a random weight
introduce a sequence of iid rv F = {F (x, t)}, x ∈ Zd, t ∈ Z. Without any loss
of generality we may assume that the F (x, t) are given for all x ∈ Zd, t ∈ Z.
The space of all possible realizations of F is denoted by Φ. The measure
corresponding to F is denoted by Q, the expectation with respect to Q is
denoted by M . We do not use any special notation for the natural σ-algebra
in Φ. Our main assumption concerning the distribution of F (x, t) is

M exp(2F (x, t)) <∞.
The natural group of space-time translations acting in Φ is denoted by
{T x,t}. It preserves the measure Q.

We shall consider the statistical weight of ωy,nx,k equal to

π(ωy,nx,k ) = exp
{ n∑

t=k

F (t, ω(t))
} 1

(2d)n−k
.

Introduce partition functions

Zy,nx,k =
∑

ωy,n
x,k

π(ωy,nx,k ), Znx,k =
∑
y

Zy,nx,k .
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Now we may define the “random” probability distribution PnF ; x,k defined on
paths ωy,nx,k by the formula

p(ωy,nx,k ) =
π(ωy,nx,k )

Znx,k
.

The induced probability distribution of y = ω(n) is

py,nx,k =
∑

ωy,n
x,k

p(ωy,nx,k ) =
Zy,nx,k
Znx,k

.

We shall also need the usual transition probabilities

q(n−k)(y − x) =
∑

ωy,n
x,k

1
(2d)n−k

.

It is well known that for any A > 0 and y for which ‖y − x‖ ≤ A√n,

q(n−k)(y − x)

=
1

(2π(n− k)/d)d/2
exp

{
− d‖y − x‖2

2(n− k)

}
(1 + γ(n−k)(y − x)),

where ‖ · ‖ is the Euclidean norm and γ(n−k)(z) tends to zero uniformly in
z satisfying the above-mentioned restrictions.

Our purpose in this note is to study the behavior of the distribution of
the normalized displacement

ω(n)− ω(k)√
(n− k)/d

=
y − x√

(n− k)/d

with respect to PnF ; x,k as n→∞. The problem was considered by J. Imbrie
and T. Spencer [3] and later by E. Bolthausen [1]. In [1] and [3], it was shown
that if the F (x, t) are small enough in appropriate sense, and d ≥ 3, then the
limiting distribution of the displacement is Gaussian and for typical F the
mean of the square of displacement grows proportionally to time. Recently
these results were extended to some random processes with continuous time
by J. Conlon and P. Olsen [2]. All these results can be formulated also in
terms of diffusion of directed polymers in random environments.

We show below that some of the results of [1] and [3] remain valid under
weaker assumptions on the distribution of F and the dimension d. Define

αd =
∑
n>0

∑
z

(q(n)(z))2.

This is finite if d ≥ 3. Put

Λ = M exp{F (x, t)} and λ =
M exp{2F (x, t)} − Λ2

Λ2 .
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Our main assumption is

(1) λαd < 1.

It is easy to see that (1) is valid for d ≥ 3 if λ is small enough. If F (x, t)
takes two values ±c with probability 1/2, then (1) is valid for those d for
which αd < 1, and does not require the smallness of c. Indeed, in this case
always λ < 1, i.e.,

M exp{2F (x, t)} ≤ 2Λ2,

because this is equivalent to the obvious inequality

1
2

(e2c + e−2c) ≤ 2
(
ec + e−c

2

)2

.

If the F (x, t) have Gaussian distribution N(0, σ), then (1) is valid for small
enough σ.

Put

h(x, t) =
exp{F (x, t)} − Λ

Λ
and introduce the series

ϕ(x, k) =
∑

r≥1

∑

k≤k1<...<kr

∑
z1,...,zr

q(k1−k)(z1 − x)q(k2−k1)(z2 − z1) . . .

. . . q(kr−kr−1)(zr − zr−1)h(z1, k1)h(z2, k2) . . . h(zr, kr),

ψ(y, n) =
∑

r≥1

∑

k1<...<kr≤n

∑
z1,...,zr

q(k2−k1)(z2 − z1) . . .

. . . q(kr−kr−1)(zr − zr−1)q(n−kr)(y − zr)h(z1, k1) . . . h(zr, kr).

It is clear that ϕ(x, t) and ψ(y, t) constitute stationary (with respect to
space-time translations) random fields, i.e. ϕ(x, k) = T x,kϕ(0, 0) and ψ(y, n)
= T y,nψ(0, 0). Also they are transformed into each other by reversal of time
in random walks. This implies, in particular, that the distributions of ϕ(x, t)
and ψ(x, t) coincide.

Below we prove the following theorems.

Theorem 1. If (1) is valid then the series giving ϕ(x, k) and ψ(y, n)
converge in the space L2(Φ,Q).

Theorem 2. If (1) is valid and ‖y − x‖ ≤ A
√
n− k where A is any

constant , then the partition function Zy,nx,k has the representation

Zy,nx,k = Λn−k+1q(n−k)(y − x)[(1 + ϕ(x, k))(1 + ψ(y, n)) + δ
(y,n)
(x,k) ],

where Mδy,nx,k = 0 and M(δy,nx,k )2 → 0 as n → ∞, x, k remain fixed and y
satisfies the above-mentioned restriction.
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P r o o f o f T h e o r e m 1. It is clear that ϕ and ψ are represented as
sums of orthogonal vectors in the space L2(Φ,Q). Therefore

Mϕ2(x, k) =
∑

r≥1

λr
∑

k<k1<...<kr

∑
z1,...,zr

(q(k1−k)(z1 − x))2

× (q(k2−k1)(z2 − z1))2 . . . (q(kr−kr−1)(zr − zr−1))2

=
∑

r≥1

(λαd)r <∞.

The same is true for ψ(x, t). We also have Mϕ(x, k) = Mψ(y, n) = 0.

Theorem 2 is proven in Appendix 1.

Theorem 3. If (1) holds then 1 + ϕ(x, t) > 0 and 1 + ψ(y, t) > 0 for
Q-a.e. F .

P r o o f. We already showed that Mϕ(x, t) = Mψ(x, t) = 0, Mϕ2(x, t)
> 0 and Mψ2(x, t) > 0. It is enough to consider ϕ(x, k) since ϕ(x, k) and
ψ(y, n) have the same distribution. By Theorem 2,

Zy,nx,k
Λn−k+1 − q(n−k)(y − x)[(1 + ϕ(x, k))(1 + ψ(y, n))] = δ

(y,n)
(x,k)q

(n−k)(y − x).

Take a continuous non-negative function f with compact support on Rd,
and write
∑
y

Zy,nx,k
Λn−k+1 f

(
x− y√
n− k

√
d

)

= (1 + ϕ(x, k))
∑
y

q(n−k)(y − x)f
(
y − x√
n− k

√
d

)
(1 + ψ(y, n))

+
∑
y

q(n−k)(y − x)f
(
y − x√
n− k

√
d

)
δ

(y,n)
(x,k) .

Theorem 2 immediately implies that the last term tends to zero in L2(Φ,Q)
for any fixed x, k and n→∞. Since Mψ(y, n) = 0 the sum

∑
y

q(n−k)(y − x)f
(
y − x√
n− k

√
d

)
(1 + ψ(y, n))

converges in L2(Φ,Q) to C =
∫
e−‖z‖

2/2f(z) dz/(2π)d/2 > 0. Thus

l.i.m.
n→∞

1
C

∑
y

Zy,nx,k
Λn−k+1 f

(
y − x√
n− k

√
d

)
= 1 + ϕ(x, k).



Random walks with random potentials 177

Now we can use the obvious inequality

Zy,nx,k−2 ≥
∑

〈x,x′〉

(
1
2d

)2

eF (x,k−2)+F (x′,k−1)Zy,nx,k = g(x, k − 2)Zy,nx,k ,

where the last expression gives also the definition of g(x, k − 2) which is
positive a.e., and the sum is taken over x′ such that ‖x − x′‖ = 1. We use
the notation 〈x, x′〉 for the nearest neighbors on the lattice. Thus we have

(2) 1 + ϕ(x, k − 2) ≥ g(x, k − 2)(1 + ϕ(x, k)).

Assume that 1 + ϕ(x, k − 2) = 0 with positive probability. Take x and
consider the set H+ of those numbers 2k such that 1 + ϕ(x, 2k) > 0. It
follows from (2) that if 2k ∈ H+ then 2k−2 ∈ H+. Therefore H+ = 2Z1 for
a.e. F . The ergodicity of T 0,2 implies that Q({F : 1 + ϕ(x, k) = 0}) = 0.

Let the conditions of Theorem 2 be valid. As in the proof of Theorem 3
take a continuous function f on Rd with compact support. Using Theorem
2 we can write

(3)
∑
y

f

(
y − x√
n− k

√
d

)
Zy,nx,k
Znx,k

=
(1 + ϕ(x, k))Λn−k+1

Znx,k

×
[∑

y

f

(
y − x√
n− k

√
d

)
q(n−k)(y − x)(1 + ψ(y, n))

+
∑
y

f

(
y − x√
n− k

√
d

)
δ

(y,n)
(x,k)q

(n−k)(y − x)
]
.

Our estimations during the proof of Theorem 2 in the Appendix give

l.i.m.
n→∞

Znx,k
Λn−k+1 = 1 + ϕ(x, k).

Also the last sum in (3) tends to zero in L2(Φ,Q) as n→∞. Therefore, we
have the following theorem.

Theorem 4.

l.i.m.
n→∞

1
Znx,k

∑
y

f

(
y − x√
n− k

√
d

)
Zy,nx,k =

∫
f(z)e−‖z‖

2/2 dz

(2π)d/2
.

This theorem shows in what sense the normalized displacement (ω(n)−
ω(k))

√
d/
√
n− k has the limiting Gaussian distribution. Its variance is the

same as for the usual random walk.
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Appendix

P r o o f o f T h e o r e m 2. We have

Zy,nx,k =
∑

ωy,n
x,k

exp
{ n∑

t=k

F (t, ω(t))
} 1

(2d)n−k

=
∑

ωy,n
x,k

n∏

t=k

(Λ+ exp{F (t, ω(t))} − Λ)
1

(2d)n−k

= Λn−k+1
∑

ωy,n
x,k

n∏

t=k

(1 + h(ω(t), t))
1

(2d)n−k

= Λn−k+1
[
q(n−k)(y − x) +

∑

r≥1

∑

k≤k1<...<kr<n

∑
z1,...,zr

q(k1−k)(z1 − x)

× q(k2−k1)(z2 − z1) . . . q(kr−kr−1)(zr − zr−1)

× q(n−kr)(y − zr)h(z1, k1) . . . h(zr, kr)h(y, n)
]
.

In what follows we only deal with the finite sum

Z̃y,nx,k =
∑

r≥1

∑

k≤k1<...<kr≤n

∑
z1,...,zr

q(k1−k)(z1 − x)q(k2−k1)(z2 − z1) . . .

. . . q(kr−kr−1)(zr − zr−1)q(n−kr)(y − zr)h(z1, k1) . . . h(zr, kr).

It is clear that MZ̃y,nx,k = 0 and

M(Z̃y,nx,k )2 =
∑

r≥1

λr
∑

k≤k1<...<kr≤n

∑
z1,...,zr

(q(k1−k)(z1 − x))2

× (q(k2−k1)(z2 − z1))2 . . . (q(n−kr)(y − zr))2.

Fix some constant B whose value will be chosen later and consider

Z̃y,nx,k (1) =
∑

r≤B lnn

∑

k≤k1<...<kr≤n

∑
z1,...,zr

q(k1)(z1 − x)

× q(k2−k1)(z2 − z1) . . . q(kr−kr−1)(zr − zr−1)

× q(n−kr)(y − zr)h(z1, k1) . . . h(zr, kr).

Let Z̃y,nx,k (2) be a similar sum where r > B lnn. Then the trivial estimation
gives

M(Z̃y,nx,k (2))2 ≤
∑

r>B lnn

(λαd)r =
(λαd)B lnn

1− λαd .
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Take B so large that

(λαd)B lnn

1− λαd ≤ 1
n2d for all large enough n.

We can write
Zy,nx,k

Λn−k+1 = q(n−k)(y − x)(1 + Z̃y,nx,k (1) + Z̃y,nx,k (2)).

From our estimations it follows that

(i) for all y with ‖y − x‖ ≤ A
√
n− k the ratio Z̃y,nx,k (2)/q(n−k)(y − x)

tends to zero in L2(Φ,Q) uniformly in y;
(ii) for any continuous function f with compact support, the sum

∑
y

f

(
y − x√

(n− k)/d

)
Z̃y,nx,k(2)

converges to zero in L2(Φ,Q).

Thus it remains to study Z̃y,nx,k (1) assuming ‖y − x‖ ≤ A
√
n− k. Let us

call an interval (kj−1, kj) large if kj−kj−1 ≥ nβ for some β with 1/2 < β < 1.
Here k0 = k, kr+1 = n. If r ≤ B lnn then at least one large interval in
the sequence (0, k1, k2, . . . , kr, n) is present. We shall show that the main
contribution to Z̃y,nx,k (1) comes from r-tuples (k1, k2, . . . , kr) with only one
large interval. Write

Z̃y,nx,k (1, 1)

=
∑

0≤r1≤B lnn
0≤r2≤B lnn

1≤r=r1+r2≤B lnn

∑

k≤k1<...<kr≤n
(kr1 ,kr1+1) is the unique

large interval

∑
z1,...,zr

q(k1)(z1 − x)

× q(k2−k1)(z2 − z1) . . . q(kr1+1−kr1 )(zr1+1 − zr1)

× q(kr1+2−kr1+1)(zr1+2 − zr1+1) . . . q(kr−kr−1)(zr − zr−1)q(n−kr)(y − zr)
× [h(z1, k1) . . . h(zr1 , kr1)] · [h(zr1+1, kr1+1) . . . h(zr, kr)].

We can write

Z̃y,nx,k (1, 1)

q(n)(y − x)
= (1 + ϕ(x, k))(1 + ψ(y, n))− 1 + δ

(y,n)
(x,k) (2).

The last formula also implies the definition of δ(y,n)
(x,k) (2). Since we can re-

strict ourselves by summation over those (z1, . . . , zr) where ‖zr1−x‖ ≤ n2β ,
‖zr1+1−y‖ ≤ n2β , the summation over all other z is exceedingly small. Thus
M(δy,nx,k (2))2 → 0 as n→∞ uniformly over all y under consideration.
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The rest of our argument is to show that the contribution of r-tuples
where the number of large intervals is greater than 1 is relatively small.
Again we write down the square of the norm of the corresponding sum:

Sy,nx,k = αd
∑

r≥1

(αdλ)r
∑

k≤k1<...<kr≤n

∑
z1,...,zr

p(k1−k)(z1 − x)

× p(k2−k1)(z2 − z1) . . . p(kr−kr−1)(z2 − z1) . . .

. . . p(kr−kr−1)(zr − zr−1)p(n−kr)(y − zr),
where p(i)(z) = (q(i)(z))2/αd. The last double sum can again be considered
as the probability that the sum ~η1+. . .+~ηr takes the values y−x, n−k, where
~ηj = (zj − zj−1, kj − kj−1). It is easy to show that the distribution of the
time component of ηj decays as const/td/2. Direct probabilistic arguments
show that the probability to have at least two values of j for which the
value of the “time” component is greater than nβ decays as 1/n(β+1)d. This
shows that the contribution of terms with two large increments (kj − kj−1)
to Sy,nx,k (1) is small in L2(Φ,Q) compared with the norm of q(n−k)(y − x).

We omit the details.
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