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Abstract. We describe, for any compact connected Lie group G and any prime p,
the monoid of self maps BGp̂ → BGp̂ which are rational equivalences. Here, BGp̂ denotes
the p-adic completion of the classifying space of G. Among other things, we show that two
such maps are homotopic if and only if they induce the same homomorphism in rational
cohomology, if and only if their restrictions to the classifying space of the maximal torus
of G are homotopic.

In an earlier paper [JMO], we gave a complete description of all homotopy
classes of self maps of the classifying space BG, when G is any compact
connected simple Lie group. In this paper, we extend those results to the
case where G is any compact connected Lie group, but only considering self
maps of BG which are rational equivalences. Most of the paper deals with
self maps of the p-adic completions BGp̂; and the results are extended to
global maps only at the end.

The first complete description of [BG,BG] for any nonabelian connected
Lie group G was given by Mislin [Ms], for the group G = S3. More recently,
in [JMO] (and based on earlier work by Hubbuck [Hu] and Ishiguro [Is]),
we extended Mislin’s result to a description of [BG,BG] for an arbitrary
compact connected simple Lie group G. The assumption that G be sim-
ple was, however, crucial: examples were given in [JMO, §7] to show that
a similar, simple description of all self maps is unlikely for arbitrary
connected G.

When G is simple, any f : BGp̂ → BGp̂ is either a Q-equivalence or
nullhomotopic. The most natural setting for obtaining similar strong results
for semisimple or connected groups seems to be to restrict attention to the
Q-equivalences. For example, we will see in Corollary 2.6 below that for
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connected G, two Q-equivalences f, f ′ : BGp̂ → BGp̂ are homotopic if and
only if H∗(f ; Q) = H∗(f ′; Q). This is not the case for arbitrary self maps,
as was shown in [JMO, Example 7.1].

Throughout this paper, p will be a fixed prime, G a fixed compact con-
nected Lie group, T ⊆ G a maximal torus, and W = N(T )/T the Weyl
group. The monoid of homotopy classes of Q-equivalences BGp̂ → BGp̂ will
be denoted by [BGp̂, BGp̂]Q, and the subgroup of homotopy equivalences by
[BGp̂, BGp̂]h. Let T∞ ⊆ T be the subgroup of elements of p-power order.
A homomorphism φ : T∞ → T∞ will be called admissible [AM, p. 5] if it is
equivariant with respect to some endomorphism of W ; i.e. if there is some
φ : W → W such that φ(wt) = φ(w)φ(t) for all w ∈ W and t ∈ T . The
monoid of admissible epimorphisms from T∞ to itself will be denoted by
AdmEpi(T∞, T∞).

Our first step (Propositions 1.2 and 1.4) is to construct a homomorphism
of monoids

Θ : [BGp̂, BGp̂]Q → AdmEpi(T∞, T∞)/W,
where W acts on the admissible maps by composition. This is just the p-adic
version of the construction of Adams & Mahmud [AM, Corollary 1.8] (in
the special case of self maps). The map Θ is characterized by the property
that Θ(f) = φ ·W for any f ∈ [BGp̂, BGp̂]Q and any φ : T∞ � T∞ such
that f |BT ' Bφ. And in this situation, f is a homotopy equivalence if and
only if φ is an isomorphism.

The main result in Section 2 (Theorem 2.5) is that Θ is an injection, and
its image is closed in the p-adic topology. The precise image of Θ is then
described in Theorem 3.4. The formulation of Theorem 3.4 is somewhat
technical, but it leads to a very simple result about homotopy equivalences
(Corollary 3.5): Θ restricts to a group monomorphism

Θh : [BGp̂, BGp̂]h → NAut(T∞)(W )/W,

which is an isomorphism except when p = 2 and G contains a direct fac-
tor of the form SO(2n+1) × Sp(n). We also show that all components of
map(BGp̂, BGp̂)Q have the homotopy type of BZ(G)p̂.

At the end of the paper, Sullivan’s arithmetic square for completions and
localizations is applied to obtain the analogous results for Q-equivalences
from BG to itself.

Maps f : BGp̂ → BGp̂ (or, equivalently, BG → BGp̂) are studied here
using the p-local approximation of BG constructed in [JMO, §1]. More pre-
cisely, we showed there that BG is Fp-homology equivalent to the homotopy
direct limit of classifying spaces BP for certain p-toral subgroups P ⊆ G.
The details of this approximation will be recalled in Section 2 below.

Our general reference for completion techniques and results is Bousfield
& Kan [BK]. For any space X, we let X p̂ denote the Fp-completion of X.
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Then map(Y,X p̂) ' map(Y ′, X p̂) for any Fp-homology equivalence Y → Y ′

[BK, II.2.8]. Also, if X has finite type and π1(X) is a finite p-group, then
π1(X p̂) ∼= π1(X), and πi(X p̂) ∼= πi(X)p̂

∼= πi(X) ⊗ Ẑp for each i ≥ 2. This
last statement follows from [BK, VI.5.2] whenX is 1-connected; and holds in
the general case since the sequence (X̃)p̂ → X p̂ → K(π1X, 1) is a homotopy
fibration (see [BK, II.5.2(iv)]). Here, X̃ denotes the universal cover of X.

For any pair X,Y of spaces, and any map f : X → Y , map(X,Y )f will
denote the space of maps X → Y which are homotopic to f .

Partial results similar to those given here have also been obtained by
Dietrich Notbohm [No2] and Jesper Møller [Mø].

We would like to thank Bill Dwyer for suggesting the formulation of some
of the results in Section 3.

1. We first recall the description by Dwyer–Zabrodsky [DZ] and Not-
bohm [No1] of the mapping spaces map(BP,BG), when P is p-toral and G
is an arbitrary compact Lie group.

For any pair G and G′ of compact Lie groups, define

Rep(G,G′) := Hom(G,G′)/ Inn(G′),

the set of G′-conjugacy classes of homomorphisms from G to G′. For any
% : G→ G′, CG′(%) will denote the centralizer in G′ of Im(%).

Theorem 1.1. Fix a p-toral group P and a compact connected Lie
group G. Let T ⊆ P denote the identity component of P , and let T∞ ⊆ T
be the set of elements of p-power order. Then there exists a dense subgroup
P∞ ⊆ P such that P∞∩T = T∞; and any two such subgroups are conjugate
by some element of T . Furthermore, if we regard P∞ as a discrete group:

(i) The maps

Rep(P∞, G) B−→∼= [BP∞, BGp̂]
res←−∼= [BP,BGp̂]

are bijections.
(ii) For any % : P∞ → G, the pairing BCG(%)× BP∞ → BG induces a

homotopy equivalence

ê% : BCG(%)p̂
'−→map(BP∞, BGp̂)B% (' map(BP,BGp̂)B%).

P r o o f. This theorem is implicit in the work of Notbohm [No1]. In fact,
it is much more elementary than his results, which involve the analogous
description of maps from BP to BG (without completion).

A choice of P∞ is equivalent to a choice of splitting map for the extension
1 → T/T∞ → P/T∞ → P/T → 1. Hence the existence of P∞ will follow if
H2(P/T ;T/T∞) = 0, and its uniqueness will follow if H1(P/T ;T/T∞) = 0.
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And these cohomology groups vanish because P/T is a finite p-group and
T/T∞ is uniquely p-divisible.

By construction, P∞ is the union of an increasing sequence P1 ⊆ P2 ⊆
P3 ⊆ . . . of finite p-groups, and hence BP∞ ' hocolim−−−−−→n

(
BPn

)
. For each

n ≥ 1, [BPn, BGp̂] ∼= Rep(Pn, G), and

(1) map(BPn, BGp̂)B% ' BCG(%)p̂

for each % : Pn → G, by a theorem of Dwyer and Zabrodsky [DZ]. In partic-
ular, each component of map(BPn, BGp̂) has finite fundamental group, so
the appropriate lim←−

1π1(−) all vanish, and

[BP∞, BGp̂] ∼= lim←−[BPn, BGp̂] ∼= lim←−Rep(Pn, G) ∼= Rep(P∞, G).

Also, map(BP∞, BGp̂) is the homotopy inverse limit of the spaces map(BPn,
BGp̂); and so by (1),

map(BP∞, BGp̂)B% ' (map(BP∞, BG)B%)p̂ ' BCG(%)p̂

for any % : P∞ → G. And map(BP∞, BGp̂) ' map(BP,BGp̂), since the
inclusion BP∞ ↪→ BP is a Fp-homology equivalence (cf. Feshbach [Fe,
Proposition 2.3]).

By Theorem 1.1, for any p-toral P and any compact Lie group G, any
two choices P∞, P ′∞ ⊆ P are conjugate by some element t ∈ T (the identity
component of P ). Also, if tP∞t−1 = P∞, then t has p-power order in
T/(Z(P )∩ T ); and so conjugation by t is an inner automorphism of P∞. It
follows that there is a unique natural way to identify the sets Rep(P∞, G)
and Rep(P ′∞, G) (independently of the choice of t); or in other words that
we can regard Rep(P∞, G) as depending only on P and not on P∞.

An element of Rep(P∞, G)—i. e., a homomorphism from P∞ to G de-
fined up to conjugacy in G—will be called a quasirepresentation from P to
G. We let QRep(P,G) denote the set of all quasirepresentations ϕ : P∞ → G
(note that the prime p is implicit in this definition). For example, if T is an
n-dimensional torus, then QRep(T, T )∼=Mn(Ẑp).

In these terms, Theorem 1.1(i) says that [BP,BGp̂] ∼= QRep(P,G) for
any p-toral P and any compact Lie group G. This is implicit in [No1],
where Notbohm also proves the (much harder) corresponding global result
that [BP,BG] ∼= Rep(P,G).

The next proposition (except for part (iii)) is analogous to a theorem of
Adams & Mahmud [AM, Corollary 1.11], but stated here for self maps of
the p-completion of BG. The main point is that any self map of BGp̂ lifts to
some essentially unique self map of BT p̂. This applies, in fact, to arbitrary
maps between classifying spaces of distinct compact connected Lie groups
(see [AM, Theorem 1.1]), but the following (simpler) case suffices for our
purposes here.
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Proposition 1.2. Fix a compact connected Lie group G, let T ⊆ G be
a maximal torus, and let W = N(T )/T be the Weyl group. Then for any
Q-equivalence f : BGp̂ → BGp̂, there exists an epimorphism φ : T∞ �
T∞, inducing a Q-equivalence fT = Bφ : BT p̂ → BT p̂, and such that the
following square commutes up to homotopy :

(1)

BT p̂
'−−−−−→
fT

BT p̂yincl

yincl

BGp̂
'−−−−−→
f

BGp̂

Furthermore, the following hold.

(i) For any other f ′T = Bφ′ : BT p̂ → BT p̂ for which (1) commutes up
to homotopy , there exists w ∈W such that φ′ = conj(w) ◦ φ.

(ii) φ is admissible: there is an automorphism β ∈ Aut(W ) which per-
mutes the reflections in W and such that φ ◦ conj(w) ' conj(β(w)) ◦ φ for
all w ∈W .

(iii) fT is a homotopy equivalence if and only if f is.

P r o o f. Let T∞ be the subgroup in T of elements of p-power order.
By Theorem 1.1 above, there is a homomorphism φ : T∞ → G such that
f |BT ' Bφ : BT p̂ → BGp̂. After composing φ with an inner automorphism
of G, if necessary, we may assume that Im(φ) ⊆ T . So from now on, we
regard φ as a homomorphism T∞ → T∞. Set

fT = Bφ : BT p̂ ' (BT∞)p̂ → BT p̂;

then square (1) commutes up to homotopy.
Let ι : T → G be the inclusion. For any w ∈ N(T ), the commutative

diagram

BT p̂
w∗−−−−−→ BT p̂

Bφ−−−−−→
=fT

BT p̂yBι

yBι

yBι

BGp̂
w∗−−−−−→
'Id

BGp̂
f−−−−−→ BGp̂

shows that B(ι ◦φ ◦ conj(w)) ' B(ι ◦φ). By Theorem 1.1 again, this means
that

(2) φ ◦ conj(w) = conj(β(w)) ◦ φ for some β(w) ∈ N(Im(φ)).
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Set n = dim(T ). Consider the group H2(BT p̂; Q) ∼= (Q̂p)n, regarded as a
Q̂p[W ]-representation. By (2), Ker(H2(fT ; Q)) is W -invariant. Also, if Gi is
a simple factor in G with maximal torus Ti = T∩Gi, thenH2(BTip̂; Q) isW -
irreducible (cf. [Bb1, p. 82, Proposition 5(v)]). Thus, if H2(fT ; Q) is not an
isomorphism, then either it vanishes on some such summand H2(BTip̂; Q),
or it fails to be injective on H2(BT p̂; Q)W = H2(BZ(G)p̂; Q). And in either
case, this contradicts the assumption that f is a Q-equivalence.

This shows that H2(fT ; Q) is an isomorphism. In particular, since T∞ ∼=
(Z[1/p]/Z)n, φ sends T∞ onto itself with finite kernel, and hence fT = Bφ
is a Q-equivalence. Also, since φ : T∞ → T∞ is onto, and since W acts
effectively on T∞, the element β(w) ∈ W which satisfies (2) is unique (for
any w ∈W ); and β : W →W is an automorphism. Then φ is β-equivariant
by construction, and this finishes the proof of (ii).

Assume now that f ′T : BGp̂ → BGp̂ is such that Bι◦fT ' Bι◦f ′T . Write
f ′T = Bφ′, where φ′(T∞) = T∞. Then by Theorem 1.1, φ and φ′ are
conjugate via some element g ∈ G. In particular, gT∞g−1 = T∞, and so
g ∈ N(T ). In other words, if we set w = gT ∈ W , then φ = conj(w) ◦ φ′,
and hence fT ' f ′T ◦w∗. This proves point (i).

It remains to prove point (iii): that fT is a homotopy equivalence if and
only if f is. If f is a homotopy equivalence, then let fT be a lifting of f−1

to BT p̂. The composites fT ◦ fT and fT ◦fT are homotopy equivalences by
(i) (the uniqueness of the lifting), and so fT is also a homotopy equivalence.

Now assume that fT is a homotopy equivalence. Each term in the fi-
bration G/T i→ BT → BG is simply connected, so the completed sequence
G/T p̂ → BT p̂ → BGp̂ is again a fibration [BK, VI.6.5]. Since square (1)
commutes up to homotopy, fT restricts to a map fG/T : G/T p̂ → G/T p̂.
Also, i∗ : H∗(G/T ; Q) → H∗(BT ; Q) is injective by [Br, Theorem 20.3(b)],
and H∗(G/T ; Z) is torsion free by [Bt]. So for each n, Hn(fT ; Z) is an auto-
morphism of the lattice Hn(BT ; Z) which sends the sublattice Hn(G/T ; Z)
into itself, and hence it restricts to an automorphism of Hn(G/T ; Z). Thus,
H∗(fG/T ; Z) is an automorphism, and fG/T is a homotopy equivalence. Since
fT is a homotopy equivalence by assumption, f must also be a homotopy
equivalence.

Proposition 1.2 says that there is a well defined map from the monoid
of Q-equivalences BGp̂ → BGp̂ to the monoid of admissible epimorphisms
T∞ � T∞ modulo the action of the Weyl group. This will be stated more
precisely in Proposition 1.4 below, and the map will be shown to be injective
in Section 2.

In [JMO, Theorem 3.4], we saw that when G is simple and p | |W |, then
any Q-equivalence BGp̂ → BGp̂ is a homotopy equivalence. This was in turn
a generalization of Ishiguro’s theorem [Is], that unstable Adams operations
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on BG are defined only for degrees prime to |W |. The next proposition
describes what happens for general connected G.

Proposition 1.3. Let G be a compact connected semisimple Lie group
such that p divides the order of the Weyl group of each simple component
of G. Then any Q-equivalence f : BGp̂ → BGp̂ is a homotopy equivalence.

P r o o f. Fix a Q-equivalence f : BGp̂ → BGp̂. Let fT = Bφ : BT p̂ →
BT p̂ be the map of Proposition 1.2, where φ : T∞ → T∞ is β-equivariant
for some β ∈ Aut(W ). Since W is finite, there is some r > 0 such that φr is
W -equivariant. Upon replacing f by fr, we can assume that φ itself is W -
equivariant. We will show that φ is an isomorphism: then fT is a homotopy
equivalence, and f is a homotopy equivalence by Proposition 1.2(iii).

Set n = rk(G) = dim(T ). Then H2(Bφ; Q) = H2(fT ; Q) is a W -
equivariant automorphism of H2(BT p̂; Q) ∼= (Q̂p)n, and sends H2(BT p̂; Z)
∼= (Ẑp)n to itself. As a W -representation, H2(BT p̂; Q) ∼= Q̂p ⊗Q H2(BT ; Q)
splits as a sum of distinct irreducible summands, one for each simple factor in
G (cf. [Bb1, p. 82, Proposition 5(v)]). Hence, for each simple factor Gi C G
with maximal torus Ti = T ∩ Gi, H2(Bφ; Q) restricted to H2(BTip̂; Q) is
multiplication by some constant ki ∈ Ẑp.

We must show that p - ki for all i. Assume otherwise: fix a simple factor
Gi C G such that p | ki, set Ti = T ∩Gi, and let Wi = N(Ti)/Ti be the Weyl
group of Gi. Choose any w ∈ NGi

(Ti)rTi of p-power order (p | |N(Ti)/Ti|
by assumption), and let t ∈ Ti be any element conjugate in Gi to w. Set
P = 〈Ti, w〉, a p-toral subgroup. By Theorem 1.1, f |BP∞ ' Bφ for some
φ : P∞ = 〈Ti∞, w〉 → G. Then φ(P∞) = P∞, since the restriction of φ
sends Ti∞ onto itself and is Wi-equivariant (and Wi acts effectively). Also,
since w and t are conjugate in G, φi(w) and φi(t) are conjugate in G for all
i (by Theorem 1.1 again). Since φ(t) = tki and p | ki, we have φm(t) = 1 for
some m, and hence φm(w) = 1. On the other hand, φ : Ti∞ → Ti∞ is Wi-
equivariant and onto, and Wi acts effectively on Ti∞; so φ(wTi∞) = wTi∞.
And this implies that φi(w) 6= 1 for all i; which is a contradiction.

So far, we have associated, with each Q-equivalence f ∈ [BGp̂, BGp̂]Q,
an admissible map φ : T∞ � T∞. When formulating later results, it will be
convenient to work with the integral lattice in T instead of with T itself.

Write T = L(T )/Λ, where L(T ) ∼= Rn is the Lie algebra (or universal
covering group) for T , and where

Λ = Ker[exp : L(T ) � T ]

is the integral lattice. Set Λp̂ = Ẑp ⊗ Λ = lim←−(Λ/pnΛ).
Consider the standard isomorphism Hom(T, T ) ∼= Hom(Λ,Λ), which

sends φ : T → T to L(φ)|Λ. We want to define the corresponding iso-
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morphism in the p-adic situation. One way to do this is to set

L(T∞) = lim←−(· · · → T∞
p·→ T∞

p·→ T∞) ∼= (Q̂p)n

(where n = dim(T )); so that Λp̂ = Ker[L(T∞) � T∞]. Any φ ∈ End(T∞)
lifts to the map L(φ) = lim←−(φ) ∈ End(L(T∞)). The isomorphism

Hom(T∞, T∞)
∼=−→Hom(Λp̂, Λp̂) ∼= Mn(Ẑp)

is now defined by sending φ ∈ End(T∞) to L(φ)|Λp̂. Equivalently, this
identification can be obtained by identifying H2(BT p̂; Z) with Λp̂.

Under this identification, the monoid of epimorphisms from T∞ to itself
is identified with Aut(L(T∞)) ∩ End(Λp̂). An admissible epimorphism is
by definition one which is equivariant with respect to some endomorphism
of the Weyl group W ; and if we regard W as a subgroup of Aut(T∞) this
allows us to identify:

AdmEpi(T∞, T∞) ∼= NAut(L(T∞))(W ) ∩ End(Λp̂).

Also, if we let AdmIso(T∞, T∞) denote the group of admissible isomor-
phisms, then

AdmIso(T∞, T∞) ∼= NAut(T∞)(W ).
As before, [BGp̂, BGp̂]Q denotes the monoid of homotopy classes of

Q-equivalences of BGp̂ to itself, and [BGp̂, BGp̂]h denotes the subgroup
of homotopy equivalences. The following reformulation of Propositions 1.2
and 1.3 was suggested to us by Bill Dwyer (see also [DW, Proposition 5.5]).

Proposition 1.4. There is a well defined homomorphism of monoids

Θ : [BGp̂, BGp̂]Q →
AdmEpi(T∞, T∞)/W ∼= [NAut(L(T∞))(W ) ∩ End(Λp̂)]/W,

where Θ(f) = H2(fT ; Q) = L(φ) for any Q-equivalence f : BGp̂ → BGp̂

and any lifting of f to fT = Bφ : BT p̂ → BT p̂. Furthermore, Θ restricts to
a group homomorphism

Θh : [BGp̂, BGp̂]h → AdmIso(T∞, T∞)/W ∼= NAut(T∞)(W )/W
∼= NAut(Λp̂)(W )/W ;

and

[BGp̂, BGp̂]h = Θ−1(NAut(T∞)(W )/W ) ∼= Θ−1(NAut(Λp̂)(W )/W ).

P r o o f. By definition, an epimorphism φ : T∞ � T∞ is admissible if
and only if H2(Bφ; Q) = L(φ) ∈ Aut(L(T∞)) lies in the normalizer of W .
Hence Θ and Θh are well defined by Proposition 1.2. And by Proposition
1.2(iii), a Q-equivalence f : BGp̂ → BGp̂ is a homotopy equivalence if and
only if Θ(f) is an automorphism of Λp̂.
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2. Throughout this section, we concentrate on showing that Θ and Θh

are injective. This requires the machinery developed in [JMO].
Recall that a compact Lie group P is called p-toral if the identity com-

ponent P0 is a torus, and if P/P0 is a finite p-group. If Wp = Np(T )/T is
a Sylow p-subgroup of W , then Np(T ) is a maximal p-toral subgroup of G
in the strong sense that any p-toral subgroup is conjugate to a subgroup of
Np(T ) (cf. [JMO, Lemma A.1]). We now fix (for the rest of this section)
such a maximal p-toral subgroup Np(T ).

Proving the injectivity of the map Θ above means showing that two Q-
equivalences BGp̂ → BGp̂ are homotopic if they agree on BT . This will be
done using an approximation of BG by a limit of classifying spaces of p-toral
subgroups. So we must first show that maps f, f ′ : BGp̂ → BGp̂ which are
homotopic on BT are homotopic on BNp(T ); and hence (by maximality)
on BP for all p-toral P ⊆ G. This was shown in [JMO] in the special case
where f, f ′ are homotopy equivalences; and the next proposition extends
this to the case of Q-equivalences.

Proposition 2.1. Let G be any compact connected Lie group. Assume
that f, f ′ : BGp̂ → BGp̂ are Q-equivalences, and that f |BT ' f ′|BT . Then
for any p-toral subgroup P ⊆ G, f |BP ' f ′|BP .

P r o o f. Since Np(T ) is a maximal p-toral subgroup, it suffices to show
that f |BNp(T ) ' f ′|BNp(T ).

By Theorem 1.1, there are quasihomomorphisms %, %′ : Np(T )→ G such
that f |BNp(T ) ' B% and f ′|BNp(T ) ' B%′. Since f |BT ' f ′|BT , we may
assume that %|T = %′|T .

Let G′ C G be the product of those simple factors for which p divides the
order of the Weyl group. Then it suffices to show that % and %′ are conjugate
after restriction to Np(T ) ∩G′. In other words, we are reduced to the case
where G = G′. But then f and f ′ are homotopy equivalences by Proposi-
tion 1.3, and so f |BNp(T ) ' f ′|BNp(T ) by [JMO, Proposition 3.5].

We now recall some definitions from [JMO]. A p-toral subgroup P ⊆ G
is called p-stubborn if N(P )/P is finite and contains no nontrivial normal
p-subgroups. For example, if G = SO(3) and p = 2, then the subgroup P ∼=
Z/2×Z/2 is p-stubborn since the only normal 2-subgroup of N(P )/P ∼= Σ3

(the symmetric group of order 6) is the trivial group. Note that a maximal
p-toral subgroup is always p-stubborn.

We let Rp(G) denote the category whose objects are orbits G/P for
p-stubborn P ⊆ G, and where Mor(G/P,G/P ′) is the set of all G-maps
between the orbits. By [JMO, Proposition 1.5], Rp(G) is a finite category,
in the sense that it contains finitely many isomorphism classes of objects,
and has finite morphism sets.
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One of the main results in [JMO] is that the map

hocolim−−−−−→
G/P∈Rp(G)

(
EG/P

) ∼= EG×G

(
hocolim−−−−−→

G/P∈Rp(G)

(
G/P

))
→ BG

(induced by projection) is an Fp-homology equivalence. In particular,

[BGp̂, BGp̂] ∼= [BG,BGp̂] ∼= [ hocolim−−−−−→
G/P∈Rp(G)

(
EG/P

)
, BGp̂].

This makes it natural to study the restriction map

R : [BGp̂, BGp̂]→ lim←−
G/P∈Rp(G)

[EG/P,BGp̂] ∼= lim←−
G/P∈Rp(G)

[BP,BGp̂]

∼= lim←−
G/P∈Rp(G)

QRep(P,G)

(where the last step follows from Theorem 1.1).
An Rp-invariant quasirepresentation of G is defined here to be a homo-

morphism % : Np(T )∞ → G′ into some compact connected Lie group G′

which extends (via restriction and conjugation) to an element in the inverse
limit lim←− QRep(P,G′). Thus, for any f : BG→ BG′p̂, f |BNp(T ) ' B% for
some unique Rp-invariant quasirepresentation %.

For any Rp-invariant quasirepresentation % : Np(T )∞ → G′ of G,

map(BG,BG′p̂)[%]

will denote the space of “maps of type %”; i.e., the space of maps f : BG
→ BG′p̂ such that f |BNp(T ) ' B%. The brackets are added to
emphasize that this is a (possibly empty) union of connected compo-
nents in map(BG,BG′p̂). We next need to describe the relationship be-
tween the homotopy groups of map(BG,BG′p̂)[%], and those of the spaces
map(BP,BG′p̂)B%|P for p-stubborn P ⊆ G. When doing this, it is conve-
nient to use the following functors.

Definition 2.2. For any Rp-invariant quasirepresentation % : Np(T )∞
→ G′ of G, where G′ is connected, define a contravariant functor Π%

∗ :
Rp(G)→ Z(p)-mod by setting

Π%
∗ (G/P ) := π∗(map(EG/P,BG′p̂)B%|P ) ∼= π∗(BCG′(%(P∞)))p̂

for each p-stubborn P ⊆ G.

When making Π%
∗ into a well defined functor to abelian groups, there are,

of course problems with choosing base points, and with possibly nonabelian
fundamental groups. This is discussed in detail in Wojtkowiak [Wo]. In all
of the cases which occur in this paper, the centralizer CG′(%(P∞)) is abelian,
and so these difficulties do not arise.
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It is convenient to think of the higher derived functors of inverse limits
as “cohomology groups” of a category. For this reason, and to simplify
notation, we writeHi(C;F ) = lim←−

i(F ) for any contravariant functor F : C →
Ab defined on a small category C. As one might expect, the obstructions
to the restriction map R displayed above being a bijection are the higher
limits of the functors Π%

∗ .

Theorem 2.3. Fix a compact connected Lie group G′, and an Rp-in-
variant quasirepresentation % : Np(T ) → G′. Then map(BG,BG′p̂)[%] is
nonempty if Hi+1(Rp(G);Π%

i ) = 0 for all i ≥ 1, and is connected if
Hi(Rp(G);Π%

i ) = 0 for all i ≥ 1.

P r o o f. See Wojtkowiak [Wo], who deals more generally with spaces of
the form map(hocolim−−−−−→

(
Xα

)
, Y ).

Theorem 2.3 is a special case of a second quadrant spectral sequence,
which converges to the homotopy of map(hocolim−−−−−→

(
Xα

)
, Y )[f̂ ] for f̂ ∈

lim←− [Xα, Y ]. See Bousfield & Kan [BK, Propositions XII.4.1 and XI.7.1]
and Bousfield [Bf] for details.

We want to show, for a pair f, f ′ : BGp̂ → BGp̂ of Q-equivalences, that
f ' f ′ if f |BT ' f ′|BT . We have already seen that f, f ′ ∈ [BG,BGp̂][%]

for the same Rp-invariant quasirepresentation %; and so they are homotopic
by Theorem 2.3 if the higher limits Hi(Rp(G);Π%

i ) all vanish.
In fact, it will suffice to consider the case where % is the inclusion. In

this case, we write Π∗ for Π%
∗ . Thus, for any G/P in Rp(G),

Πi(G/P ) = πi(map(BP,BGp̂)incl) ∼= πi(BCG(P ))p̂
∼= πi−1(CG(P ))p̂

by Theorem 1.1. Also, for any p-stubborn P ⊆ G, CG(P ) = Z(P ) [JMO,
Lemma 1.5(ii)], and is in particular abelian. The identity component of
CG(P ) is thus a torus, and hence πi(BCG(P )) = 0 for i ≥ 3. In other
words, Πi = 0 for all i ≥ 3. And for i = 1 or 2,

Πi(G/P ) ∼= πi−1(Z(P ))

for each G/P in Rp(G).
We thus need the following computation of the higher limits of the func-

tors Πi.

Theorem 2.4. Fix a compact connected Lie group G. Then if π1(G) is
torsion free and i ≥ 1, or if G is arbitrary and i ≥ 2, then

(1) H∗(Rp(G);Πi) ∼=
{
πi−1(Z(G))p̂ if ∗ = 0,
0 if ∗ > 0.

P r o o f. See [JMO, Theorem 4.1 and Sections 5–6]. When i = 1, this
is shown in [JMO] only when G is simply connected. But if G′ C G is the
maximal semisimple component, thenG′ is simply connected by assumption,
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Rp(G) ∼= Rp(G′) [JMO, Proposition 1.6(i,ii)]; and Π1 is the same on both
categories.

In fact, Theorem 2.4 holds for any compact connected Lie group G. For
i ≥ 2, this is proven in [JMO]. For i = 1, a proof of this was given in the
first version of [JMO], before Notbohm showed us how to get by with the
result in the simply connected case.

We are now ready to apply these techniques. The following theorem
really consists of two separate results. But we combine them here, since
there is quite a bit of overlap in the proofs.

Theorem 2.5. The map

Θ : [BGp̂, BGp̂]Q → NAut(L(T∞))(W )/W

defined in Proposition 1.4 is an injection of monoids, and its image is closed
in the p-adic topology.

P r o o f. The theorem will be shown in three steps. The injectivity of
Θ is shown in Step 2, and the fact that Im(Θ) is closed in Step 3. The
first step is somewhat more technical, and is needed (in part) to get around
the problem that the higher limits Hj(Rp(G);Πi) have been completely
computed only when π1(G) is torsion free.

S t e p 1. Let n be the exponent of π1(G/Z(G)0), where Z(G)0 is the
identity component of the center. Let G̃

γ−→G be the finite covering such
that π1(G̃) = n ·π1(G) (i.e., the subgroup of all nth powers in π1(G)). Then
G̃ splits as a product G̃ = S × G′, where S is a torus and G′ is simply
connected. For any f : BGp̂ → BGp̂, π2(f) sends π2(BG̃p̂) (⊆ π2(BGp̂)) to
itself, so that the composite

BG̃p̂
Bγ−→BGp̂

f−→BGp̂−→K([π1(G)/π1(G̃)]p̂, 2)

is nullhomotopic. Since the fibration BG̃ → BG → K(π1(G)/π1(G̃), 2) is
still a fibration after completion (cf. [BK, VI.6.5]), this shows that f lifts
to a map f̃ : BG̃p̂ → BG̃p̂.

Set T̃ = γ−1(T ), a maximal torus in G̃. A homomorphism φ : T∞ → T∞
lifts to at most one homomorphism φ̃ : T̃∞ → T̃∞, since two liftings of φ
differ by an element of Hom(T∞,Ker(γ)) = 0.

Write G′ = G1×G2, where G2 is the product of those simple factors for
which p divides the order of the Weyl group. Then T̃ = S×T1×T2, where Ti

is a maximal torus in Gi; and Np(T̃ ) = S × T1 ×Np(T2) for some maximal
p-toral subgroup Np(T2) ⊆ G2. If P ⊆ Np(T̃ ) is a p-stubborn subgroup
of G̃, then since N(P )/P is finite (by definition of p-stubborn), P must
have the form P = S × T1 × P ′ for some p-stubborn P ′ ⊆ G2.
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Now let % : Np(T ) → G be any Rp-invariant quasirepresentation, and
set fP = B(%|P ) : BP → BGp̂ for each p-toral P ⊆ Np(T ). In other
words, the fP define an element %̂ ∈ lim←− [BP,BGp̂]. By [BK, XII.4.1],
map(BGp̂, BGp̂)[%] is the homotopy inverse limit (over Rp(G)) of the spaces
map(BP,BGp̂)fP

.
For each p-stubborn P ⊆ G we write P̃ = γ−1(P ). By [JMO, Propo-

sition 1.6(i)], the correspondence G/P ← G̃/P̃ induces an isomorphism
of categories Rp(G) ∼= Rp(G̃). Also, Theorem 1.1 applies to show that
map(BP,BGp̂)fP

' map(BP̃ ,BGp̂)fP ◦Bγ for each P . Upon taking homo-
topy inverse limits [BK, XII.4.1], we now get a homotopy equivalence

(1) map(BGp̂, BGp̂)[%]
−◦Bγ−−−→
'

map(BG̃p̂, BGp̂)[%◦γ|P̃ ]
.

In particular, B% extends to a map BGp̂ → BGp̂ if and only if it extends to
a map BG̃p̂ → BGp̂; and the map defined on BGp̂ is unique if and only if
it is unique when defined on BG̃p̂.

S t e p 2. Fix a pair f, f ′ : BGp̂ → BGp̂ of Q-equivalences such that
f |BT ' f ′|BT . We want to show that f ' f ′. Choose liftings of f and
f ′ to f̃ , f̃ ′ : BG̃p̂ → BG̃p̂. Then f̃ |BT̃ ' f̃ ′|BT̃ (by the uniqueness of
the lifting). By Proposition 2.1, f |BNp(T ) ' f ′|BNp(T ) ' B% for some
% ∈ QRep(Np(T ), G). In other words,

f, f ′ ∈ map(BGp̂, BGp̂)[%].

If we can show that f̃ ' f̃ ′, then f◦Bγ ' Bγ ◦ f̃ ' Bγ ◦ f̃ ′ ' f ′◦Bγ, and
(1) applies to show that f ' f ′. So to simplify the notation, we can just
assume that G = G̃.

Let % ∈ QRep(Np(T ), G) be an Rp-invariant quasirepresentation such
that f |BNp(T ) ' B% (Theorem 1.1). We may assume (after conjugating, if
necessary) that %(Np(T )∞) ⊆ Np(T )∞.

Recall (Step 1) that G factors as a product G = S ×G1 ×G2, where S
is a torus, where G1 and G2 are simply connected, and where p divides the
orders of the Weyl groups of all simple summands of G2 but not of any of
the simple summands of G1. Let f2 denote the composite

f2 : (BG2)p̂ ↪−−−→BGp̂
f−−−→BGp̂

proj−−−→(BG2)p̂.

Then f2 is a Q-equivalence, and is a homotopy equivalence by Proposi-
tion 1.3. Upon composing with 1×f−1

2 , we can thus assume that f |BNp(T2)
is homotopic to the inclusion; or equivalently that %|Np(T2) is the inclusion
of Np(T2) into G.

Now fix a p-stubborn subgroup P ⊆ G. We may assume that P ⊆ Np(T ),
and hence (by Step 1) that P = S × T1 × P ′ for some P ′ ⊆ Np(T2). In
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particular, %(P ) = P ; and so upon referring to Definition 2.2, we see that
Π%
∗ = Π∗. Theorem 2.4 now applies to show that Hi(Rp(G);Π%

j ) = 0 for
all i, j > 0. And so f ' f ′ by Theorem 2.3.

S t e p 3. It remains to show that Im(Θ) is closed in NAut(L(T∞))(W )/W
in the p-adic topology. So consider an element ω = limi→∞(ωi), where
ωi · W ∈ Im(Θ) for each i. Let φ, φi : T∞ � T∞ be the corresponding
admissible maps. We may assume that φ = lim(φi) in Hom(T∞, T∞) (i.e.,
not only mod W ).

For each i, choose an extension fi : BGp̂ → BGp̂ of Bφi (i.e., ωi =
Θ(fi)); and let f̃i : BG̃p̂ → BG̃p̂ be a lifting. Then f̃i|BT̃ ' Bφ̃i, where
φ̃i ∈ End(T̃∞) is a (unique) lifting of φi. Let pm be the exponent of Ker(γ).
If φi and φj agree on all pk+m-torsion in T , for any k > 0, then φ̃i and
φ̃j agree on all pk-torsion in T̃ . Hence, since the φi converge to φ, the φ̃i

converge to some φ̃ ∈ End(T̃∞), and φ̃ is a lifting of φ.
Using Theorem 1.1, choose elements %i ∈ QRep(Np(T̃ ), G̃) such that

f̃i|BNp(T̃ ) ' B%i. The %i are Rp-invariant (by Theorem 1.1 again). We
may assume (since the %i are well-defined only up to conjugation) that
%i|T̃∞ = φ̃i and Im(%i) ⊆ Np(T̃ )∞ for each i. And since φ̃i(T̃∞) = T̃∞, a
counting argument shows that Im(%i) = Np(T̃ )∞.

Now write Np(T̃ )∞ =
⋃∞

n=1 Pn, where P1 ⊆ P2 ⊆ . . . are finite p-groups.
For each n, the set

{%i|Pn : i ≥ 1} ⊆ Rep(Pn, Np(T̃ ))

is finite (since Rep(Pn, Np(T̃ )) is finite: this follows easily from [MZ, The-
orems 1.10.5 & 5.3]). Hence, we can successively choose elements %ni,
where {%n1, %n2, . . .} is a subsequence of {%n−1,1, %n−1,2, . . .} for each i (and
%0i = %i); and where %ni|Pn and %nj |Pn are conjugate for each n and each
i, j.

Now set σn = %nn for each n. Upon replacing the σn by conjugate
homomorphisms, if necessary, we may assume that σn|Pm = σn|Pn for each
m ≥ n. The σn thus converge to a homomorphism σ : Np(T̃ )∞ → G̃; and
σ|T̃∞ is conjugate to φ̃ by construction. For any p-toral subgroup P ⊆ Np(T̃ )
and any g ∈ G̃ for which gPg−1 ⊆ Np(T̃ ), (σn|gP∞g−1)◦ conj(g) is (for
each n) conjugate in G̃ to σn|P∞; and so the same holds for σ. In other
words, σ is an Rp-invariant quasirepresentation of G̃.

By Step 1 again, Np(T̃ ) = S×T1×Np(T2), and each p-stubborn subgroup
P ⊆ Np(T̃ ) of G has the form P = S×T1×P ′ for some p-stubborn P ′ ⊆ G2.
Also, σ = %′ × %′′, where %′ ∈ End((S × T1)∞) and %′′ ∈ Aut(Np(T2)∞).
Set % = 1 × %′′, also an Rp-invariant quasirepresentation of G̃. For any
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p-stubborn P ⊆ G̃ contained in Np(T̃ ), %(P ) = σ(P ) by construction, and
hence Πσ

∗
∼= Π%

∗ as functors defined on Rp(G̃).
We next want to show that Π%

∗ ∼= Π∗ as functors on Rp(G̃). Fix
a p-stubborn subgroup P ⊆ Np(T̃ ). By [JMO, Lemma 1.5], CG(P ) =
Z(P ) ⊆ P . We claim that CG(%P ) = Z(%P ). By [JMO, Proposition A.4],
π0(CG(%P )) is a p-group, and so CG(%P ) is a union of p-toral subgroups.
Hence, if CG(%P ) 6⊆ %P , we can choose g ∈ CG(%P ) r %P of p-power order,
and thus such that 〈g, %P 〉 is still p-toral. So after conjugating (in G), we
may assume that 〈g, %P∞〉 ⊆ Np(T̃ )∞. But then %−1(g) ∈ CG(P ) = Z(P ),
and this is a contradiction. Thus, % induces isomorphisms

%P : Π∗(G/P ) ∼= π∗(BZ(P ))
∼=−→π∗(BZ(%P )) ∼= Π%

∗ (G/P )

for each G/P in Rp(G); and this induces an isomorphism Π%
∗ ∼= Π∗ of

functors on Rp(G̃).
Theorem 2.4 can now be applied to show that

Hj(Rp(G̃);Πσ
i ) ∼= Hj(Rp(G̃);Π%

i ) ∼= Hj(Rp(G̃);Πi) = 0

for all i, j ≥ 1. Hence map(BG̃p̂, BG̃p̂)[σ] is nonempty (and connected) by
Theorem 2.3. Choose some element f̃ ∈ map(BG̃p̂, BG̃p̂)[σ].

Recall that we are working with the finite covering G̃
γ→ G of Step 1.

By construction, σ|T̃∞ = φ̃, and hence σ(Ker(γ)) = Ker(γ). So σ factors
through a unique map τ ∈ End(Np(T )∞), and τ is also an Rp-invariant
quasirepresentation. Since Bγ ◦ f̃ ∈ map(BG̃p̂, BGp̂)τ̂◦γ 6= ∅, formula
(1) above applies to show that map(BGp̂, BGp̂)τ̂ 6= ∅. And for any f ∈
map(BGp̂, BGp̂)τ̂ , f |BT p̂ ' Bτ |BT ' Bφ, so Θ(f) = ω, and we are
done.

The following corollary to Theorem 2.5 is immediate.

Corollary 2.6. For any pair of Q-equivalences f, f ′ : BGp̂ → BGp̂,
f ' f ′ if and only if f |BT ' f ′|BT , if and only if H∗(f ; Q) = H∗(f ′; Q).

P r o o f. We have just seen that f ' f ′ if and only if f |BT ' f ′|BT .
And f |BT ' f ′|BT if and only if H∗(f ; Q) = H∗(f ′; Q) by a theorem of
Notbohm [No1, Proposition 4.1].

Using the same techniques, we get the following description of the in-
dividual connected components of the space of Q-equivalences. This result
has also been proven recently by Dwyer & Wilkerson [DW2, Theorem 1.3],
using quite different methods.

Proposition 2.7. For any compact connected Lie group G, and any
Q-equivalence f : BGp̂ → BGp̂, the natural homomorphism Z(G)×G→ G
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induces homotopy equivalences

BZ(G)p̂
'−→map(BGp̂, BGp̂)Id

f◦−−→
'

map(BGp̂, BGp̂)f .

P r o o f. We first show that the first map is a homotopy equivalence. By
the obstruction theory of Wojtkowiak [Wo] (more precisely, by the version
of his result given in [JMO, Theorem 3.9]), this will follow immediately if
the formula for Hj(Rp(G);Πi) in Theorem 2.4 (formula (1)) holds for all
i > j ≥ 0, and i = j ≥ 2. So the only case which it remains to check is that

(1) H0(Rp(G);Π1) := lim←−
Rp(G)

(Π1) ∼= π1(BZ(G)p̂).

Whether or not this holds, we have

π1

(
map(BGp̂, BGp̂)Id

) ∼= lim←−
Rp(G)

(Π1) ∼= lim←−
G/P∈Rp(G)

π0(Z(P ))(p).

So by [JMO, Theorem 4.2], (1) does hold if G is simple. If G is a product
of a torus and simple groups Gi, then Rp(G) is the product of the Rp(Gi)
[JMO, Proposition 1.6(ii)]; and so (1) again holds. Finally, if G is arbitrary,
then there are monomorphisms

π1(BZ(G)) ∼= π0(Z(G)) � lim←−
G/P∈Rp(G)

π0(Z(P ))

and(
lim←−

G/P∈Rp(G)

π0(Z(P ))
)
/π0(Z(G))

� lim←−
G/P∈Rp(G)

π0(Z(P/Z(G))) ∼= π0(Z(G/Z(G))) = 1

(since Rp(G/Z) ∼= Rp(G) by [JMO, Proposition 1.6(i)]). So (1) also holds
in this case.

To see that the second map is a homotopy equivalence, let Gs ⊆ G be
the maximal semisimple subgroup, and note that Rp(Gs) ∼= Rp(G) (any
p-stubborn subgroup of G contains the connected component of Z(G), and
its intersection with Gs is p-stubborn in Gs). Hence the obstructions to
(f ◦ −) being a homotopy equivalence are the same for G and Gs, and we
can assume that G = Gs is semisimple. In this case, we can write

BGp̂ ' (BG1)p̂ × (BG2)p̂ and f ' f1 × f2,
where p divides the orders of all simple components of G1 but of none of
the simple components of G2. (The simple components for which p does not
divide the order of the Weyl groups all have center and fundamental group
of order prime to p.) Then f1 is a homotopy equivalence by Proposition 1.3,
and we can assume f1 = Id. Write f |BNp(T ) ' B%. The only p-stubborn
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subgroups ofG2 are the maximal tori, soΠ%
∗ ∼= Π∗, and (f◦−) is a homotopy

equivalence by the Bousfield–Kan spectral sequence again.

3. The main goal of this section is to describe the images of the maps

Θ : [BGp̂, BGp̂]Q � NAut(L(T∞))(W )/W

and
Θh : [BGp̂, BGp̂]h � NAut(Λp̂)(W )/W

of Proposition 1.4. The image of Θ is described explicitly in Theorem 3.4.
In Corollary 3.5, we then show that Θh is an isomorphism if p 6= 2, or if G
contains no factor of the form Sp(n)× SO(2n+ 1). The following example
shows why this restriction is necessary.

Example 3.1. Assume that p = 2, and that G = Sp(n) × SO(2n + 1)
for some n ≥ 1. Let T = T1 × T2 be the product of the standard maximal
tori, where

T1 = Im[α : Rn → Sp(n)] and T2 = Im[β : Rn → SO(2n+ 1)],

and

α(θ1, . . . , θn) = diag(e2πiθ1 , . . . , e2πiθn) ∈ Sp(n),
β(θ1, . . . , θn)

=
(

cos(2πθ1) − sin(2πθ1)
sin(2πθ1) cos(2πθ1)

)
⊕ . . .⊕

(
cos(2πθn) − sin(2πθn)
sin(2πθn) cos(2πθn)

)
⊕ (1).

Let Λ = Λ1 × Λ2 ⊆ T̃ be the integral lattice for T , and let φ ∈ Aut(T ) ∼=
Aut(Λ) be the involution which switches the factors (sending α(θ1, . . . , θn)
to β(θ1, . . . , θn) and vice versa). Then φ is an admissible map for G, but
Bφ does not extend to any self map of BG2̂. In other words,

Θh : Aut(BGp̂)→ NAut(Λp̂)(W )/W

is not onto in this case.

P r o o f. Note first that φ is admissible, since Sp(n) and SO(2n + 1)
have the same Weyl groups under this identification of their maximal tori.
If Bφ could be extended to a self map of BG2̂, then it would be a ho-
motopy equivalence by Proposition 1.2(iii), and hence would restrict to a
homotopy equivalence between BSp(n)2̂ and BSO(2n+ 1)2̂. But BSp(n)2̂
is 3-connected, while π2(BSO(2n+ 1)2̂) ∼= Z/2.

The roots in G play an important role in both the statements and the
proofs of the results later in this section. In the next proposition, we collect
some of the facts about roots which will be needed later. But we first set
up some notation.
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Let R denote the set of roots of G: regarded as a subset of L(T )∗ =
Hom(L(T ),R). Then the Lie algebra L(G), under the adjoint (conjugation)
action of T , splits as a sum

L(G) = L(T )⊕
∑
±θ∈R

Vθ,

where each Vθ is a 2-dimensional irreducible T -representation with character
χθ : T → S1, and where χθ◦ exp(v) = exp(2πi · θ(v)) for each θ ∈ R and
each v ∈ L(T ). (Note that Vθ defines θ only up to sign.) In other words,
the roots are defined to be the liftings to Hom(L(T ),R) of the irreducible
characters for the adjoint action of T on L(G). In particular, since Λ =
Ker[exp : L(T )→ T ], θ(Λ) ⊆ Z for each θ ∈ R; and θ(v) ∈ Z (for v ∈ L(T ))
if and only if exp(v) commutes with all elements of exp(Vθ).

Proposition 3.2. Let R be the set of roots of G, regarded as a subset of
Hom(T, S1) ∼= Hom(Λ,Z) ⊆ L(T )∗. Let W = N(T )/T be the Weyl group
of G, with the induced action on L(T ). Let Rs ⊆ R be the set of simple
roots with respect to some fixed Weyl chamber. Assume that L(T ) has been
given a fixed W -invariant inner product. Then the following hold.

(i) W is the group generated by the reflections in the hyperplanes Ker(θ)
for θ ∈ Rs. Conversely , for any w ∈ W , if w is a reflection (if T̃w has
codimension one), then T̃w is the kernel of some root θ ∈ R.

(ii) R = W ·Rs: each root is in the W -orbit of some simple root.
(iii) The inclusion T ⊆ G induces a surjection Λ ∼= π1(T ) � π1(G).
(iv) If Z(G) = 1, then Λ = {x ∈ L(T ) : R(x) ⊆ Z}.
(v) For each θ ∈ R, there exists a unique element vθ ∈ Λ such that

vθ ⊥ Ker(θ) and θ(vθ) = 2 (vθ is the nodal vector of θ in the notation of
Bourbaki). And π1(G) ∼= Λ/〈vθ : θ ∈ R〉.

(vi) For any θ ∈ R, Λ ∩ Ker(θ)⊥ = Z · vθ or Z · 1
2vθ, where the second

possibility occurs if and only if G contains a direct factor SO(2n + 1) for
some n ≥ 1, and θ is a short root of such a factor.

P r o o f. The first statement in (i)—that W is generated by reflections
by simple roots—is shown in [Ad, 5.13(iv) & 5.34]. To see the second state-
ment, note that if wT ∈ N(T )/T is a reflection in T̃ , then w ∈ CG(S) (the
centralizer) for some codimension one subtorus S ⊆ T . By [Bb2, p. 31,
Lemma 2], CG(S) % 〈T,w〉 is connected (and nonabelian). So it must have
at least one root θ ∈ R, and Ker(θ) = S.

Point (ii) is shown in [Bb1, p. 154, Prop. 15]. Point (iii) is shown in
[Ad, 5.47] or [Bb2, p. 34, Prop. 11]. Point (iv) is shown in [Ad, Proposition
5.3], and is equivalent to [Bb2, Proposition 8(b)].

Fix some θ ∈ R, let vθ ∈ L(T ) be the unique element such that
vθ ⊥ Ker(θ) and θ(vθ) = 2, and let wθ ∈ N(T ) be such that wθT ∈ W



Self homotopy equivalences of classifying spaces 117

is the reflection in Ker(θ). Then wθ ∈ Hθ := CG(exp(Ker(θ))), and Hθ is
a connected subgroup by [Bb2, p. 31] again. Also, L(Hθ) = L(T )⊕Vθ in
the notation above; and so Z(Hθ) = Ker(χθ) = exp(θ−1(Z)). In particular,
if v ∈ L(T ) and θ(v) = 1, then exp(v) ∈ Z(Hθ), vθ = v − wθ(v), and so
exp(vθ) = [exp(v), wθ] = 1.

This shows that vθ∈Λ=Ker(exp) for each θ ∈ R. The formula π1(G)∼=
Λ/〈vθ : θ∈R〉 is shown in [Ad, 5.47 & 5.48] and [Bb2, p. 34, Prop. 11].

It remains to check point (vi). Fix a root θ ∈ R. Since θ(Λ) ⊆ Z and
θ(vθ) = 2, we must have

Λ ∩Ker(θ)⊥ = Z · vθ or Z · 1
2vθ.

Assume that the second possibility occurs; i.e., that 1
2vθ ∈ Λ. Fix any other

root η ∈ Rr {±θ}. Since the projection of η to the line R · θ is 〈η,θ〉
〈θ,θ〉 · θ, and

since (R · θ)⊥(vθ) = 0, we have

〈η, θ〉
〈θ, θ〉

=
(
〈η, θ〉
〈θ, θ〉

· θ
)(

1
2vθ

)
= η

(
1
2vθ

)
∈ Z.

In other words, the projection of η to R · θ is an integral multiple of θ. A
quick check of the different possibilities (cf. [Ad, Proposition 5.25]) shows
that either η ⊥ θ, or the angle between η and θ is 45◦ or 135◦ and θ is the
shorter root.

By point (ii), we can assume that θ ∈ Rs. The Dynkin diagram of G
thus contains a node which is not connected to any other node by single
or triple lines; and which, if connected to another node by a double line,
represents the shorter of those two roots. The classification of simple Lie
groups now shows that G contains a normal simple subgroup of type Bn

(i.e., H ∼= SO(2n+ 1) or Spin(2n+ 1)) for some n ≥ 1.
Assume H C G, where H ∼= SO(2n + 1) or Spin(2n + 1). Identify

L(T ∩ H) with Rn via the map β of Example 3.1. Let xi ∈ Hom(Rn,R)
denote projection to the ith coordinate, and let εi ∈ Rn denote the ith
element of the standard basis. Then the integral lattice of H is Zn if H ∼=
SO(2n + 1), and 〈εi ± εj〉 if H ∼= Spin(2n + 1). The roots of H are the
elements ±xi and ±xi±xj (for i 6= j). Then vθ = ±2εi if θ = ±xi, and vθ =
±εi±εj if θ = ±xi±xj . Hence 1

2vθ ∈ Λ = Zn if and only if H ∼= SO(2n+1)
and θ = ±xi.

Thus, 1
2vθ ∈ Λ for some θ ∈ R if and only if θ is a short root of some

simple component H C G, where H ∼= SO(2n + 1) for some n ≥ 1. Since
Z(SO(2n+ 1)) = 1, this subgroup is in fact a direct factor of G.

We now regard a root θ ∈ R ⊆ Hom(Λ,Z) also as an element of
Hom(Λp̂, Ẑp) or Hom(L(T∞), Q̂p) (recall that L(T∞) ∼= Q ⊗Z Λp̂). We can
assume that the W -invariant inner product on L(T ) takes integer values on
Λ (take any integer valued inner product on Λ and sum over its W -orbit).
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Hence the inner product extends to a Q̂p-valued inner product on L(T∞).
Note that the cosine of angles between elements is no longer defined in this
setting (since there is no unique choice of square roots); but the square of
the cosine is defined. It will be convenient to say that two angles α1, α2 are
“the same up to sign” if cos2(α1) = cos2(α2); i.e., if α1 = α2 or α1 = π−α2.

Lemma 3.3. Let ω ∈ Aut(L(T∞)) be any admissible map; i.e., ω lies
in the normalizer of the Weyl group W ⊆ Aut(Λ) ⊆ Aut(L(T∞)). Then
ω permutes the components of L(T∞) corresponding to simple factors
of G. The dual map ω∗ sends each root in G to some Q̂p-multiple of another
root ; and preserves the angles between roots up to sign. Furthermore, after
replacing ω by w ◦ ω for some w ∈ W if necessary , we may assume that ω
permutes any given set of simple roots of G (again up to scalar multiples);
and hence induces an automorphism of the Dynkin diagram (though possibly
reversing arrows).

P r o o f. By Proposition 3.2(i), the kernels of the roots of G are precisely
those hyperplanes in L(T ) (hence in L(T∞)) for which the corresponding re-
flection lies in W . Since ω is equivariant with respect to some automorphism
of W , it permutes the reflections, hence the kernels of roots, and hence the
roots themselves up to scalar multiple.

Write Q⊗Λ = V0×V1× . . .×Vm, where V0 comes from the torus factor
in G, and the V1, . . . , Vm from the simple factors. Then V0 = (Q⊗Λ)W , and
the spaces C⊗QV1, . . . ,C⊗QVm are distinct irreducible representations of W
(cf. [Bb1, p. 82, Proposition 5(v)]). Hence the Q̂p[W ]-representations Vip̂ =
Q̂p⊗QVi (1 ≤ i ≤ m) are also irreducible. Since ω is equivariant with respect
to some automorphism of W , it must permute the Vip̂. Furthermore, since
the W -invariant inner product on each irreducible summand is unique up to
scalar multiple, ω preserves the inner product on each of the V1p̂, . . . , Vmp̂

up to scalar multiple (and Vip̂ ⊥ Vj p̂ for i 6= j). Since each root θ ∈ R lies in
one of the (Vip̂)∗ for 1 ≤ i ≤ m, this shows that ω preserves angles between
roots up to sign.

Now choose a permutation σ ∈ Σ(R) and elements 0 6= aθ ∈ Q̂p such
that ω∗(θ) = aθ · σθ for each root θ ∈ R. Fix a Weyl chamber C, and let
Rs be the corresponding set of simple roots. Since the Dynkin diagram is a
union of trees, we can arrange (by switching pairs of roots ±θ) that for any
pair θ1 6= θ2 in Rs, the angle between σθ1 and σθ2 is between π/2 and π.
Then for each θ1, θ2 ∈ Rs, θ1 and θ2 form the same angle as σθ1 and σθ2.

Let Ts be the intersection of T with the maximal semisimple subgroup
of G. Then L(Ts) =

∑m
i=1 R ⊗Q Vi; and Rs and σ(Rs) are bases of L(Ts)

(cf. [Ad, Prop. 5.33]). There is thus a unique µ : L(Ts)
∼=→ L(Ts) such that

µ∗(θ/‖θ‖) = σθ/‖σθ‖ for each θ ∈ Rs; and µ is orthogonal since σ preserves
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angles between the simple roots. Also,

(1) µ−1(C) = {x ∈ L(Ts) : σθ(x) ≥ 0 for all θ ∈ Rs};

and hence µ−1(C) is a union of Weyl chambers. Since the Weyl chambers
are permuted transitively by the orthogonal action of W (cf. [Ad, Theo-
rem 5.13]), they and µ−1(C) all have the same volume after intersection
with the unit ball; and hence µ−1(C) is itself a Weyl chamber. We can thus
assume (after composing ω and µ by some element of W ) that µ(C) = C.
But then (1) implies that

{Ker(θ) : θ ∈ Rs} = {Ker(σθ) : θ ∈ Rs}

(the walls of C = µ(C)); and hence that σ(Rs) = Rs.
In particular, since the nodes in the Dynkin diagram correspond to sim-

ple roots of G, and the connectors correspond to the angles between roots,
this shows that σ induces an automorphism (possibly reversing arrows) of
the Dynkin diagram of G.

We are now ready to show which admissible maps extend to Q-equiva-
lences of BGp̂ to itself. In other words, we will describe the image of the
homomorphism

Θ : [BGp̂, BGp̂]Q �

AdmEpi(T∞, T∞)/W ∼= [NAut(L(T∞))(W ) ∩ End(Λp̂)]/W

of Proposition 1.4. Roughly, the following theorem says that the only nec-
essary conditions for an admissible epimorphism φ to lift to a self map of
BGp̂ are the ones imposed by Proposition 1.3 and Example 3.1.

Theorem 3.4. Let G〈p〉 C G be the product of all simple summands
whose Weyl group has order a multiple of p. Let R ⊆ Hom(Λ,Z) be the
set of roots of G, and let R〈p〉 ⊆ R be the subset of roots in G〈p〉. For
each n ≥ 1, let Gn C G be the product of all normal subgroups isomorphic
to SO(2n + 1). Then, for any admissible epimorphism φ : T∞ � T∞,
φW ∈ Im(Θ) if and only if the following two conditions are satisfied :

(a) Ker(φ) ∩G〈p〉 = 1 and
(b) (if p = 2) φ(Gn ∩ T∞) ⊆ Gn ∩ T∞ ∀n ≥ 1;

if and only if ω := L(φ)|Λp̂ ∈ End(Λp̂) satisfies the two conditions

(i) ω∗(R) ⊆ Ẑp ·R and
(ii) ω∗(R〈p〉) ⊆ (Ẑp)∗ ·R〈p〉.

P r o o f. We will prove the implications

(φW ∈ Im(Θ))
Step1

====⇒ (a,b)
Step2

====⇒ (i,ii)
Step3

====⇒(ωW ∈ Im(Θ)).
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S t e p 1. Assume that φW = Θ(f); i.e., f : BGp̂ → BGp̂ is such that
f |BT p̂ ' Bφ. We will show that φ satisfies conditions (a) and (b) above.

Write G′ = G〈p〉 for short, set G′′ = G/G′, and let α : G′ → G and
β : G→ G′′ denote the induced maps. Let T ′ = T ∩G′ and T ′′ = T/T ′ be
their maximal tori, and set φ′ = φ|T ′∞ : T ′∞ → T ′∞. The composite

BG′p̂
Bα−→BGp̂

f−→BGp̂
Bβ−→BG′′p̂

is nullhomotopic, since it is trivial in rational cohomology (cf. [JMO, The-
orem 3.11]). Hence f◦Bα pulls back along the fibration BG′p̂ → BGp̂ →
BG′′p̂ (cf. [BK, VI.6.5]) to a map f ′ : BG′p̂ → BG′p̂. By Proposition
1.3, f ′ is a homotopy equivalence, and so Ker(φ′) = Ker(φ) ∩ G〈p〉 = 1 by
Proposition 1.2(iii). This proves point (a).

Now assume p = 2; we must prove condition (b). We have just seen that
f restricts to a self map (and homotopy equivalence) of G〈2〉. So we can
assume that G = G〈2〉; i.e., that G is semisimple and φ ∈ Aut(T∞).

By Lemma 3.3, φ permutes the simple summands of G. Fix some
SO(2n + 1) ∼= H C G, and let H ′ C G be the simple summand such
that φ(T∞ ∩H) = T∞ ∩H ′. Since Z(H) = 1, H must be a direct factor of
G (i.e., not just up to a finite covering). Hence T∞ ∩H ′ is a direct factor
of T∞, and so BH ′

2̂ is a direct factor of BG2̂ (i.e., H ′ is a direct factor of
G up to odd degree covering). The composite

BH 2̂
incl−−−→BG2̂

f−−−→BG2̂
proj−−−→BH ′

2̂

is a homotopy equivalence; so π2(BH ′
2̂) ∼= π2(BSO(2n+ 1)2̂) ∼= Z/2. Also,

by Lemma 3.3, H ′ has the same Dynkin diagram as H, except possibly for
the direction of the arrows; and hence (since π1(H ′) 6= 1) must be isomorphic
to one of the groups SO(2n + 1) or PSp(n). These two are isomorphic if
n ≤ 2; while if n ≥ 3 then

π5(BSO(2n+ 1)) ∼= π5(BO) ∼= 0 and π5(BPSp(n)) ∼= π5(BSp) ∼= Z/2
(cf. [Ml, p. 142]). Thus, H ′ ∼= H ∼= SO(2n + 1). Alternatively, this last
point can be proven by showing that any admissible homomorphism between
the (2-adic) integral lattices of SO(2n + 1) and PSp(n) (for n ≥ 3) must
(after composing with a Weyl group element) be a scalar multiple of the
map used in Example 3.1—and hence is not an isomorphism.

We have now shown that (for any n ≥ 1), φ permutes those simple
factors isomorphic to SO(2n+ 1) among themselves. This proves condition
(b).

S t e p 2. Let Rs ⊆ R be the simple roots with respect to some Weyl
chamber. Then R〈p〉 ∩Rs is a Q̂p-basis for L(Λp̂〈p〉) (cf. [Ad, Prop. 5.33]).

By Lemma 3.3, there is a permutation σ ∈ Σ(R) such that for each
θ ∈ R, ω∗(θ) = aθ ·σθ for some aθ ∈ (Q̂p)∗. We may assume (by Lemma 3.3
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again) that σ(Rs) = Rs. For each θ ∈ R, let vθ ∈ Λ be the element defined in
Proposition 3.2(v,vi): vθ ⊥ Ker(θ) and θ(vθ) = 2. Since ω preserves angles
(and in particular orthogonality), we see that ω(vσθ) = aθ · vθ for each θ.

Assume now that conditions (a) and (b) hold. If p is odd, then by Propo-
sition 3.2(vi), (Q̂p · vθ)∩Λp̂ = Ẑp · vθ for each θ ∈ R. Hence, since ω(vσθ) =
aθ · vθ and ω(Λ) ⊆ Λ, we get aθ ∈ Ẑp for each θ, and so ω∗(R) ⊆ Ẑp ·R.

If p = 2, then let R0 ⊆ R be the set of those roots θ such that 1
2vθ ∈ Λ.

By 3.2(vi) again, the elements θ ∈ R0 are precisely the short roots of sum-
mands SO(2n + 1) C G; i.e., the short roots in the Gn (for n ≥ 1). Also,
for each i, φ(Gn ∩ T∞) = Gn ∩ T∞ by condition (b), and φ|Gn ∩ T∞ is
injective by (a). Thus, ω restricts to an admissible automorphism of the
2-adic integral lattice of Gn, which permutes the simple factors by Lemma
3.3. Also, the only admissible automorphisms of the 2-adic integral lattice
of SO(2n + 1) are given by multiplication by scalars a ∈ (Ẑ2)∗, and so we
can conclude that σ(R0) = R0. The same argument as for odd p now shows
that aθ ∈ Ẑ2 for all θ; and so condition (i) also holds in this case.

Finally, as noted above, the elements of Rs ∩ R〈p〉 form a Q̂p-basis for
L(Λp̂〈p〉). Hence by (a),

(2) p - det(ω|L(G〈p〉 ∩ T∞)) = ±
∏

θ∈Rs∩R〈p〉

aθ;

and so p - aθ for θ ∈ R〈p〉 = W · (Rs ∩R〈p〉). And this proves condition (ii).

S t e p 3a. Assume that G = S × H, where S is a torus and H is a
semisimple Lie group with trivial center. We show here that for such G,
conditions (i) and (ii) suffice to imply that ω ·W ∈ Im(Θ).

WriteG = S×H1×. . .×Hm, where theHm are simple. Let Λ = Λ0×Λ1×
. . .× Λm and W = W1 × . . .×Wm be the corresponding decompositions of
Λ and W . By Lemma 3.3, there is some τ ∈ Σm such that ω(Λip̂) = (Λτi)p̂

for all 1 ≤ i ≤ m (and ω(Λ0) = Λ0); and Hi and Hτi have the same
Dynkin diagram (up to arrow reversal) for each i. Also, since ω(R〈p〉) ⊆
(Ẑp)∗ · R〈p〉 (by condition (ii)), the arrow on a double connector can be re-
versed only if p 6= 2, and the arrow on a triple connector can be reversed only
if p 6= 3.

Recall that Z(Hi) = 1 for all i ≥ 1. Thus, for each i, either Hi and
Hτi are isomorphic, or one of them is isomorphic to SO(2n + 1) and the
other to PSp(n) for some n ≥ 3. And by the remark on reversing arrows in
the Dynkin diagram, this last case can occur only if p 6= 2. By a result of
Friedlander [Fr], BSO(2n+ 1)p̂ ' BSp(n)p̂ for any n and any odd p. So we
can compose ω with Θh(Bα) for some appropriate α ∈ Aut(G), to arrange
that ω sends each simple factor to itself.
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We can now write ω =
∏m

i=0 ωi, where ωi : Λip̂ � Λip̂ for each i, and
where φ0 ∈ Θ([BSp̂, BSp̂]Q) by Theorem 1.1. We will be done upon showing
that ωi ∈ Θ([BHip̂, BHip̂]Q) for each i. In particular, we can simplify the
notation, and assume that G = Hi is simple.

We have seen that ω∗ permutes the roots and simple roots of G up to
scalar multiple, and hence induces an automorphism of the Dynkin diagram
of G, possibly reversing arrows. The only simple groups whose Dynkin
diagrams have arrow reversing automorphisms are B2 (= SO(5) ∼= PSp(2)),
G2, and F4. Also, as noted above, such arrow reversing can occur only if
p 6= 2 and G ∼= B2 or F4; or if p 6= 3 and Hi

∼= G2. In all of these cases, self
maps BGp̂ → BGp̂ have been constructed by Friedlander (in [Fr] again), to
realize the arrow reversing automorphisms. So if necessary we can compose
with one of these maps, to arrange that ω acts on the Dynkin diagram
preserving arrows.

Since Z(G) = 1, any arrow preserving automorphism of the Dynkin
diagram can be realized by some automorphism α ∈ Aut(G) (cf. [Bb2,
p. 42, Corollaire]). So upon replacing ω by L(α|T ) ◦ ω for some α, we are
reduced to the case where ω∗ acts on the Dynkin diagrams via the identity,
and sends each root to some scalar multiple of itself. In particular, since the
Weyl group W is generated by reflections in the kernels of the roots (3.2(i)),
ω ∈ End(Λ) is W -equivariant; and is multiplication by some k ∈ Ẑp since
L(T∞) = Q̂p ⊗ Λ is irreducible as a W -representation (cf. [Bb1, p. 82]).
Also, by (ii), k ∈ (Ẑp)∗ if p | |W |.

For such k, unstable Adams operations ψk : BGp̂ → BGp̂ have been
constructed by Sullivan [Su] (when G = SU(n)) or Wilkerson [Wi] (in gen-
eral). And since the restriction of ψk to BT p̂ is induced by the kth power
map on T , we see that Θ(ψk) = ω.

S t e p 3b. Now let G be arbitrary, and fix some admissible map ω ∈
End(Λp̂) such that ω∗(R) ⊆ (Ẑp ·R) and ω∗(R〈p〉) ⊆ ((Ẑp)∗ ·R〈p〉). We will
show that ω extends to a Q-equivalence BGp̂ → BGp̂.

Let n be the exponent of the center of the semisimple part of G, and let
π = {z ∈ Z(G) : zn = 1}. Set G = G/π: a quotient group which satisfies
the condition in Step 3a. Let Λ ⊇ Λ be the integral lattice in G; then

Λ = {x ∈ Q⊗ Λ : R(x) ⊆ Z, nx ∈ Λ}

by Proposition 3.2(iv). For any x ∈ Λp̂, n · ωx = ω(nx) ∈ Λp̂ and

R(ωx) = (ω∗R)(x) ⊆ (Ẑp ·R)(x) ⊆ Ẑp

(using (i)). So ω(Λp̂) ⊆ Λp̂; and ω extends to a map f : BGp̂ → BGp̂ by
Step 3a.
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Identify Λp̂/Λp̂
∼= πp (the Sylow p-subgroup of π), and let ω′ ∈ Aut(πp)

be the map induced by ω. The composite

BGp̂−→BGp̂
f̄−→BGp̂−→K(πp, 2)

is nullhomotopic, since

H2(BG;πp) ∼= Hom(π1(G), πp) ⊆ Hom(π1(T ), πp) (Prop. 3.2(iii))
∼= Hom(Λ, πp)
∼= Hom(Λp̂, πp).

So f pulls back along the fibration BGp̂ → BGp̂ → K(πp, 2) to a map
f : BGp̂ → BGp̂; and f extends the original admissible map Bφ.

An inspection of the proof of Theorem 3.4 shows, at least when G is
semisimple with trivial center, that [BGp̂, BGp̂]Q is generated by products
of unstable Adams operations on the separate simple factors of G, by au-
tomorphisms of G, and by the “exceptional isogenies” of Friedlander. This
is the generalization to connected groups of the theorem of Hubbuck [Hu],
which says that for simple G, [BG,BG] is generated by automorphisms and
unstable Adams operations.

The following description of the self homotopy equivalences of BGp̂ is
now easy.

Corollary 3.5. If p is odd , then for any compact connected Lie group
G, any admissible map ω ∈ Aut(Λp̂) extends to a homotopy equivalence
f : BGp̂ → BGp̂. In other words,

Θh : [BGp̂, BGp̂]h → NAut(T∞)(W )/W ∼= NAut(Λp̂)(W )/W

is an isomorphism of groups in this case. If p = 2, then Θh is onto if and
only if G contains no direct factor of the form Sp(n)×SO(2n+1) (for some
n ≥ 1). And if G does contain such a factor , then Im(Θh) is the subgroup
of all elements which send factors SO(2n+ 1) to factors of the same type.

P r o o f. Recall that [BGp̂, BGp̂]h = Θ−1(NAut(T∞)(W )/W ) (Proposi-
tion 1.4). Using this, Theorem 3.4 implies that Θh is onto (and hence an
isomorphism) if p is odd, or if p = 2 and G has no direct factor SO(2n+1).

If p = 2 and G does contain a factor SO(2n+1), then it can only be sent
to another direct factor which is either isomorphic to SO(2n+ 1), or which
has the same integral lattice (2-adically) and root system R (restricted to
this summand). And a check of the root systems shows that the only other
possibility is for it to be sent to a direct factor Sp(n). Thus, if Θh is not
onto, then G must contain a direct factor SO(2n+ 1)× Sp(n); and Im(Θh)
is the group of all admissible maps which send factors SO(2n+1) to factors
of the same type.
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Finally, Example 3.1 shows that Θh is never onto when G has a direct
factor SO(2n+ 1)× Sp(n).

Using Sullivan’s arithmetic pullback square for completions and local-
izations of simply connected spaces, these results can now be converted to
results about global self maps of BG.

Theorem 3.6. There is a monomorphism

Θ : [BG,BG]Q � AdmEpi(T, T ) ∼= [NAut(Q⊗Λ)(W ) ∩ End(Λ)]/W

such that for any Q-equivalence f : BG → BG, Θ(f) = φW for some
φ : T � T with f |BT ' Bφ.

For each prime p, let G〈p〉 C G be the product of all simple summands
whose Weyl group has order a multiple of p, and set Λ〈p〉 = Λ∩L(G〈p〉∩T ).
For each n ≥ 1, let Hn C G be the product of all normal subgroups isomor-
phic to SO(2n+ 1). Then, for any φ ∈ AdmEpi(T, T ), φW ∈ Im(Θ) if and
only if

(a) Ker(φ) ∩G〈p〉 = 1 for all p | |W |, and
(b) φ(Gn ∩ T ) = Gn ∩ T for all n ≥ 1.

P r o o f. For any f : BG → BG, f |BT ' Bφ for some φ : T → T by
Notbohm’s theorem [No1]; and ω = L(φ)|Λ satisfies conditions (a,b) since it
satisfies them after p-completion for each p (Theorem 3.4). Thus, there is a
well defined homomorphism Θ as above, and φW ∈ Im(Θ) only if φ satisfies
the given conditions.

If Θ(f) = Θ(f ′), then Θ(f) = Θ(f ′) for each p, and so f p̂ ' f ′p̂ for each
p by the injectivity of Θ (Theorem 2.5). And by [JMO, Theorem 3.1], this
implies that f ' f ′.

Now fix some admissible map φ : T � T which satisfies conditions (a)
and (b). For each prime p, Theorem 3.4 applies to show that Bφ extends to a
Q-equivalence fp : BGp̂ → BGp̂. And then by [JMO, Theorem 3.1] (applied
with fT = B(incl ◦φ)), there exists f : BG → BG such that f p̂ ' fp for
each p, and hence such that f |BT ' Bφ.

Theorem 3.1 in [JMO] was used here to show both uniqueness and exis-
tence of maps f : BG→ BG. Its proof is based on the homotopy pullback
square of mapping spaces

map(BG,BG) −−−→
∏

p map(BG,BGp̂)
↓ ↓

map(BG,BGQ) −−−→ map(BG, (
∏

pBGp̂)Q),

which is induced by Sullivan’s arithmetic pullback square for BG [BK,
VI.8.1]. It also uses the fact that BGQ and (

∏
pBGp̂)Q are both products

of Eilenberg–MacLane spaces.
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As a final application of these results, we get the following (disappoint-
ing) result about the global self homotopy equivalences of BG.

Corollary 3.7. For any compact connected Lie group G, any homotopy
equivalence f : BG→ BG is homotopic to Bα for some α ∈ Aut(G).

P r o o f. Assume f |BT ' Bφ, where φ ∈ AdmEpi(T, T ). Then φ ∈
Aut(T ), since f is a homotopy equivalence. Set ω = L(φ)|Λ ∈ Aut(Λ). By
Theorem 3.4, ω∗ sends each root of G to an integral multiple of some other
root; and since the simple roots are linearly independent those integers must
be ±1. In other words, ω∗ permutes the roots; and so ω is an automorphism
of the root system with integral lattice. It follows that φ = α|T for some
α ∈ Aut(G) (cf. [Bb2, p. 41, Prop. 17]); and f ' Bα since Θ is injective
(Theorem 3.6).
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