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Classification of function spaces
with the pointwise topology determined

by a countable dense set
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Tadeusz D o b r o w o l s k i (Norman, Okla.) and
Witold M a r c i s z e w s k i (Warszawa)

Abstract. We are concerned with CA(X), the space of continuous real valued func-
tions on X considered with the topology of pointwise convergence on A, where A is a
countable dense subset of X. We focus on the Borel and the topological classifications of
the spaces CA(X). For example, we prove that for countable nondiscrete X, CA(X) is
homeomorphic to σω , the countable product of σ = {(xi) ∈ Rω | xi = 0 a.e.}, provided
CA(X) ∈ Fσδ .

1. Introduction. All spaces under consideration are completely regu-
lar. For a space X, Cp(X) denotes the space of all continuous real valued
functions on X with the pointwise convergence topology. If A is a dense
subset of X, then by CA(X) we denote the space of continuous real valued
functions on X with the topology of pointwise convergence on A. Hence, we
have CA(X) = {f |A | f is continuous on X} ⊆ RA and CX(X) = Cp(X).
Throughout this paper we will assume that A is countable; consequently,
CA(X) is a dense linear subspace of RA, a countable product of lines.

Recently, a lot of work has been done on the topological classification
of Borel and projective function spaces Cp(X) for countable spaces X (for
references see [DMM] and [CDM]). It has been shown that Cp(X), while
Borel, is always of an exact multiplicative class [CDM] and it is conjectured
that the topological and the Borel classifications coincide [DMM]. For the
countable spaces X the spaces CA(X) seem to be a natural generalization
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of the spaces Cp(X). This paper is to initiate an investigation on the Borel
complexity and the topological classification of the spaces CA(X). The Borel
structure of the spaces CA(X) seems to be much more complicated than in
the case of Cp(X). However, we are able to indicate some similarities between
the topological classifications of the spaces CA(X) and Cp(X).

The spaces CA(X) also allow us to use some methods of descriptive set
theory and infinite-dimensional topology (applicable for separable metriz-
able spaces) for the investigation of the function spaces on uncountable
separable spaces. In this context the spaces CA(X) have appeared in the
literature in several natural situations. Before we describe some of them we
have to recall a few notions.

A map f : M → N between separable metrizable spaces is of the first
Baire class if f−1(U) is an Fσ-subset of M for every open U ⊂ N (if N is
additionally a linear space then this means that f is the pointwise limit of
a sequence of continuous maps M → N). Let P be the space of irrationals.
It turns out that compact spaces that can be embedded in B1(P ), the space
of real valued first Baire class functions on P with the topology of pointwise
convergence, are of great importance in topology and Banach space theory
(see [BFT] and [Ne, Section 1]); they are called Rosenthal compacta. The
following result of Godefroy [Go, Theorem 4] shows how CA(X) spaces are
involved in dealing with Rosenthal compacta.

1.1. A separable compact space K is a Rosenthal compactum if and only
if for every countable dense subset A of K the space CA(K) is analytic (i.e.,
a continuous image of P ).

The problem of Borel classification of the spaces CA(K) for separable
Rosenthal compact spaces K has been disscussed in [Ma1].

Another important fact involving CA(X) spaces is the following factor-
ization result [Ma1, Lemma 3.4]:

1.2. Let X and Y be separable spaces and ϕ : Cp(X) → Cp(Y ) be a
homeomorphism. For any countable sets C ⊆ X and D ⊆ Y there exist
countable dense sets A ⊆ X and B ⊆ Y such that C ⊆ A, D ⊆ B and the
map πBϕπA

−1 : CA(X) → CB(Y ) is a homeomorphism (πA : Cp(X) →
CA(X) and πB : Cp(Y )→ CB(X) are the standard projections).

This result shows that the problem of the topological classification of the
function spaces Cp(X) for separable spaces X is related to the problem of
the classification of the spaces CA(X).

Let us observe that the topology of CA(X) is precisely the weak topology
on Cp(X) induced by the family of evaluation functionals at a, a ∈ A; this
family is countable, consists of continuous linear functionals, and separates
points of Cp(X). Any continuous linear functional on Cp(X) is a linear com-
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bination of finitely many evaluation functionals (at x ∈ X). The following
example shows that the weak topology on Cp(X) induced by a countable
family of continuous linear functionals which separate points of Cp(X) is
not necessarily that of CA(X) for some countable dense A ⊆ X.

1.3. Example. Let {qn}∞n=1 be an enumeration of the rationals in the
line R. The sequence {ϕn}∞n=1 of continuous linear functionals on Cp(R)
given by ϕn(f) = f(qn) + f(qn + π/n), f ∈ Cp(R), n = 1, 2, . . . , separates
points of Cp(R). However, every evaluation functional on Cp(R) is discon-
tinuous in the weak topology induced by {ϕn}∞n=1 on Cp(R).

Recall that if M is a separable metrizable space and α is a countable ordi-
nal then Aα(M) (resp.,Mα(M)) denotes the family of subsets of M that are
Borel of additive (resp., multiplicative) class α. By Aα (resp., Mα) we de-
note the class of spaces that are absolute Borel of additive (resp., multiplica-
tive) class α. If A ∈ Aα\Mα (resp.,Mα\Aα or Aα∩Mα\

⋃
β<α(Aβ∪Mβ)),

then we say that A is of the exact additive (resp., multiplicative or ambi-
guous) class α. By Pn, n ≥ 0, we denote the nth projective class. A map
f : M → N between separable metrizable spaces is Borel of class α if
f−1(U) ∈ Aα(M) for every open U ⊂ N (this means that f is Borel of class
α = 1 precisely when f is of the first Baire class). The above terminology is
that of [Kur].

In Section 2 we address some questions concerning the Borel (projective)
structure of spaces CA(X). For instance, fixing X, we wonder how the Borel
(projective) class of CA(X) will change when varying A. The following in-
teresting question arises. What is the relationship between the exact Borel
(projective) classes of Cp(X), CA(X) and Cp(A) for countable X? For each
countable ordinal α, we provide an example of a countable space Xα and a
dense subset Aα so that Cp(Xα) ∈M2 and CAα(Xα) 6∈ Mα (see 2.6).

In Section 3 we deal with spaces X with exactly one nonisolated point.
Such spaces can be identified with NF = N ∪ {∞} topologized by isolating
the points of N = {1, 2, . . .} and using the family {A ∪ {∞} | A ∈ F} as a
neighborhood base at ∞, where F is a filter on N. In our considerations, if
F is a filter on a countable set T , then we usually identify T and N and most
often we let T = ω = {0, 1, . . .}. We will always assume that F contains the
Fréchet filter F0 consisting of all cofinite sets in ω. We will write

cF = {f ∈ Rω | ∀(ε > 0) (f−1((−ε, ε)) ∈ F )}
and

CF = {f ∈ Rω | ∃(x ∈ R)∀(ε > 0) (f−1((x− ε, x+ ε)) ∈ F )}.
It is known [Ma2, Lemma 2.1] that cF is (linearly) homeomorphic to Cp(NF ).
The space CF can be identified with Cω(NF ). Moreover, we have

CF = {f ∈ Rω | ∀(ε > 0)∃(A ∈ F )∀(a1, a2 ∈ A) (|f(a1)− f(a2)| < ε)}.
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In these definitions the space ω can be replaced by any countable infinite
set T . A filter F on T will be treated as a subset of 2T , a copy of the Cantor
set. We address the following question. What is the relation between the
Borel (projective) exact class of F and that of CF ? Our answer is contained
in 3.4 and is less satisfactory compared to the case of cF (see [DMM]).

Section 5 is devoted to the topological identification of Fσδ-spaces CA(X).
The main result states that for countable nondiscrete X and dense A ⊆ X,
the space CA(X) is homeomorphic to σω provided CA(X) ∈ Fσδ; here
σ = {(xn) ∈ Rω | xn = 0 a.e.}. (This fact for A = X is the main result
of [DMM].) The same result holds for (not necessarily countable) Fréchet
spaces X. Let us recall that X is a Fréchet space if given a subset Y ⊂ X
and a point x ∈ Y there exists a sequence of elements of Y that converges
to x. The main tool to obtain these identification results is the method
of absorbing sets (belonging to infinite-dimensional topology, see [BM]).
An application of this technique to function spaces was initiated by van
Mill in [vM]. We do not explicitly refer to this method; instead, we use
some factorization facts and rely on results of [CDM]. However, we were
not able to avoid another notion of infinite-dimensional topology: so-called
Zσ-spaces. We devote Section 4 to Zσ-spaces CA(X). Many of our results
concern also spaces C∗A(X), subsets of CA(X) consisting of all bounded
functions.

In Section 6 we settle the case of metrizable X. It turns out that for
a metrizable X, CA(X) is analytic only if X is σ-compact (and then, it is
homeomorphic to σω).

In the last section we provide examples of spaces CF with arbitrarily high
Borel complexity. This is achieved by employing filters F previously used in
[CDM]. Here, as in [CDM], not only do we show that for every α ≥ 2 there
exists a filter F such that CF ∈ Mα \ Aa, but actually it follows that CF
is an absorbing set for the class of Mα. Hence, CF is homeomorphic to the
standard, Mα-absorbing model Ωα (see [BM]).

2. CA(X) versus CB(X). How much can they differ? For a space
X and countable dense subsets A and B of X, we will be interested in how
much the Borel (projective) classes of CA(X) and CB(X) can differ. The
following estimate was established in [Ma1, Theorem 2.2].

2.1. Proposition. Let X be a Fréchet space and let A,B ⊆ X be count-
able dense sets. For every countable ordinal α and every n ∈ ω, we have:

(a) if CA(X) ∈Mα, then CB(X) ∈M1+α,
(b) if CA(X) ∈ Aα, then CB(X) ∈ A1+α,
(c) if CA(X) ∈ Pn, then CB(X) ∈ Pn.
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In particular , for infinite ordinals α and n ∈ ω, the exact Borel (projective)
classes of CA(X) and CB(X) coincide.

The following example shows that for non-Fréchet spaces X the gap
between Borel classes can be as big as we wish (for a space Z, βZ denotes
the Čech–Stone compactification of Z).

2.2. Example. We have

(a) Cω(βω) ∈ A1\M1 (actually, Cω(βω) can be identified with the space
Σ = {(xn) ∈ Rω | (xn) is bounded}),

(b) if p is an ultrafilter on ω (i.e., p ∈ βω\ω), then Cω∪{p}(βω) 6∈ P1∪P2

(actually, Cω∪{p}(βω) contains a closed copy of the ultrafilter p).

The statement of 2.2(b) can be reversed in the following way.

2.3. Proposition. Let X be a compact space. Assume there are count-
able dense sets A, B ⊆ X such that CA(X) is analytic and CB(X) is non-
analytic. Then X contains a copy of βω.

P r o o f. Write S = CA(X) and consider i : X → RS defined by

i(x)(f) = arctan(f(x)), f ∈ S, x ∈ X.
It follows that i is an embedding and i(K) is norm-bounded (here, we con-
sider the sup norm on the space of bounded functions on S). Moreover,
for a ∈ A, i(a) is continuous on S. Using the Godefroy characterization of
Rosenthal compacta and our assumption, we get i(K) * B1(S). Now, our
result is a consequence of the following statement from [P, p. 34] (see also
[BFT]): “For an arbitrary norm-bounded sequence {fj | j ∈ ω} of continu-
ous functions on P (or, more generally, on an analytic space X) one and only
one possibility occurs: either all pointwise accumulation points of {fj} are
of first Baire class, or there exists a subsequence {fj | j ∈ ω} which behaves
on some Cantor set T in P like the sequence of projections pj : ωω → {0, 1}
(in particular, in the second case, all accumulation points of {fj | j ∈ ω} are
non-Borel and the pointwise closure of the set {fj | j ∈ ω} is homeomorphic
to the Čech–Stone compactification of the natural numbers”.

To get our assertion, enumerate A = {aj | j ∈ ω} and apply the above
statement to the sequence {i(aj) | j ∈ ω}.

The following result is a direct consequence of 2.3 and 1.1.

2.4. Corollary. Let X be a compact space and let A be a countable
dense subset of X. If CA(X) is analytic then either X is a Rosenthal com-
pactum or else X contains a copy of βω.

It has been shown [CDM, Theorem 5.1] that for every countable space
X, the space Cp(X), when Borel, is of an exact multiplicative class. In
connection with this and 2.2(a) we ask:
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2.5. Question. Is there an example of a (countable) space X such that
CA(X) ∈ Aα \Mα, α > 1, for some countable dense set A ⊆ X?

Next we show that the gap between Borel classes of Cp(X) = CX(X)
and CA(X) can be large even for countable X.

2.6. Proposition. For every countable ordinal α, there exists a count-
able space Xα and a dense set A ⊆ Xα such that Cp(Xα) ∈ M2 and
CA(Xα) 6∈ Mα.

P r o o f. We will use induction on α. Set X0 = A = ω + 1. It is obvious
that Cp(X0) ∈ M2; by [DGM, Corollary 1.2], Cp(X0) is homeomorphic to
σω and hence it belongs to M2 \ A2. Let us distinguish x0 = ω ∈ X0 and
B0 = ω; note that B0 is the set of all isolated points of X0 and A = B0∪{x0}.

Suppose the spaces Xβ have been constructed (for all β < α), sets Bβ of
all isolated points of Xβ and points xβ ∈ Xβ \Bβ have been determined so
that Aβ = Bβ ∪ {xβ} is a countable dense subset of Xβ so that CAβ (Xβ) 6∈
Mα and Cp(Xβ) ∈M2. For every n ∈ ω, let αn = β provided α = β+1. If α
is a limit ordinal, fix a sequence of ordinals {αn}n∈ω with αn < α, n ∈ ω, and
supn αn = α. Form a direct sum Yα = (

⋃
n∈ω{n}×Xαn)⊕ (ω+1). Consider

an equivalence relation R on Yα which identifies (n, xαn) with n ∈ ω + 1.
We set Xα = Yα/R to be the quotient space. Write q : Yα → Xα for the
quotient map. We let

Bα = {x ∈ Xα | x is isolated in Xα}
and xα = q(ω), where ω ∈ ω + 1. By the construction Bα =

⋃
n∈ω q({n} ×

Bαn). Finally, we let Aα = Bα ∪ {xα} and observe that Aα is countable
and dense in Xα. (Note that X1 and A1 are the Arens spaces described in
Examples 1.6.19 and 1.6.20 of [En], respectively).

Observe that f is continuous on Xα if and only if f |q({n} ×Xαn) and
f |q(ω+ 1), n ∈ ω, are continuous. It then inductively follows that Cp(Xa) ∈
M2. We now show that CAα(Xα) 6∈ Mα. Consider the following subspaces
Eα and Fα of CBα(Xα):

Eα = {f ∈ CBα(Xα) ∩ {0, 1}Bα | f(xα) = 0},
Fα = {f ∈ CBα(Xα) ∩ {0, 1}Bα | f(xα) = 1}.

Claim. Write Gα = Eα ∪ Fα. The pairs (Gα, Eα) and (Gα, Fα) are
Wadge (2ω,Aα∪Mα(2ω))-complete (i.e., for every C ∈ Aα∪Mα(2ω) there
exists a map ϕ : 2ω → Gα so that ϕ−1(Eα) = C or ϕ−1(Fα) = C, respec-
tively).

We will provide an inductive proof. If α = 0, then E0 and F0 are copies of
the rationals and both E0 and F0 are dense in G0. Let C ∈M0(2ω) (i.e., C
is a closed subset of 2ω). Pick a sequence {xn}∞n=1 ⊂ E0 such that limxn =
x0 ∈ F0. Find a map ϕ : 2ω → {xn | n ∈ ω} such that ϕ−1({x0}) = C. If
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C ∈ A0(2ω) (i.e., C is open in 2ω), apply the same argument interchanging
the roles of E0 and F0. Let C ∈ Aα and pick Cn ∈ Mαn , Cn ⊆ Cn+1,
n ∈ ω, so that C =

⋃
n∈ω Cn. We have Eα = FP(Gαn , Eαn) and Fα =

FP(Gαn , Fαn), where for a sequence {(Xn, An)}n∈ω of pairs of spaces

FP(Xn, An) =
{

(xn) ∈
∏
n∈ω

Xn

∣∣∣ xn ∈ An a.e.
}

(notation of [CDM, Section 8]). Using the inductive assumption, we can
find ϕn : 2ω → Gαn ⊂ RBαn such that ϕ−1

n (Eαn) = Cn. Take ϕ = ∆ϕn :
2ω → R∪Bαn given by ϕ(p) = (ϕn(p)) and observe that ϕ(

⋃
n∈ω Cn) ⊂

FP(Gαn , Eαn) and ϕ(2ω \ ⋃n∈ω Cn) ⊂ ∏n∈ω Fαn ⊂ Fα (cf. [CDM, Proof
of 8.1]). This settles the case where C ∈ Aα. By symmetry the same argu-
ment works for C ∈Mα.

An easy application of the Claim yields Eα 6∈ Mα ∪ Aα. Since Eα can
be identified with the set

{f ∈ CAα(Xα) ∩ {0, 1}Aα | f(xα) = 0},
a closed subset of CAα(Xα), our assertion follows.

2.7. R e m a r k. Let us note that even for a compact X the Borel class of
CA(X) can be as high as we wish. Such spaces X can be taken as Rosenthal
compacta and were provided in [Ma1]. Let us indicate another way of finding
such X. By [LvMP, Theorem 4.1], there exists a countable regular space A
with exactly one nonisolated point such that the Borel class of Cp(A) (and
hence, of C∗p(A)) is as high as we wish. Let X = βA and observe that
CA(X) = C∗p(A).

2.8. R e m a r k. Consider X = NF for a filter F on ω. Applying 3.3, we
see that Cω(NF ) = CF contains a closed copy of F ; and hence can have
as complicated Borel structure as we wish. At the same time Cp(ω) = Rω
∈M1.

The statements 2.6 and 2.8 show that, within the Borel hierarchy, the
Borel class of CA(X) cannot be estimated by either the class of Cp(X) or
Cp(A).

2.9. Question. Let X be a countable space and let A be a dense subset
of X. Is the Borel (projective) class of Cp(X) (resp., Cp(A)) determined by
that of CA(X)? Is Cp(X) Borel (analytic) if CA(X) is? Can the exact Borel
(projective) class of Cp(X) be greater than that of CA(X)?

2.10. R e m a r k. Let πA : Cp(X)→ CA(X) be the projection map. Since
CA(X) = πA(Cp(X)) and πA is injective, CA(X) is Borel provided Cp(X)
is (see [Kur]). We claim that also Cp(A) is analytic provided CA(X) is. The
latter can be shown as follows. If CA(X) is analytic, then for every accumu-
lation point a ∈ A the filter Fa = {Y ∩A | Y ∈ 2X\{a} and a ∈ Int(Y ∪{a})}
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is an analytic filter on A \ {a} (cf. the proof of [DMM, Corollary 3.6]). If
now by AFa we denote the space A topologized by isolating the points of
A \ {a} and by using the family {A ∪ {a} | A ∈ Fa} as neighborhood base
at a, we have Cp(A) =

⋂{Cp(AFa) | a is an accumulation point of A}.
Since each Cp(AFa) is analytic, so is Cp(A) (this argument was taken from
[DMM, Lemma 4.3]).

Let us notice that the last two questions of 2.9 have negative answers for
bounded function spaces.

2.11. Example. For any ultrafilter p ∈ βω \ ω we have, C∗ω(ω ∪ {p}) =
Σ ∈ A1 \M1 and C∗p(ω ∪ {p}) 6∈ P1 ∪ P2.

Observe that, for every p from Example 2.11, we also have Cω(ω∪{p}) 6∈
P1 ∪ P2. Hence, we see that the gap between Borel classes of C∗A(X) and
CA(X) can be as big as we wish.

3. Borel type of spaces CF . For the Fréchet filter F0 on ω we use the
classical functional analysis symbols c0 and c to denote the spaces cF0 and
CF0 . The spaces c0 and c considered as Banach spaces (with the sup norm)
are linearly isomorphic. The following fact shows a dramatic difference if
one considers c0 and c as subspaces of Rω.

3.1. Proposition. The spaces c0, c ⊂ Rω are not linearly isomorphic.

P r o o f. Assume T : c0 → c establishes a linear topological isomorphism
of c0 onto c. Let ‖ · ‖ be the sup-norm on c (and c0). First we note that the
graph of T ,

Γ = {(x, Tx) | x ∈ c0} ⊂ c0 × c,
is closed in the norm topology. This follows from the obvious fact that Γ is
closed with respect to the coordinatewise topology on c0×c and the fact that
the latter topology is weaker than the norm topology on c0×c. Consequently,
by the Closed Graph Theorem, T establishes a linear isomorphism of (c0, ‖·‖)
onto (c, ‖ · ‖).

Consider the continuous linear functional ` : (c, ‖ · ‖) → R given by
`((xn)) = limxn. It follows that `◦T : (c0, ‖·‖)→ R is continuous and `◦T 6≡
0. This obviously implies that ` ◦ T is continuous with respect to the weak
topology ω on c0. Consequently, for every convex closed neighborhood U of
0 ∈ (c0, ‖·‖), ker(`◦T )∩U is closed in the ω-topology, and ker(`◦T )∩U 6= U .

Let B = {y ∈ c | ‖y‖ ≤ 1} be the unit ball in c. We will show that for
U = T−1(B), ker(` ◦ T ) ∩ U is dense in U in the ω-topology, contradicting
the above fact. To this end, first notice that given y ∈ B, there exists a
sequence {yn}n∈ω ⊂ B ∩ c0 so that {yn}n∈ω converges to y in Rω. We see
that {T−1yn}n∈ω converges to T−1y in Rω and T−1yn ∈ ker(` ◦ T ). Since
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the ω-topology coincides with the Rω-topology on bounded sets, it follows
that {T−1yn} converges to T−1y in the ω-topology.

Before we enter a discussion on Borel types of CF , let us formulate the
following general fact which will be employed later on; its proof can be
obtained easily by using the argument of the proof of [Ma2, Lemma 2.1].

3.2. Lemma. Let F be a filter on ω which is not the Fréchet filter. Then
CF is homeomorphic to the product CF × Rω.

We identify a filter F on a countable set T with a subset of a Cantor set
2T . As shown in [DMM, Lemma 4.2] the exact Borel class of cF is entirely
determined by that of F in 2T . Here we try to recover this result for the
space CF . The first result shows that Borel (projective) classes of CF and
C∗F are not lower than that of F .

3.3. Proposition. Let F be a filter on a countable set T . For every
countable ordinal α and n ∈ ω, we have:

(a) if CF ∈Mα, then F ∈Mα,
(b) if CF ∈ Aα, then F ∈ Aα,
(c) if CF ∈ Pn, then F ∈ Pn.

In (a)–(c), the space CF can be replaced by C∗F provided F is not an ultra-
filter.

P r o o f. We may assume T = ω. Consider

Z = {f ∈ CF | ∀(n ∈ ω) (f(n) = 0 or f(n) = n+ 1)},
a closed subset of CF . The map (xn)→ ((n+ 1)(1− xn)) embeds 2ω in Rω
and sends F onto Z. Thus, the CF -part of our assertion follows.

Assume that F is not an ultrafilter on ω (see 2.11). There exists a subset
M ⊂ ω such that neither M nor N = ω \M belongs to F . Consider the
filters

G = {A ∩M | A ∈ F} and H = {A ∩H | A ∈ F}
induced by F on M and N , respectively. The sets

Y1 = {f ∈ C∗F ∩ {0, 1}ω | f |N = 0},
Y2 = {f ∈ C∗F ∩ {0, 1}ω | f |M = 0}

are closed subsets of C∗F . It is clear that G and H are homeomorphic to
Y1 and Y2, respectively. Finally, since F can be identified with the product
G×H, our assertion follows.

Here is our counterpart of [DMM, Lemma 4.2] for spaces CF .

3.4. Proposition. Let F be a filter on ω. For every countable ordinal
α ≥ 1 and n ∈ ω, we have:
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(a) if F ∈ Aα, then CF ∈Mα+1,
(b) if F ∈Mα, then CF ∈Mα+1 ∩Aα+1 (more exactly , CF is a differ-

ence of two sets belonging to Mα),
(c) if F ∈ Pn, then CF ∈ Pn.

P r o o f. First we provide an argument which shows (a) and (c). Then we
adapt this argument to check that whenever F ∈ Mα then CF ∩ [0, 1]ω ∈
Mα. Finally, since CF is homeomorphic to

{f ∈ CF | ∀(n ∈ ω) (f(n) ∈ (0, 1) and lim
F
f(n) ∈ (0, 1))}

= (CF ∩ [0, 1]ω) ∩ (0, 1)ω \ (cF ∪ (1 + cF )),

the space CF is a difference of two sets belonging to Mα (by [DMM, Lem-
ma 4.2], cF and hence 1+ cF = {(xn+1) ∈ Rω | (xn) ∈ cF } belong toMα).

Assume F ∈ Aα (resp., F ∈ Pn). For n ∈ ω and k ∈ Z, write

Tn,k =
[

2k
2n+ 2

,
2k + 1
2n+ 2

]
.

Set Tn =
⋃
k∈Z Tn,k. For m ∈ N and l ∈ Z, define

Sm,l,n =
⋃

k

{
Tn,k

∣∣∣∣ dist
(
l

m
, Tn,k

)
≤ 1
m

}
.

Let %m,l :
∏
n∈ω Tn → 2ω be given by

%m,l(f)(n) =
{

1 if f(n) ∈ Sm,l,n,
0 otherwise,

for f ∈∏n∈ω Tn. One can check that %m,l is continuous. We claim that

(1) CF ∩
∏
n∈ω

Tn =
∞⋂
m=1

⋃

l∈Z
%−1
m,l(F ).

(If f = (f(n)) ∈ ∏n∈ω Tn and there exists x ∈ R such that for all ε > 0
we have f−1((x − ε, x + ε)) ∈ F , then for every m ≥ 1 one can find l ∈ Z
so that |x − l/m| ≤ 1/(2m) and check that {n | f(n) ∈ Sm,l,n} ∈ F ; this
shows %m,l(f) ∈ F . Conversely, if for every m ≥ 1 one can find l ∈ Z so that
{n | f(n) ∈ Sm,l,n} ∈ F , then there exists A ∈ F so that whenever i, j ∈ A
then |f(i)− f(j)| < 4/m; this implies f ∈ CF .)

Pick a map ψn : Tn → R that transforms Tn,k affinely onto
[

2k
2n+2 ,

2k+2
2n+2

]
,

k ∈ Z. Letting ψ =
∏
n∈ω ψn :

∏
n∈ω Tn → Rω we see that ψ is a perfect

map and that

(2) CF ∩
∏
n∈ω

Tn = ψ−1(CF ).

Applying (1), CF ∩
∏
n∈ω Tn ∈ Mα+1 (resp., CF ∩

∏
n∈ω Tn ∈ Pn). By (2)

and a result of Saint Raymond [SR1], CF ∈Mα+1 (resp., CF ∈ Pn).
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Now, let F ∈ Mα. We must show that CF ∩ [0, 1]ω ∈ Mα. Using the
sets Tn,k we define

Tn =
n−1⋃

k=0

Tn,k.

With these Tn, as previously, define for m ∈ N and l ∈ {0, . . . ,m} the sets
Sm,l,n and maps %m,l. One can check

(1)′ CF ∩
∏
n∈ω

Tn =
∞⋂
m=1

m⋃

l=0

%−1
m,l(F ).

Let ψn : Tn → [0, 1] be a map such that Tn,k is affinely transformed onto[
2k

2n+2 ,
2k+2
2n+2

]
. Letting ψ =

∏
n∈ω ψn :

∏
n∈ω Tn → [0, 1]ω, we have

(2)′ CF ∩
∏
n∈ω

Tn = ψ−1(CF ∩ [0, 1]ω).

Using (1)′, CF ∩
∏
n∈ω Tn ∈ Mα. As above, by (2)′ and a result of Saint

Raymond [SR1], CF ∩ [0, 1]ω ∈Mα.

3.5. Question. Let F ∈Mα be a filter on ω. Is CF ∈Mα?

Let F be a filter on ω. Identify the space CF with Cω(NF ). Using this
identification, let ` : CF → R be given by `(f) = f(∞). We see that ` is
well defined and can be viewed as `(f) = limF f(n).

3.6. Proposition. For a filter F ∈ Aα ∪Mα, and a countable ordinal
α, α ≥ 1, ` : CF → R is Borel of class α.

P r o o f. Let U ⊆ R be an open set. We must show that `−1(U) ∈
Aα(CF ).

We shall use some of the notation employed in the proof of 3.4. For n ∈ ω
and m ∈ N, let

Pn,m =
⋃
{Tn,k | ∀(t ∈ Tn,k) (dist(t,R \ U) > 1/m)}.

Recall that Tn =
⋃
k∈Z Tn,k and define ζm :

∏
n∈ω Tn → {0, 1}ω by letting

for f ∈∏n∈ω Tn,

ζm(f)(n) =
{

1 if f(n) ∈ Pn,m,
0 otherwise.

Clearly, ζm is continuous, m ≥ 1. Let ψ :
∏
n∈ω Tn → Rω be that of the

proof of 3.4.
Suppose F ∈ Aα. Consider S =

⋃∞
m=1 ζ

−1
m (F ). We see that S ∈ Aα (S ∈

A1(
∏
n∈ω Tn) for α = 1). We claim that ψ−1(ψ(S)) = S. Let f, g ∈∏n∈ω Tn
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be such that g ∈ ⋃∞m=1 ζ
−1
m (F ) and ψ(f) = ψ(g). Since ψ(f) = ψ(g), we

have |g(n) − f(n)| < 1/n. Take m0 such that g ∈ ζ−1
m0

(F ). If n > 2m0

and g(n) ∈ Pn,m0 , then f(n) ∈ Pn,2m0 . It follows that ζ2m0(f) ⊃ ζm0(g) \
{0, 1, . . . , 2m0}; and hence ζ2m0(f) ∈ F . This shows that f ∈ ζ−1

2m0
(F ) ⊂ S.

Suppose F ∈Mα. Let J = {A ⊂ ω | ω \A ∈ F} be the dual ideal of F ;
J is homeomorphic to F . Consider T = (

∏
n∈ω Tn) \⋂∞m=1 ζ

−1
n (J ). We see

that T ∈ Aα. We claim that ψ−1(ψ(T )) = T . Let f, g ∈ ∏n∈ω Tn be such
that f 6∈ ⋂∞m=1 ζ

−1
m (J ) and ψ(f) = ψ(g). Take m0 such that f 6∈ ζ−1

m0
(J ).

If n > 2m0 and f(n) ∈ Pn,m0 , then g(n) ∈ Pn,2m0 . As previously, it follows
that ζ2m0(g) 6∈ J ; hence g ∈ T .

We now claim that

(1) CF ∩ S = CF ∩ T =
( ∏
n∈ω

Tn

)
∩ `−1(U).

Namely, we have f ∈ S (resp., f ∈ T ) if and only if there exists m ≥ 1 such
that f ∈ ζ−1

m (F ) (resp., f 6∈ ζ−1
m (J )). Suppose f ∈ (

∏
n∈ω Tn) ∩ `−1(U)

and f(∞) = x ∈ U . Let ε = dist(x,R \ U). For m,n > 4/ε we have
(x − ε/2, x + ε/2) ∩ Tn ⊆ Pn,m. It follows that f ∈ ζ−1

m (F ) and hence
f 6∈ ζ−1

m (J ). Suppose now that f ∈ CF and f ∈ ζ−1
m (F ). Since f 6∈ ζ−1

m (J )
the set R = {n | f(n) ∈ Pn,m} is not in J . Take x 6∈ U . Then for every
n ≥ 1, (x− 1/(2m), x+ 1/(2m)) ∩ Pn,m = ∅. Therefore for Q = {n | f(n) ∈
(x−1/(2m), x+1/(2m))} we have R∩Q = ∅. Since R 6∈ J , we have Q 6∈ F .
It follows that f(∞) 6= x, so f(∞) ∈ U .

Since limn(f(n)−ψ(f)(n)) = 0, one sees that limF f(n) = limF ψ(f)(n);
and consequently

`−1(U) = ψ
(( ∏

n∈ω
Tn

)
∩ `−1(U)

)
.

This together with (1) and the fact that ψ−1(CF ) = CF ∩
∏
n∈ω Tn yields

`−1(U) = ψ(CF ∩ S) = CF ∩ ψ(S),

`−1(U) = ψ(CF ∩ T ) = CF ∩ ψ(T ).

The facts that ψ−1(ψ(S)) = S and ψ−1(ψ(T )) = T together with a result
of Saint Raymond [SR1] show that, under our assumption, CF ∩ ϕ(S) and
CF ∩ ϕ(T ) belong to Aα(CF ).

The following is a partial answer to Question 3.5.

3.7. Corollary. For n ∈ ω, let Fn be a filter on ω with Fn ∈
⋃
β<αAβ ,

α ≥ 1. Then for the filter F =
∏
n∈ω Fn on ω × ω, we have CF ∈Mα.

P r o o f. We obviously have

F = {A ⊂ ω × ω | ∀(n ∈ ω) ({m | (m,n) ∈ A} ∈ Fn)}.
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Moreover, for f = (f(m,n)) ∈ Rω×ω, f ∈ CF if and only if f(·, n) ∈ CFn ,
n ∈ ω, and limFn f(·, n) = limFk f(·, k) for n, k ∈ ω. Now our assertion
follows by application of 3.4 and 3.6.

The assertion of Proposition 3.9 below shows that the result of [DDM,
Lemma 4.2] is fully recovered for the spaces C∗F . The proof of 3.9 requires a
particular case of the following general fact.

3.8. Proposition. Let X be a separable metrizable space such that X =⋃∞
n=1Xn, Xn ∈Mα, α ≥ 2 and Xn ∈ Aβ(X), where β < α. Then X ∈Mα.

P r o o f. Let Y be a metrizable compactification of X and let Yn ∈ Aβ
be such that Yn ∩ X = Xn. Consider Z =

⋃∞
n=1 Yn ∈ Aβ ⊆ Mα. We have

Yn\Xn ∈ Aα; hence,
⋃∞
n=1(Yn\Xn) ∈ Aα and X = Z\⋃∞n=1(Yn\Xn) ∈

Mα.

3.9. Proposition. Let F be a filter on ω, α be a countable ordinal ,
α ≥ 1, and let n ∈ ω. We have:

(a) if F ∈ Aα \Mα, then C∗F ∈Mα+1 \ Aα+1,
(b) if F ∈Mα \ Aα, then C∗F ∈Mα \ Aα,
(c) if F ∈Mα ∩ Aα \

⋃
β<α(Aβ ∪Mβ), then C∗F ∈Mα \ Aα,

(d) if F ∈ Pn, then C∗F ∈ Pn.

P r o o f. The proof of the second part of 3.4 yields that whenever F ∈
Mα, CF ∩ [−n, n]ω ∈ Mα for n ≥ 1. Since C∗F =

⋃∞
n=1(CF ∩ [−n, n]ω)

and each CF ∩ [−n, n]ω is closed in C∗F , it follows from 3.8 that C∗F ∈
Mα (observe that here α ≥ 2 since there are no filters of class M1). If
additionally F 6∈ Aα then, by 3.3, C∗F ∈Mα\Aα; hence (b) follows. Assume
F ∈Mα∩Aα\

⋃
β<α(Aβ∪Mβ). Consider the decomposition F = G×H of F

into filters G and H described in the proof of 3.3 (obviously, being Borel, F is
not an ultrafilter). We may assume that G ∈Mα∩Aα\

⋃
β<αMβ (if not, H

has this property). Recall thatΣ = {(xn) ∈ Rω | (xn) is bounded}. Applying
[DMM, Lemma 4.2(3)], we find that cG ∈Mα \Aα. Since c∗G = cG ∩Σ and
cG is homeomorphic to c∗G ∩ (−1, 1)ω, we conclude that c∗G ∈ Mα \ Aα.
Finally, since C∗F contains c∗G as a closed set, it follows that C∗F ∈Mα \Aα;
this shows (c).

To get (a), suppose F ∈ Aα \ Mα. Since C∗F = CF ∩ Σ, 3.4(a) yields
C∗F ∈ Mα+1. Considering, as previously, F = G × H, we may assume
G ∈ Aα \Mα. By [DDM, Lemma 4.2(4)], cG ∈ Mα+1 \ Aα+1. As before,
this implies that c∗G ∈Mα+1 \Aα+1 and consequently C∗F ∈Mα+1 \Aα+1.

The assertion (d) follows from 3.4(c) and the fact that C∗F = CF ∩Σ.

We now provide a counterpart of [DMM, Lemma 4.3]. Let X be a count-
able space. For every accumulation point a of X we consider the filter Fa
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on X \ {a} consisting of all neighborhoods of a; hence

Fa = {Y ∈ 2X\{a} | a ∈ Int(Y ∪ {a})}.
3.10. Lemma. Let X be a countable space and A ⊆ X be a dense set.

If there exists a countable ordinal α, α ≥ 1 (resp., an integer n ∈ ω) such
that for every accumulation point a ∈ X the filter Fa is in Aα ∪Mα (resp.,
Fa ∈ Pn), then CA(X) ∈Mα+1 (resp., CA(X) ∈ Pn).

P r o o f (cf. [DMM, Lemma 4.3]). Let a be an accumulation point of X.
Define a filter on A by letting

Ga = {Y ∩A | Y ∈ Fa}.
The filter Ga is homeomorphic to

{Y ∈ Fa | X \ (A ∪ {a}) ⊆ Y },
a closed subset of Fa. Therefore Ga ∈ Aa∪Mα (resp., Ga ∈ Pn). Let Xa be
the space A ∪ {a} topologized by isolating the points of A \ {a} and using
the family {Y ∪ {a} | Y ∈ Ga} as a neighborhood base at a (it may happen
that a ∈ A). Then either CA(Xa) is isomorphic to cGa (in case a ∈ A),
or else CA(Xα) is isomorphic to CGα (in case a 6∈ A). From Proposition
3.4 and [DMM, Lemma 4.2] (see also [CDM, Corollary 5.3(d)]) it follows
that in both cases CA(Xa) ∈ Mα+1 (resp., CA(Xa) ∈ Pn). Now, 3.10 is a
consequence of the following observation:

CA(X) =
⋂
{CA(Xa) | a is an accumulation point of X}.

3.11. R e m a r k. LetXα be the space from Proposition 2.6. Then Cp(Xα)
∈ Fσδ. Moreover, according to Lemma 3.10, there exists a ∈ Xα such that
Fa 6∈

⋃
β<αAβ ∪ Mβ ; in fact, one can show that a = xα has this prop-

erty. (As shown in [DMM, Corollary 3.6] the filters Fa are analytic provided
Cp(X) is analytic.) Observe that the filter Fa has a base which is of the
Fσδ-type. Namely, the filter base {Y ⊂ X \ {a} | Y ∪ {a} is a clopen subset
of X containing a} is homeomorphic to

{f ∈ Cp(Xα) ∩ {0, 1}Xα | f(a) = 1},
a closed subset of Cp(Xα).

4. Zσ-property of CA(X). We recall that a closed subset A of an
absolute neighborhood retract M is a Z-set if every map f : K → M of
a compactum K into M can be approximated by maps f : K → M \ A.
A space which is a countable union of its own Z-sets is called a Zσ-space.
Obviously, every Zσ-space is of the first category. It is a well-known fact
that a dense convex subset of a convex Zσ-space is itself a Zσ-space. Since
CA(X) is dense in RA and since Σ = {(xn) ∈ Rω | (xn) is bounded} is a
Zσ-space, we have:
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4.1. Lemma. Let X be a space and let A be a countable dense subset
of X.

(a) The space C∗A(X) is a Zσ-space.
(b) If X is compact , then CA(X) is a Zσ-space.

4.2. Proposition. Let X be a countable nondiscrete space and let A
be a dense subset of X. If CA(X) is analytic, then CA(X) and Cp(X) are
Zσ-spaces.

Let us recall that a filter F on a countable set T is of the first category
if F belongs to the σ-field generated by the open sets and the first category
sets of 2T . We need the following fact.

4.3. Lemma. Let F be a first category filter on a countable set T . Then
for every 0 < r ≤ ∞ the space CF ∩ [−r, r]ω is a Zσ-space.

P r o o f. By a result of Talagrand [Ta, Theorem 2.1] there exists a se-
quence of pairwise disjoint finite sets An ⊂ T such that every A ∈ F meets
all but finitely many An, n ∈ N.

For finite r, let

Xn = {f ∈ CF ∩ [−r, r]ω | ∀(k > n)∃(m ∈ Ak) (|f(m)| ≤ 2r/3)}
and

Yn = {f ∈ CF ∩ [−r, r]ω | ∀(k > n)∃(m ∈ Ak) (|f(m)| ≥ r/3)}.
An argument of the proof of [DMM, Proposition 3.3] shows that each Xn

and Yn, n ≥ 1, is a Z-set. Moreover, CF ∩ [−r, r]ω =
⋃∞
n=1Xn ∪ Yn.

For r =∞, let

Xn,l = {f ∈ CF | ∀(k > n)∃(m ∈ Ak) (|f(m)| ≤ l)}.
As previously, each Xn,l is a Z-set in CF and CF =

⋃∞
n,l=1Xn,l.

P r o o f o f 4.2. 1o Assume A has an accumulation point a ∈ A. Consider

E = {f ∈ CA(X) ∩ {0, 1}A | f(a) = 1},
a closed subset of CA(X). The space E can be identified with Fa = {U∩A | U
is clopen and a ∈ U}. Let F be the filter on A \ {a} generated by Fa, i.e.,

F = {B ⊂ A \ {a} | ∃(f ∈ E) (f−1({1}) ⊂ B ∪ {a})}.
By an argument of [DMM, Corollary 3.6], F is an analytic filter and con-
sequently it belongs to the σ-field generated by the open sets and the first
category sets of 2A\{a}. By 4.3, CF is a Zσ-space. Since CA(X) is a dense
linear subspace of CF × R ⊂ RA\{a} × R = RA, CA(X) is a Zσ-space.

2o Assume A is discrete. For every x ∈ X\A, let Fx = {U∩A | x ∈ IntU}
be a filter of neighborhoods of x.

Claim. There exists x0 ∈ X \A such that Fx0 is of the first category.
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Suppose Fx is of the second category for every x ∈ X \A. By a result of
Talagrand [Ta, Proposition 23], the filter

F =
⋂
{Fx | x ∈ X \A}

is also of the second category. We have F = {U ∩ A | ∀(x ∈ X \A) (x ∈
IntU)} = {U ∩ A | X \ A ⊂ IntU}, a filter of neighborhoods of X \ A. Let
A = {an | n ∈ ω} and set

S = {f ∈ CA(X) | ∀(n ∈ ω) (f(an) = 0 or f(an) = n+ 1)}.
It is clear that S is a closed subset of CA(X); consequently, S is analytic.
The map f → f−1({0}) establishes a homeomorphism of S onto F . This
yields a contradiction.

Continuing the proof of 4.2, let Fx0 be a first category filter. By 4.3, CFx0

is a Zσ-space. Since CA(X) is a linear dense subspace of CFx0
, the latter is

also a Zσ-space.
Since Cp(X) is a dense linear subspace of a Zσ-space CA(X)×RX\A, it

itself is a Zσ-space.

Example 2.11 shows that our Claim fails to hold under a weaker hypothe-
sis that C∗A(X) is analytic. Observe also that, in Example 2.11, the suitable
spaces CA(X) and Cp(X) are not Zσ-spaces (they are not first category
spaces).

Using the full strength of 4.3 and the fact that dense convex subsets of
a convex Zσ-space are Zσ-spaces we obtain:

4.4. R e m a r k. For a countable nondiscrete space X and a dense subset
A of X such that CA(X) is analytic, the space CA(X)∩[−r, r]A is a Zσ-space
for every r > 0.

5. Topological identification of Fσδ-spaces CA(X). Let us recall that
the main result of [DMM] states that for countable nondiscrete X the space
Cp(X) is homeomorphic to σω provided it is of Fσδ-type. In this section we
extend this result to some spaces CA(X).

5.1. Proposition. Let X be a space and let A be a countable dense set
in X. If CA(X) ∈ Fσδ (resp., C∗A(X) ∈ Fσδ) and A contains a nontrivial
sequence convergent in X, then CA(X) (resp., C∗A(X)) is homeomorphic
to σω.

P r o o f. Fix a sequence {xn}∞n=1 ⊂ A, limxn = x0 and xn 6= xm for
n 6= m. Using the fact that X is completely regular, we find a sequence
of continuous functions fn : X → [0, 1], n > 0, such that f(xn) = 1 and
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f−1
n ((0, 1]) ∩ f−1

m ((0, 1]) = ∅ for m 6= n. For t = (tn) ∈ c0 define

ϕ(t) =
∞∑
n=1

tnf2n.

Since the series converges uniformly, ϕ(t) ∈ Cp(X). Clearly, ϕ maps c0 injec-
tively into Cp(X). Here is how the image ϕ(c0) can be linearly complemented
in CA(X). For f ∈ CA(X), define (tfn) ∈ c0 by letting

tfn = f(x2n)− f(x2n−1).

The map f → ((tfn), f − ϕ((tfn))) splits CA(X) into c0 × Z, where Z =
{f − ϕ((tfn)) | f ∈ CA(X)}. Since Z is a closed linear subspace of CA(X)
and since c0 is homeomorphic to σω, [BM, Corollary 5.4] implies that CA(X)
is also homeomorphic to σω.

Note that, in fact, for every t ∈ c0 we have ϕ(t) ∈ C∗p(X). Therefore, the
above splitting determines a similar splitting of C∗p(X). Hence, the assertion
for C∗A(X) follows as well.

5.2. Corollary. Let X be a nondiscrete Fréchet space. For every count-
able dense subset A of X such that CA(X) ∈ Fσδ (resp., C∗A(X) ∈ Fσδ), the
space CA(X) (resp., C∗A(X)) is homeomorphic to σω.

The following lemma provides examples of spaces CA(X) that are of
Fσδ-type.

5.3. Lemma. Let M be a compact space and let A be a countable subset
of Cp(M).

(a) If A is dense in a compact set K ⊂ RM , then CA(K) is an Fσδ-set.
(b) For every countable set X ⊂ Cp(M) such that A ⊆ X and A is dense

in X, the space CA(X) is an Fσδ-set.

P r o o f. The assertion (a) is that of [Ma1, Theorem 2.3]. Here is a modi-
fication of this argument to justify (b). We have ϕ ∈ CA(X) if and only if for
every f ∈ X and for every p ∈ N there exist n ∈ N, k ∈ N and m1, . . . ,mk ∈
M so that whenever g1, g2 ∈ A and max1≤i≤k |gj(mi) − f(mi)| < 1/n,
j = 1, 2, then |ϕ(g1)−ϕ(g2)| ≤ 1/p. By the compactness of M and the fact
that X ⊆ Cp(M), each set

{ϕ ∈ RA | ∃(m1, . . . ,mk ∈M)∀(g1, g2 ∈ A)

[( max
1≤i≤k
j∈{1,2}

|gj(mi)− f(mi)| < 1/n)⇒ |ϕ(g1)− ϕ(g2)| ≤ 1/p]}

is closed in RA. Hence, the assertion (b) follows.

5.4. R e m a r k. The compactness of M can be replaced by σ-compact-
ness. However, the result cannot be extended beyond the class of A1. There
exists a countable set A ⊂ Cp(P ), where P is the space of irrationals, so
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that Cp(A) is non-Borel. Namely, by [LvMP, Theorem 4.1] there exists a
countable regular space A (with exactly one nonisolated point) such that
Cp(A) is analytic and non-Borel. Write Y = Cp(A) and take any surjection
α : P → Y . Then α∗ given by α∗(f)(a) = f(α(a)), f ∈ Cp(Y ), defines
an injection of Cp(Y ) into Cp(P ). Since evidently A embeds in Cp(Y ) =
Cp(Cp(A)), A embeds in Cp(P ).

Recall that every compact K consisting of first Baire class functions (i.e.,
a Rosenthal compactum) is a Fréchet space [BFT, Theorem 3F]. Below we
include examples of such spaces K.

5.5. Example. (a) The Helly space consisting of all nondecreasing func-
tions f of [0, 1][0,1] (cf. [E, Exercise 3.2.E]).

(b) The space of functions from [0, 1] into [0, 1] of total variation ≤ 1 in
[0, 1][0,1].

(c) The unit ball (BE∗∗ , ω∗) of the second dual E∗∗ with the weak∗-
topology, where E is a separable Banach space which does not contain an
isomorphic copy of `′.

All of the above examples contain countable dense subsets consisting of
continuous functions. In this case the estimation of the Borel class of the
space CA(X) can be obtained via 5.3(a). Let us describe another example of
Rosenthal compactumX for which the function spaces CA(X) is of Fσδ-type.

5.6. Example. Let X be the well-known two-arrow space, i.e., X =
[0, 1]× {0, 1} with the order topology given by the lexicographic order

(t1, ε1) ≺ (t2, ε2) if t1 < t2 or (t1 = t2 and ε1 < ε2)

(cf. [E, Exercise 3.10C]). (It is clear that X is separable and first countable.
Since X can be identified with the space of nondecreasing functions f :
[0, 1]→ {0, 1}, it is easily seen that X is compact.) In the lemma below we
evaluate the Borel class of the space CA(X).

5.7. Lemma. For every countable dense set A ⊂ X the space CA(X) is
an Fσδ-set.

P r o o f. For x ∈ X, let {Ux,n}n∈ω be a base of neighborhoods of the
point x. Using the fact that X is first countable, we see that f ∈ CA(X) if
and only if

(∗) for every sequence {xn}∞n=1 ⊂ A, xn 6= x, n ≥ 1, with limxn = x ∈
X, the limit lim f(xn) exists, and for given x ∈ A and a sequence
{xn}∞n=1 ⊂ A with limxn = x we have lim f(xn) = f(x).

Obviously, the second part of (∗) holds if and only if for every x ∈ A
and every m ≥ 1 there exists n ∈ ω such that whenever y ∈ A ∩ Ux,n then
|f(x)− f(y)| ≤ 1/m.
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For f ∈ RA consider the following property:

(∗∗) ∀(m ≥ 1)∃(n ≥ 1)∀(x1 ≺ . . . ≺ xn and xj ∈ A, 1 ≤ j ≤ n)
∃(1 ≤ i < n) (|f(xi)− f(xi+1)| ≤ 1/m).

We will show that (∗∗) holds for f ∈ CA(X) and that (∗∗) implies the first
part of (∗).

Suppose f ∈ CA(X). Then for every m ≥ 1 there exists a finite open
cover {U1, . . . , Un} of X such that diam(f(Uj ∩ A)) < 1/m, 1 ≤ j ≤ n. We
may assume that Uj is an interval with respect to the order ≺, 1 ≤ j ≤ n.
Consider xj ∈ A, 1 ≤ j ≤ n + 1, with x1 ≺ . . . ≺ xn+1. There exist i, k,
1 ≤ i < k ≤ n + 1, and j, 1 ≤ j ≤ n, such that xi, xk ∈ Uj . It follows that
xi+1 ∈ Uj . Hence |f(xi)− f(xi+1)| < 1/m and (∗∗) is satisfied.

Now, suppose (∗∗) is satisfied. We will show that for every x ∈ X and
{xn}∞n=1 ⊂ A, xn 6= x, n ≥ 1, and such that limxn = x, lim f(xn) exists.
Assume, to the contrary, that lim f(xn) does not exist. Then there exist m ≥
1 and an increasing (if x = (t, 0) for some t ∈ [0, 1]) or decreasing (for x of the
form (t, 1)) subsequence {xnk} of {xn} such that |f(xnk)−f(xnk+1)| ≥ 1/m.
This clearly contradicts (∗∗).

It is now clear that f ∈ CA(X) if and only if

(∗∗∗) [∀(m ≥ 1)∃(n ≥ 1)∀(x1 ≺ . . . ≺ xn and xj ∈ A, 1 ≤ j ≤ n)
∃(1 ≤ i < n) (|f(xi)− f(xi+1)| ≤ 1/m)] &
[∀(x ∈ A)∀(m ≥ 1)∃(n ∈ ω)∀(y ∈ A ∩ Ux,n) (|f(x)−f(y)| ≤ 1/m)].

The formula (∗∗∗) shows that the space CA(X) is an Fσδ-set.

5.8. Corollary. For each space X from 5.5 (resp., for the space X
from 5.6) and every countable set A consisting of continuous functions and
dense in X (resp., every countable dense subset A of X), the spaces CA(X)
and C∗A(X) are homeomorphic to σω.

We can also apply 5.1 and 5.3 for the spaces which lack the Fréchet
property.

5.9. Example. Let A be the set of all continuous functions from the
Cantor set 2ω into {0, 1} and let B be a countable norm dense subset of
the space of continuous functions from 2ω into [0, 1]. Obviously A and B are
countable dense subsets of the products {0, 1}2ω and [0, 1]2

ω

, respectively. By
Lemma 5.3(a) the spaces CA({0, 1}2ω ) and CB([0, 1]2

ω

) are Fσδ-sets. Since
A and B contain nontrivial convergent sequences, from Proposition 5.1 it
follows that CA({0, 1}2ω ) and CB([0, 1]2

ω

) are homeomorphic to σω. Let us
point out that 1.1 implies that it is also possible to find countable dense
subsets C ⊆ {0, 1}2ω and D ⊆ [0, 1]2

ω

such that the spaces CC({0, 1}2ω )
and CD([0, 1]2

ω

) are not analytic.
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The following result generalizes the main result of [DMM].

5.10. Theorem. Let X be a nondiscrete countable space and let A be
a dense subset of X such that CA(X) ∈ Fσδ. Then CA(X) and C∗A(X) are
homeomorphic to σω.

5.11. R e m a r k. Let us point out that there exist spaces X satisfying
the assumptions of Theorem 5.10 which are not Fréchet spaces (compare
5.10 and 5.2). For example one can easily check that for the filter

F =
{
A ⊂ N

∣∣∣
∑

n∈N\A
1/n <∞} =

⋃

k∈N

{
A ⊂ N

∣∣∣
∑

n∈N\A
1/n ≤ k

}
∈ Fσ

the corresponding space NF does not contain any nontrivial convergent se-
quence. From Proposition 3.4 and [DMM, Lemma 4.2] it follows that both
spaces Cp(NF ) and CN(NF ) are Fσδ-sets. The space from [DMM, Example
7.1] also has similar properties.

The proofs of Theorem 5.10 and a few of our next results on the topo-
logical identification of CA(X) spaces rely more directly on the absorbing
set method than the proof of 5.1. However, we decided to avoid presenting
the details of this method. Instead, we formulate two consequences of this
method which we will employ.

We say that a space Y isMα-universal , where α is a countable ordinal,
α ≥ 1, (resp., Pn-universal , n ∈ ω) if every A ∈Mα (resp., A ∈ Pn) embeds
onto a closed subset of Y . We will make use of theMα-universal space Ωα,
α ≥ 1, and the Pn-universal space Πn, n ≥ 1; these spaces are known as
Mα-absorbing and Pn-absorbing sets and were constructed in [BM] and [C],
respectively. We have Ωα ∈Mα\Aα, α ≥ 2, and Πn ∈ Pn\

⋃
k<n Pk, n ≥ 1.

Obviously, Y isMα-universal (resp., Pn-universal) if and only if Ωα (resp.,
Πn) embeds onto a closed subset of Y . We just have Ω2 = σω.

5.12. Proposition. Let Y be a linear dense subspace of Rω, α be a
countable ordinal and n ∈ ω. Assume that

(i) Y is homeomorphic to Y × Rω,
(ii) Y is a Zσ-space,

(iii) Y is Mα-universal and Y ∈ Mα, α ≥ 2 (resp., Y is Pn-universal
and Y ∈ Pn, n ≥ 1).

Then Y is homeomorphic to Ωα (resp., Πn).

P r o o f. Apply [CDM, Theorem 3.1] and results of [BM].

We will also need the following specific fact which is a slight modifi-
cation of a particular case of [DMM, Lemma 5.2] (for the proof, see also
[CD, Proposition 3.6]).
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5.13. Lemma. Let Xi and Yi be dense linear subspaces of Rω, Yi ⊆ Xi,
i ∈ N. Assume that

(iii)′ σω is embeddable in Yi as a closed subset of Xi, i ≥ 1.

Then every Zσ-space X which is an absolute Fσδ-set and satisfies
{

(xi) ∈
∞∏

i=1

Yi

∣∣∣ xi = 0 a.e.
}
⊆ X ⊆

∞∏

i=1

Xi

is homeomorphic to σω.

Now we are ready to provide the proof of 5.10. First we settle the case
of CF and C∗F spaces.

5.14. Proposition. Let F be a filter on ω. If CF ∈ Fσδ, then CF is
homeomorphic to σω.

P r o o f. For the Fréchet filter F0, we have CF0 = c; according to [DM,
Theorem 4.2], CF0 is homeomorphic to σω.

Assume F is not the Fréchet filter. By 3.2, CF is homeomorphic to
CF × Rω, and in view of 3.3 and 4.3, CF is a Zσ-space. Now, Proposition
5.12 is applicable (the case of α = 2) provided CF contains a closed copy of
σω. This is shown in the lemma below.

5.15. Lemma. If F is a first category filter on ω, then cF (resp., c∗F )
contains a copy of σω that is closed in CF (resp., in C∗F ).

P r o o f. By [Ta, Theorem 2.1] there exists a sequence of pairwise disjoint
finite sets An ⊂ ω such that every A ∈ F meets all but finitely many An,
n ≥ 1. Let N1 =

⋃∞
k=1A2k and N2 = ω \N1. Define E = {f ∈ CF | (f |N2

= 0) and ∀(k ∈ N) (f is constant on A2k)}, a subset of cF closed in CF . We
see that E is isomorphic to c0 and our assertion for CF follows. The same
proof works for C∗F .

In view of 3.9, the following result is a counterpart of 5.14 for C∗F spaces.

5.16. Proposition. If F is an Fσδ-filter on ω, then C∗F is homeomorphic
to σω.

P r o o f o f 5.16. Applying [DMM, Proposition 2.4], we decompose ω
into infinite sets Ni, i ∈ N, such that Fi = {A∩Ni | A ∈ F} is an Fσδ-filter
on Ni. For the natural isomorphism h : Rω →∏∞

i=1 RNi we have

{
(xi) ∈

∞∏

i=1

c∗Fi

∣∣∣ xi = 0 a.e.
}
⊂ h(C∗F ) ⊂

∞∏

i=1

C∗Fi .

By 4.1 and 3.9, the space C∗F (and hence h(C∗F )) is a Zσ-space and is an
absolute Fσδ-set. Now, 5.13 is applicable with X = h(C∗F ), Xi = C∗F and
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Yi = c∗Fi because, according to 5.15, c∗Fi contains a copy of σω which is closed
in C∗Fi , i ≥ 1.

P r o o f o f 5.10. According to [DMM, Proposition 6.1] either

(1) there exists Y ⊆ X such that Y is clopen with exactly one nonisolated
point, or

(2) X =
⋃
n∈ωXn, where each Xn is a nondiscrete clopen subset of X

and Xn ∩Xm = ∅ for n 6= m.

If (1) happens, then CA(X) is homeomorphic to the product CA∩Y (Y )×
CA\Y (X \ Y ). Since Y can be identified with a space NF for some filter F ,
by 5.14 and [DMM, Theorem 1.1], CA∩Y (Y ) is homeomorphic to σω. By
[BM, Corollary 5.4], CA(X) is also homeomorphic to σω. With the help of
5.16, the same argument yields the case of C∗A(X) (here we need the fact
that F is an Fσδ filter, which follows from 3.3).

If (2) happens, then CA(X) can be identified with
∏∞
n=1 CA∩Xn(Xn).

Since Xn is not discrete, 4.2 is applicable and each CA∩Xn(Xn) is a Zσ-space.
By [DM, Corollary 2.7], the product

∏∞
n=1 CA∩Xn(Xn) is homeomorphic

to σω.
The case of C∗A(X) needs some adjustment. We have
{

(fn) ∈
∞∏
n=1

C∗A∩Xn(Xn)
∣∣∣ fn ≡ 0 a.e.

}
⊂ C∗A(X) ⊂

∞∏
n=1

C∗A∩Xn(Xn).

According to 4.1 and our assumption C∗A(X) is a Zσ-space which is an abso-
lute Fσδ-set. Now, 5.13 is applicable provided we show that each C∗A∩Xn(Xn)
contains a closed copy of σω. To show the latter, first we rearrange indices
in order to get that each Xn satisfies (2). It is now enough to check that
whenever X satisfies (2), then C∗A(X) contains a closed copy of σω.

To see this consider
∏∞
n=1 C

∗
A∩Xn(Xn) ∩ [−1, 1]A∩Xn , a closed subset

of C∗A(X). Since Xn is nondiscrete, by 4.4, C∗A∩Xn(Xn) ∩ [−1, 1]A∩Xn =
CA∩Xn(Xn)∩ [−1, 1]A∩Xn is a Zσ-space. Now applying [DMM, Lemma 5.3],
we deduce that

∏∞
n=1 C

∗
A∩Xn(Xn) ∩ [−1, 1]A∩Xn contains a closed copy of

σω.

5.17. R e m a r k. Our Theorem 5.10 recovers Theorem 1.1 of [DMM]
which was formulated in both absolute and bounded cases. As was kindly
brought to our attention by Jan Baars, the proof of the bounded case was
not exactly the same as that of the absolute case (as suggested in [DMM]).
This is why we included a detailed proof for the case of C∗A(X) here.

6. Analytic CA(X) for separable metrizable X. Let X be a separa-
ble metrizable space. The main result of this section is Theorem 6.2 which
contains a complete topological classification of the analytic spaces CA(X)
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and C∗A(X). The case where X is discrete is obvious; simply CA(X) and
C∗A(X) are isomorphic to Rω and Σ, respectively.

We start with the observation that CA(X) is an absolute Fσδ-set for
every σ-compact X.

6.1. Lemma. Let X be a σ-compact metrizable space. For every countable
dense set A ⊆ X, CA(X) is an absolute Fσδ-set.

P r o o f. Let X =
⋃
n∈ωXn, where Xn are compacta, and let d be a

metric on X. We have

CA(X) = {f ∈ RA | ∀(n ∈ ω)∀(m ∈ N)∃(l ∈ N)∀(a, b ∈ A)

[(d(a, b) < 1/l and dist(a,Xn) < 1/l)⇒ |f(a)− f(b)| ≤ 1/m]}.
This shows that CA(X) is an absolute Fσδ-set.

Here is our main result.

6.2. Theorem. Let X be a separable metrizable nondiscrete space and let
A be a countable dense subset of X. The following conditions are equivalent :

(a) X is σ-compact ,
(b) CA(X) is an analytic set ,
(c) CA(X) is an absolute Fσδ-set ,
(d) CA(X) is homeomorphic to σω,
(e) C∗A(X) is an analytic set ,
(f) C∗A(X) is an absolute Fσδ-set ,
(g) C∗A(X) is homeomorphic to σω.

P r o o f. Note that the implications (d)⇒(c)⇒(b) and (g)⇒(f)⇒(e) are
obvious, (c)⇒(d) and (f)⇒(g) follow from 5.2, and (a)⇒(c) and (a)⇒(f)
are consequences of 6.1. The implication (b)⇒(e) follows from the fact that
C∗A(X) is an Fσ-subset of CA(X).

Here is the proof of the remaining implication (e)⇒(a). If the space
C∗A(X) is analytic then its closed subset S = CA(X) ∩ [−1, 1]A is also ana-
lytic. Let (Y, d) be a metric compactification of the space X. By K(Y \X) we
denote the space of all compact subsets of Y \X equipped with the Vietoris
topology. K(Y \X) is a separable metrizable space (cf. [Kur, §17,42]).

Consider the map Φ : S → K(Y \X) defined by

Φ(f) = {y ∈ Y | ∀(n ∈ N)∃(a, b ∈ A) (d(a, y) < 1/n,

d(b, y) < 1/n and |f(a)− f(b)| > 1)},
for f ∈ S. One can easily check that Φ(f) is a closed subset of Y disjoint from
X, therefore Φ is well-defined. The map Φ is onto. Indeed, for given compact
K ⊂ Y \ X take a dense subset {yk | k ∈ ω} of K. Let {(ki, ni) | i ∈ ω}
be an enumeration of ω × N. By induction choose points ai, bi ∈ A such
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that d(ai, yki) < 1/ni, d(bi, yki) < 1/ni and dist(ai,K) > dist(bi,K) >
dist(ai+1,K) for i ∈ ω. Let g : (0,∞) → [−1, 1] be a continuous function
such that g(dist(ai,K)) = 1 and g(dist(bi,K)) = −1 for i ∈ ω. For the
function f : A → [−1, 1] defined by the formula f(a) = g(dist(a,K)) for
a ∈ A, we have f ∈ S and Φ(f) = K.

We will show that Φ is Borel (in fact of the second class). It is enough
to verify that for any given open set U ⊂ Y the sets

V1 = {K ∈ K(Y \X) | K ⊂ U},
V2 = {K ∈ K(Y \X) | K ∩ U 6= ∅}

have Borel inverse images under Φ. We have

Φ−1(V1) = {f ∈ S | ∃(n ∈ N)∀(a, b ∈ A)

[(d(a, b) < 1/n and dist(a, Y \ U) < 1/n)⇒ |f(a)− f(b)| ≤ 1]} ∈ A1(S),

Φ−1(V2) = {f ∈ S | ∃(k ∈ N)∀(n ∈ N)∃(a, b ∈ A)

(d(a, b) < 1/n,dist(a, Y \ U) > 1/k and |f(a)− f(b)| > 1)} ∈ A2(S).

The space K(Y \ X), being a Borel image of an analytic space, is also
analytic. By [SR2, Theorem 8] (see also [Ch, Theorem 3.3]), Y \ X is an
absolute Gδ-set which means that X is σ-compact.

Let us mention that the equivalence of the conditions (a), (b) and (c)
of Theorem 6.2 was proved by O. Okunev [O, Theorem 2.1]. Also A.
Krawczyk (unpublished) obtained a partial result in this direction. It turns
out, however, that the main implication between these three conditions,
(b)⇒(a), was implicitly contained in the proof of [Ch, Theorem 3.7]; yet,
we were not able to use Chirstensen’s argument to prove the (stronger) fact
that the analyticity of C∗A(X) implies the σ-compactness of X.

7. Spaces CF of arbitrarily high Borel complexity. Let us recall
the inductive construction of filters Fα (α odd) and Gα (α even) used in
[CDM, Section 8]; here α is a countable ordinal. Fix any filter F1 ∈ A1.
Suppose the filters Fβ have been defined for all odd β < α. If α− 1 is not a
limit ordinal, put βn = α− 2, n ≥ 1; if α− 1 is a limit ordinal, pick (βn) to
be a sequence of odd ordinals such that 1 < βn < α− 1 and supβn = α− 1.
We let

Fα = FP(2ω, Fβn)
(see the proof of 2.6 for the definition of the symbol FP; here Xn = 2ω,
n ∈ N). For all even α, α > 0, define Gα as follows. If α is not a limit
ordinal, we let Gα = F∞α−1. If α is a limit ordinal, pick a sequence (βn) of
odd ordinals such that 1 < βn < α and supβn = α, and let Gα =

∏∞
n=1 Fβn .

7.1. Theorem. For every odd (resp., even) countable ordinal α, α > 1,
the space CFα (resp., CGα) is homeomorphic to Ωα+1 (resp., Ωα).
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P r o o f. By [CDM, Lemma 8.6], for every α we have Fα ∈ Aα (actually,
Fα ∈ Aα \ Mα). This, together with 3.4(a) and 3.7, shows that for odd
(resp., even) α, CFα ∈Mα+1 (resp., CGα ∈Mα).

It follows directly from the construction of Fα and Gα that for α > 1
the filter Fα (resp., Gα) can be identified with the product Fα × Fα (resp.,
Gα×Gα) defined on the union of two disjoint copies of ω. With this identi-
fication we see that CFα×Fα (resp., CGα×Gα) contains cFα (resp., cGα) as a
closed subset (cf. the proof of 3.3). By [CDM, Theorem 8.7], cFα (resp., cGα)
is homeomorphic to Ωα+1 (resp., Ωα). This shows that CFα×Fα , and hence
CFα , is Mα+1-universal (resp., cGα×Gα , and hence CGα , is Mα-universal).
Obviously none of the filters Fα and Gα, α > 1, is the Fréchet filter; conse-
quently, 3.2 is applicable to deduce that CFα (resp., CGα) is homeomorphic
to CFα × Rω (resp., CGα × Rω). By 4.3, CFα (resp., CGα) is a Zσ-space.
Finally, our assertion follows from 5.12.

To provide spaces CF homeomorphic to Ωα for arbitrary α > 1, we shall
make use of filters F = FA, A ⊆ Iω, described in [CDM, Section 9]. In this
way, we also find filters Fn such that CFn is homeomorphic to Πn, n ≥ 1.
First, let us recall the construction of filters FA.

Let d be a metric on Iω bounded by 1. Fix Qk, a finite (1/k)-net in Iω.
Assume {Qk}∞k=1 is pairwise disjoint and let {qn}∞n=1 be an enumeration of⋃∞
k=1Qk. For k ∈ N put Nk = {n ∈ ω | qn ∈ Qk}. For every q ∈ Iω, set

Bq =
∞⋃
n=1

{n ∈ Nk | d(q, qn) ≤ 2/k}.

Finally, for A ⊆ Iω let FA be the filter on ω generated by the sets of the
form

ω \ (Bq1 ∪ . . . ∪Bqn ∪ S),
where n ∈ ω, qj ∈ A, 1 ≤ j ≤ n, and S is a finite set. For A = Iω, we write
FA = F .

According to [CDM, Proposition 9.2], FA ∈ Mα (resp., Pn) whenever
A ∈ Mα(Iω) (resp., A ∈ Pn(Iω)). The following lemma provides a positive
answer to 3.4 for filters FA.

7.2. Lemma. For every A ∈ Mα(Iω) (resp., Pn(Iω)), the space CFA
belongs to Mα (resp., Pn).

P r o o f. First we extract jk ∈ Nk, k ∈ N, so that {jk} → ∞ in NFB for
every B ⊆ Iω. To this end, fix q0 ∈ Iω and find jk ∈ Nk so that

2/k < d(q0, qjk) ≤ 4/k.

It is clear that for a given q ∈ Q, there exists k0 so that d(q, qjk) > 2/k for
k ≥ k0. It follows that jk ∈ ω \Bq for k ≥ k0; and hence {jk} → ∞ in each
NFB , B ⊆ Iω.
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Recall CF = CIω . One sees that f ∈ CF if and only if, given ε > 0,
all n such that |f(n) − f(∞)| ≥ ε belong to Bq1 ∪ . . . ∪ Bqk ∪ S for some
q1, . . . , qk ∈ Iω and some finite set S. It follows that such an f ∈ CF belongs
to CFA if additionally we may require that none of q1, . . . , qk belongs to
Iω \ A. This happens exactly when for every q ∈ Iω \ A and every ε > 0,
|f(n)− f(∞| < ε for all but finitely many n ∈ Bq. Since {jk} → ∞ in NFA ,
the above statement is equivalent to requiring that for every q ∈ Iω \A and
every ε > 0 there exists k0 ∈ ω such that for k ≥ k0 and for all n ∈ Nk ∩Bq
we have |f(jk)− f(n)| < ε. For every q ∈ Iω, define

Cq = {f ∈ CF | ∀(ε > 0)∃(k0 ∈ N)∀(k ≥ k0)

∀(n ∈ Nk ∩Bq) (|f(jk)− f(n)| < ε)}.
We have

CFA = {f ∈ CF | ∀(q ∈ Iω \A) (f ∈ Cq)}.
Suppose now that A ∈ Mα, α ≥ 2. Then we can write A =

⋂∞
n=1Bn,

where Bn ∈
⋃
β<αAβ . We have

CFA =
{
f ∈ CF

∣∣∣ ∀
(
q ∈ Iω \

∞⋂
n=1

Bn

)
(f ∈ Cq)

}

=
∞⋂
n=1

{f ∈ CF | ∀(q ∈ Iω \Bn) (f ∈ Cq)} =
∞⋂
n=1

CFBn .

Applying [CDM, Proposition 9.2], we obtain FBn ∈
⋃
β<αAβ . By 3.4,

CFBn ∈Mα; consequently, CFA ∈Mα.
The case where A ∈ Pn(Iω) follows from [CDM, Proposition 9.2] and

3.4(c).

7.3. Theorem. Let A ∈ Mα(Iω), α ≥ 2 (resp., A ∈ Pn(Iω), n ≥ 1).
If A is Mα-universal (resp., Pn-universal), then CFA is homeomorphic to
Ωα (resp., CFA is homeomorphic to Πn). In particular , for A = Ωα ⊂ Iω

(resp., A = Πn ⊂ Iω), CFΩα (resp., CFΠn ) is homeomorphic to Ωα (resp.,
Πn).

P r o o f. Lemma 7.2 implies that cFA ∈ Mα (resp., CFA ∈ Pn). The
statement of [CDM, Proposition 9.1] easily guarantees that A can be em-
bedded onto a closed subset of CFA . Consequently, CFA is Mα-universal
(resp., Pn-universal). Since FA is not the Fréchet filter, 3.2 is applicable;
and consequently CFA is homeomorphic to CFA ×Rω. If A is Borel then, by
application of [CDM, Proposition 9.1] and 4.3, the space CFA is a Zσ-space.
If A is merely projective, then CFA is also a Zσ-space because CFA is a dense
linear subspace of the linear space CF (recall F = Iω). Now, our assertion
follows from 5.12.
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