
FUNDAMENTA
MATHEMATICAE

148 (1995)

A free group acting without fixed points
on the rational unit sphere

by

Kenzi S a t ô (Tokyo)

Abstract. We prove the existence of a free group of rotations of rank 2 which acts
on the rational unit sphere without non-trivial fixed points.

Introduction. The purpose of this paper is to prove that the group
SO3(Q) of all proper orthogonal 3 × 3 matrices with rational entries has a
free subgroup F2 of rank 2 such that for all w ∈ F2 different from the identity
and for all ~r ∈ S2 ∩Q3 we have w(~r ) 6= ~r (Theorem 2). The question if such
a group exists was raised by Professor J. Mycielski. Theorem 2 has the
following corollary. The rational unit sphere S2 ∩Q3 (= {~r ∈ Q3 : |~r | = 1})
has all possible kinds of Banach–Tarski paradoxical decompositions, e.g. a
partition into three sets A, B, and C such that

A ≈ B ≈ C ≈ A ∪B ≈ B ∪ C ≈ C ∪A,
where ≈ denotes congruence by a transformation of F2 (such a partition is
called a Hausdorff decomposition). The proof of this corollary of Theorem 2
is well known (see e.g. [W, Cor. 4.12]). Moreover, since in this case the
space S2 ∩Q3 is countable, the proof does not require the axiom of choice.
A Hausdorff decomposition is not possible for the real sphere S2 (= {~r ∈
R3 : |~r | = 1}) relative to SO3(R) (= the group of all proper orthogonal
matrices) since every rotation of S2 has fixed points (thus C ≈ A ∪ B
cannot hold). However, it is possible if reflections are allowed (see [A] or
[W, Theorem 4.16]).

Other constructions of free subgroups of SO3(Q) are known. S. Świercz-
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kowski ([Sw0], [Sw1]) has shown that the transformations



cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 and




1 0 0
0 cosφ − sinφ
0 sinφ cosφ




are free generators if cosφ ∈ Q \ {−1,−1/2, 0, 1/2, 1}. But of course these
generators have fixed points in S2 ∩Q3.

Theorem 2 gives a concrete example of a pair of free generators of a free
group acting without non-trivial fixed points, namely

µ =
1
7




6 2 3
2 3 −6
−3 6 2


 and ν =

1
7




2 −6 3
6 3 2
−3 2 6


 .

Preliminaries. Thus our aim is to prove that:

For every non-empty reduced word w in {µ−1, ν−1, µ, ν}, the rotation
w ∈ SO3(Q) is not the identity and its axis intersects the sphere S2 at
irrational points.

We will use Hamilton’s quaternion field R× R3 with ∗, where

(c′, ~s′) ∗ (c, ~s ) = (c′c− ~s′ · ~s, c~s′ + c′~s+ ~s′ × ~s ).

If c ∈ R, ~s ∈ R3 and c2 + |~s |2 = 1, then the pair of quaternions ±(c, ~s )
represents a single rotation γ on S2 (see also [Sa]). The rotation γ ∈ SO3(R)
is the identity rotation iff ~s = ~0. Otherwise γ is determined as an anti-
clockwise rotation on S2 around the vector ~s, whose angle θ is such that
c = |sin(θ/2)|/ tan(θ/2), i.e.,

γ(~r ) = 2(~s · ~r )~s+ (c2 − |~s |2)~r + 2c~s× ~r for ~r ∈ S2.

We denote the pair which represents the rotation γ by ±(cγ , ~sγ). The pair of
quaternions ±(cβ , ~sβ)∗(cα, ~sα) represents the rotation β◦α, since (0, γ(~r )) =
(cγ , ~sγ)∗(0, ~r)∗(cγ ,−~sγ) for all ~r ∈ S2. And γ−1 is represented by±(cγ ,−~sγ).

The two rotations µ, ν ∈ SO3(Q) defined above are represented by the
quaternion pairs

±(cµε , ~sµε) = ± 1√
14


3,




2ε
ε
0




 and

±(cνδ , ~sνδ) = ± 1√
14


3,




0
δ
2δ




 ,

where ε, δ ∈ {−1, 1}. Let |w| be the length of the word w, i.e., the number
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of occurrences of µ−1, ν−1, µ, and ν in w. Then it suffices to show that if

Cw,



Xw

Yw
Zw




 =

√
14
|w|

(cw, ~sw) ∈ Z× Z3

then the integer X2
w + Y 2

w + Z2
w is not a square. We will show more: X2

w +
Y 2
w + Z2

w is not a square mod 7. To prove this, we define an equivalence
relation ≡ on Z× Z3. We write


C,



X
Y
Z




 ≡


C ′,



X ′

Y ′

Z ′






if C ≡ C ′, X ≡ X ′, Y ≡ Y ′, and Z ≡ Z ′, where p ≡ q means that p − q is
divisible by 7. Notice that (Z×Z3)/≡ is not a field but a (non-commutative)
ring. Thus we have to prove that X2

w + Y 2
w +Z2

w is not a square mod 7. We
shall use an additional simplification. We write


C,



X
Y
Z




 �


C ′,



X ′

Y ′

Z ′






if there exists t ∈ {−3,−2,−1, 1, 2, 3} such that

C,



X
Y
Z




 ≡ t


C ′,



X ′

Y ′

Z ′




 .

An easy calculation shows that if

C,



X
Y
Z




 �


C ′,



X ′

Y ′

Z ′






then X2 +Y 2 +Z2 is not a square mod 7 iff X ′2 +Y ′2 +Z ′2 is not a square
mod 7. Thus in our computation of w we do not have to worry about ≡ but
only about �.

Main result. First, we get the following lemma.

Lemma 0. Let w be a non-empty reduced word in {µ−1, ν−1, µ, ν}.
• If w = µεk then


Cw,



Xw

Yw
Zw




 �


3,




2ε
ε
0




 .
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• If w = νδl then

Cw,



Xw

Yw
Zw




 �


3,




0
δ
2δ




 ,

where ε, δ ∈ {−1, 1}, k, l ∈ N \ {0}.
• If w = µεmkmνδmlm · · ·µε0k0νδ0l0 then


Cw,



Xw

Yw
Zw




 �


2− εmδ0,




−εm + 2εmδ0
3εm + 3δ0 + 3εmδ0
−δ0 + 2εmδ0




 ,

where m ∈ N, εm, δm, . . . , ε0, δ0 ∈ {−1, 1}, km, lm, . . . , k0, l0 ∈ N \ {0}.
P r o o f. To get the first two equivalence relations, we use the following

two equations respectively:

3,




2ε
ε
0




 ∗


3,




2ε
ε
0




 = −


3,




2ε
ε
0




+ 7


1,




2ε
ε
0




 ,


3,




0
δ
2δ




 ∗


3,




0
δ
2δ




 = −


3,




0
δ
2δ




+ 7


1,




0
δ
2δ




 .

We have the last equivalence relation from the following two:

3,




2ε
ε
0




 ∗


3,




0
δ
2δ






=


2− εδ,




−ε+ 2εδ
3ε+ 3δ + 3εδ
−δ + 2εδ




+ 7


1,




ε
−εδ
δ




 ,


2− ε′δ′,




−ε′ + 2ε′δ′

3ε′ + 3δ′ + 3ε′δ′

−δ′ + 2ε′δ′




 ∗


2− εδ,




−ε+ 2εδ
3ε+ 3δ + 3εδ
−δ + 2εδ






≡ 2(1 + ε′ε− δ′ε+ δ′δ − ε′δ′εδ)

2− ε′δ,




−ε′ + 2ε′δ
3ε′ + 3δ + 3ε′δ
−δ + 2ε′δ




 ,

where ε, δ, ε′, δ′ ∈ {−1, 1}. We show the latter. Let

~i =



−1
3
0


 , ~j =




0
3
−1


 , and ~k =




2
3
2


 .
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Then we have
~i ·~i = 10 ≡ −4, ~j ·~j = 10 ≡ −4, ~k · ~k = 17 ≡ 3,

~i ·~j = ~j ·~i = 9 ≡ 2, ~i · ~k = ~k ·~i = 7 ≡ 0, ~j · ~k = ~k ·~j = 7 ≡ 0,

~i×~j = −~j ×~i =



−3
−1
−3


 = 2~k +



−7
−7
−7


 ,

~i× ~k = −~k ×~i =




6
2
−9


 =~i+ 2~j +




7
−7
−7


 ,

~j × ~k = −~k ×~j =




9
−2
−6


 = −2~i−~j +




7
7
−7


 .

Hence we obtain
2− ε′δ′,




−ε′ + 2ε′δ′

3ε′ + 3δ′ + 3ε′δ′

−δ′ + 2ε′δ′




 ∗


2− εδ,




−ε+ 2εδ
3ε+ 3δ + 3εδ
−δ + 2εδ






= (2− ε′δ′, ε′~i+ δ′~j + ε′δ′~k) ∗ (2− εδ, ε~i+ δ~j + εδ~k)

≡ ((4− 2ε′δ′ − 2εδ + ε′δ′εδ)

− ((−4ε′ε+ 2δ′ε+ 2ε′δ − 4δ′δ) + 3ε′δ′εδ),

(ε′(2− εδ)~i+ δ′(2− εδ)~j + ε′δ′(2− εδ)~k)

+ ((2− ε′δ′)ε~i+ (2− ε′δ′)δ~j + (2− ε′δ′)εδ~k)

+ (δ′ε(−2~k) + ε′δ′ε(−~i− 2~j) + ε′δ(2~k)

+ ε′δ′δ(2~i+~j) + ε′εδ(~i+ 2~j) + δ′εδ(−2~i−~j)))
= ((4 + 4ε′ε− 4δ′ε+ 4δ′δ − 4ε′δ′εδ)

− (2ε′δ + 2εδ − 2ε′δ′εδ + 2ε′δ′ − 2δ′ε),

(2ε′ + 2ε− 2ε′δ′ε+ 2ε′δ′δ − 2δ′εδ)~i

+ (2δ + 2ε′εδ − 2δ′εδ + 2δ′ − 2ε′δ′ε)~j

+ (2ε′δ + 2εδ − 2ε′δ′εδ + 2ε′δ′ − 2δ′ε)~k)

= 2(1 + ε′ε− δ′ε+ δ′δ − ε′δ′εδ)(2− ε′δ, ε′~i+ δ~j + ε′δ~k)

= 2(1 + ε′ε− δ′ε+ δ′δ − ε′δ′εδ)

2− ε′δ,




−ε′ + 2ε′δ
3ε′ + 3δ + 3ε′δ
−δ + 2ε′δ




 .

Secondly, Lemma 0 implies

Lemma 1. Let the word w be of the form µεk, νδl, or µεmkmνδmlm · · ·
· · ·µε0k0νδ0l0 . Then X2

w + Y 2
w + Z2

w ≡ −2,−1, or 3.
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P r o o f. If w = µεk then there exists t ∈ {−3,−2,−1, 1, 2, 3} (actually
t ∈ {−1, 1}) such that


Cw,



Xw

Yw
Zw




 ≡ t


3,




2ε
ε
0






from Lemma 0, so

X2
w + Y 2

w + Z2
w ≡ t2((2ε)2 + ε2 + 02) = 5t2 ≡ 5, 20, or 45 ≡ −2,−1, or 3.

If w = νδl then there exists t ∈ {−3,−2,−1, 1, 2, 3} (actually t ∈
{−1, 1}) such that


Cw,



Xw

Yw
Zw




 ≡ t


3,




0
δ
2δ






from Lemma 0, so

X2
w + Y 2

w + Z2
w ≡ t2(02 + δ2 + (2δ)2) = 5t2 ≡ 5, 20, or 45 ≡ −2,−1, or 3.

If w=µεmkmνδmlm · · ·µε0k0νδ0l0 then there exists t∈{−3,−2,−1, 1, 2, 3}
such that

Cw,


Xw

Yw
Zw




 ≡ t


2− εmδ0,




−εm + 2εmδ0
3εm + 3δ0 + 3εmδ0
−δ0 + 2εmδ0






from Lemma 0, so

X2
w + Y 2

w + Z2
w

≡ t2((−εm + 2εmδ0)2 + (3εm + 3δ0 + 3εmδ0)2 + (−δ0 + 2εmδ0)2)

= t2((5− 4δ0) + (27 + 18εm + 18δ0 + 18εmδ0) + (5− 4εm))

= t2(37 + 14εm + 14δ0 + 18εmδ0) ≡ t2(2− 3εmδ0)

= −t2 or 5t2 = −1,−4,−9, 5, 20, or 45 ≡ −2,−1, or 3.

Lemma 1 implies the main result of this paper.

Theorem 2. µ and ν are free generators of a free group acting on S2∩Q3

without non-trivial fixed points.

P r o o f. If a word w has no fixed point on S2 ∩Q3 then µ−1wµ, µwµ−1,
ν−1wν, νwν−1, and w−1 have no fixed point on S2 ∩ Q3. So it is sufficient
to show that ~sw is non-zero and ~sw/|~sw| does not belong to S2 ∩ Q3 for a
non-empty reduced word, w, of the form µ±1 · · · ν±1 (i.e., w starts with µ±1

and ends with ν±1) or simply a power of µ or of ν. For such a non-empty
reduced word w, we get X2

w + Y 2
w +Z2

w ≡ −2,−1, or 3 from Lemma 1. But
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a2 ≡ −3, 0, 1, or 2 for a ∈ Z. Hence
√
X2
w + Y 2

w + Z2
w 6∈ N. Therefore we

obtain

~sw
|~sw| =

1√
X2
w + Y 2

w + Z2
w



Xw

Yw
Zw


 6∈ Q3.

The following problems are raised by Professor J. Mycielski.

Problem A. For n ∈ N, n even, n ≥ 4, does SOn(Q) have a free
non-abelian subgroup F2 such that all the elements of F2 different from the
identity have no eigenvectors in Qn?

Problem B. For n ∈ N, n odd , n ≥ 5, does SOn(Q) have a free non-
abelian subgroup F2 which acts without fixed points on Sn−1 ∩ Qn and is
such that if two elements f, g ∈ F2 have a common eigenvector in Qn then
fg = gf?

Both problems can be solved for all n except n = 5 provided one solves
Problem A for n = 4 and n = 6. Problem A can be easily solved for n = 4
using Dekker’s method ([Dek]), but it does not seem possible to solve Prob-
lem A for n = 6 using Deligne & Sullivan’s method ([DelSu]).
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