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A cardinal preserving
immune partition of the ordinals
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M. C. S t a n l e y (San Jose, Calif.)

Abstract. It is shown that in a cardinal and GCH preserving generic extension of
L there exists a class of ordinals that neither contains nor is disjoint from any infinite
constructible set of ordinals. This answers a question of Sy Friedman’s and improves a
result of Shelah.

1. Introduction. An immune set (class) of ordinals is an infinite set
(class) of ordinals that neither contains nor is disjoint from any infinite
constructible subset of its supremum. The following result appears in Sy
Friedman’s paper [F]:

Theorem 1 (Sy Friedman). There exists an immune class of ordinals
that is (class) generic over L. If 0# exists, then such a generic immune
class of ordinals is definable over L[0#].

Friedman’s model is not a cardinal preserving extension of L, though
it does satisfy the GCH. Collapsing ℵL1 is an essential feature of his proof.
The main result of the present paper settles his question whether this is an
essential feature of Theorem 1.

Theorem 2. There exists an immune class of ordinals in a cardinal and
GCH preserving generic extension of L. If 0# exists, then such a generic
extension of L is definable over L[0#].

This improves a result of Shelah. He obtained a cardinal and GCH pre-
serving immune subset of ℵω.

Of course, it is trivial to obtain large immune sets of ordinals if the
continuum hypothesis is sacrificed: The finite support product of κ many
copies of the Cohen conditions adds an unbounded immune subset of κ.
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Consequently, throughout we shall be interested only in models satisfying
the GCH.

There are two main ideas in Sy Friedman’s proof. We shall use the first
and provide a cardinal preserving alternative to the second.

The first of Friedman’s ideas is to consider partitions of the ordinals not
just into two cells, but into larger numbers of cells. Suppose that 1 < κ ≤ ω.
He defines a κ-partition of a set or class X to be a function f from X into κ
and declares a κ-partition to be immune if |f”z| = κ whenever z is infinite
and constructible. (So the characteristic function of an immune set is an
immune 2-partition.)

Finding an immune ω-partition of the ordinals suffices for Theorems 1
and 2 on account of this observation:

Lemma 1.1 (Sy Friedman). Suppose that there exists an immune ω-
partition of the ordinals. If x is a Cohen real over V , then in V [x] there
exists an immune class of ordinals.

(If F is an immune ω-partition and x : ω → 2 is Cohen over V , then
x ◦ F is an immune 2-partition.)

Another result appearing in [F] is Hugh Woodin’s observation that if 0#

exists, then, letting 〈ti : i < ω〉 enumerate all definable L-terms,

F (α) =
{

the least i such that α = tLi (ι1, . . . , ιk)
for some Silver indiscernibles ι1, . . . , ιk

is an immune ω-partition of the ordinals. Unlike Sy Friedman’s generic im-
mune ω-partition, 0# ∈ L[F ].

A second question of Friedman’s is whether it is possible to prove (in class
theory) that the existence of an immune ω-partition implies the existence
of an immune 2-partition. With a little care, this is settled in the course of
proving Theorem 2.

Theorem 3. There exists an immune ω-partition of the ordinals in a
cardinal and GCH preserving generic extension of L that contains no im-
mune reals. If 0# exists, then such a generic extension of L is definable
over L[0#].

The utility of ω-partitions is found in

Lemma 1.2 (Sy Friedman). Suppose λ is an L-singular ordinal and that
there exists an immune ω-partition of each α < λ. Then there exists an
immune ω-partition of λ.

Since we shall be using this fact, we provide a proof for the reader’s
convenience.

P r o o f. Set µ = cfL(λ). Let 〈αi : i < µ〉 be a constructible monotonically
increasing sequence of ordinals cofinal in λ with α0 = 0. Let g be an immune
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ω-partition of µ, and let fαi be an immune ω-partition of αi, for each i < µ.
Define f : λ→ ω by

f(ξ) = 〈〈fαi+1(ξ), g(i)〉〉,
where i < µ is such that ξ ∈ [αi, αi+1) and 〈〈a, b〉〉 = 2a · 3b.

Suppose that y ⊆ λ is infinite and constructible. Then y ⊆ µ is con-
structible, where

i ∈ y iff y ∩ [αi, αi+1) 6= ∅.
Since g is an immune ω-partition of µ, we may assume that y is finite. Then
there exists an i such that y∩ [αi, αi+1) is infinite. Since fαi+1 is an immune
ω-partition, it follows that f”y is infinite.

Friedman adds a generic immune ω-partition of the ordinals with a back-
wards Easton support iteration. At each regular cardinal κ he forces with
initial segments of an immune ω-partition of κ. The difficulty he must over-
come is securing <κ-distributivity. Specifically, if 〈qi : i < τ〉 is a descending
sequence of conditions chosen to meet τ many predense sets, measures must
be taken to insure that

⋃
i<λ qi is an immune ω-partition when λ is a limit

ordinal of cofinality ω. (If countable limits can be handled, then uncount-
able limits will be automatic.) Friedman’s second main idea is to add Cκ, a
generic closed unbounded subset of κ such that every limit point of Cκ has
uncountable cofinality in L. Then, following Cκ, the descending sequence
of conditions 〈qi : i < τ〉 can be chosen to outpace every constructible
ω-sequence at limits.

Of course, this strategy requires collapsing ωL1 .
In the proof of Theorems 2 and 3, we shall also use a backwards Eas-

ton support iteration, successively adding immune ω-partitions of regular
cardinals. When we define a descending sequence of conditions 〈pi : i < τ〉
towards constructing a condition meeting τ many predense sets, we shall
not attempt to outpace every constructible ω-sequence y of ordinals, as did
Friedman. Instead, we shall make non-trivial moves so infrequently that if
the value of the generic ω-partition on y is not determined by some successor
condition pi+1, then y must have an infinite constructible subset y′ with the
property that the value of the generic ω-partition on y′ is determined exclu-
sively at trivial steps. The trivial steps are entirely under our control, rather
than the control of the predense sets we are seeking to meet. Consequently,
we can insure that the image of y under the generic ω-partition is infinite.

Unfortunately, I do not know how to use this idea at each step in the
iteration to obtain the necessary distributivity properties for the whole iter-
ation. Rather, it will be used on sequences of conditions in the full iteration.
As usual, we shall show that a tail of the iteration is appropriately distribu-
tive in an extension by an initial segment of the iteration. The problem is
that immunity is a property with respect to L, rather than such extensions
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of L. This is the main technical obstacle to the proof. It is overcome by car-
rying out the distributivity construction in L. To do this we must restrict
ourselves to well-behaved conditions in the iteration and, simultaneously,
prove that such conditions are dense in the full iteration.

The “infrequent moves” mentioned above are at steps indexed by ele-
ments of a sparse subset of τ .

Definition. Suppose τ is a cardinal. Then x ⊆ τ is sparse iff x is
unbounded in τ and whenever y ⊆ τ is constructible and infinite, there
exists an infinite constructible y′ ⊆ y such that y′ ∩ x = ∅.

For example, a Mathias real is a sparse subset of ω. However, Mathias
forcing adds immune reals. (If x ⊆ ω is Mathias, then {n : |x ∩ n| is even}
is immune.) Towards proving Theorem 3, we shall prove that certain Sacks
reals are sparse and that Sacks forcing adds no immune reals.

2. Sparse and immune reals. The main tasks of this section are
showing that Sacks forcing adds no immune reals over L and that there
exist Sacks reals that are sparse subsets of ω.

To begin, let us fix our notation. The constructible Sacks conditions S
consist of all constructible perfect subtrees T ⊆ 2<ω. They are ordered by
set inclusion. If G ⊆ S is S generic over L, let rG denote the canonical Sacks
real added, namely,

rG = {n ∈ ω : ∃T ∈ G ∀s ∈ T (n ∈ dom(s)⇒ s(n) = 1)}.
Let us turn first to our second task. In general, Sacks reals are not sparse.

Indeed, if x ⊆ ω is co-infinite and constructible and we set

Tx = {s ∈ 2<ω : n ∈ x ∩ dom(s)⇒ s(n) = 1},
then Tx is a constructible Sacks condition and Tx ° x̌ ⊆ r◦G.

Lemma 2.1. There exists a constructible Sacks condition T∗ such that

T∗ ° “ r◦G is sparse”.

P r o o f. Work in L. Let s 7→ psq be a one-to-one function from 2<ω

into ω. For s ∈ 2<ω, set

Zs = {ptq : t ∈ 2<ω and s ⊆ t}.
The properties this secures are that Zs is infinite, that Zs̄ ⊇ Zs when s ⊆ s,
and that Zsa0 ∩ Zsa1 = ∅.

Define a sequence 〈ts : s ∈ 2<ω〉 of nodes in 2<ω by recursion on s: Set
t∅ = ∅. To define tsai, choose n to be least in Zsai \ dom(ts) and set

tsai =

{
ts(k) if k ∈ dom(ts),
0 if k ∈ [dom(ts), n),
1 if k = n.
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Set T∗ = {t ∈ 2<ω : t ⊆ ts for some s ∈ 2<ω}. Then T∗ is a Sacks condition.
Suppose now that G is S generic over L with T∗ ∈ G. Let r : ω → 2

be the characteristic function of the Sacks real rG ⊆ ω. Note first that for
s ∈ 2<ω, we have

ts ⊆ r ⇒ rG is eventually contained in Zs, i.e., ∃k((rG \ k) ⊆ Zs), and

ts 6⊆ r ⇒ rG is eventually disjoint from Zs, i.e., ∃k((rG \ k) ∩ Zs = ∅).
Suppose now that x ⊆ ω is infinite and constructible and that x ∩ rG is
infinite. Then

ts ⊆ r ⇒ x ∩ Zs is infinite.

It must be, then, that there exists a ts 6⊆ r such that x ∩ Zs is infinite.
Otherwise,

ts ⊆ r ⇔ x ∩ Zs is infinite,

contradicting that r 6∈ L.
Fix a ts 6⊆ r such that x ∩ Zs is infinite. Then x ∩ Zs is an infinite

constructible set such that rG ∩ (x ∩ Zs) is finite. Thus there exists an
infinite constructible y ⊆ x such that y ∩ rG = ∅.

If T ⊆ 2<ω is a tree, we say that t ∈ T is a branching node when both of
ta0 and ta1 lie in T . Define (T )n to be the initial segment of T consisting
of those nodes t ∈ T such that t has at most n proper initial segments that
are branching nodes. (Thus (T )0 = stem(T ).) An easy induction on n shows
that (T )n is finite, for all n. Define T ′ ≤n T to mean that T ′ ⊆ T and
(T ′)n = (T )n. The following facts regarding Sacks forcing are standard.

Fusion Lemma. Suppose 〈Tn : n ∈ ω〉 is a sequence of perfect trees
such that Tn+1 ≤n Tn for each n. Then T =

⋂
n∈ω Tn is a perfect tree and

T ≤n Tn for all n.

Lemma 2.2. Suppose 〈An : n ∈ ω〉 is a sequence of antichains in the
Sacks conditions S and that T ∈ S. Then there exists a Sacks condition
T ′ ≤ T such that |An¹T ′| ≤ 2n for all n.

If X is a subset of a partial ordering and p is an element of that order-
ing, we write X¹p to denote the collection of those elements of X that are
compatible with p.

Lemma 2.3. Work in L. Suppose that µ is an uncountable regular cardinal
and that 〈Xi : i < ω〉 is a tower of countable elementary substructures of Lµ,
that is,

(1) Xi is countable;
(2) Xi ≺ Xj ≺ Lµ for i < j < ω; and
(3) Xi ∪ {Xi} ⊆ Xi+1.
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Suppose as well that the Sacks condition T ∈ X0. Then there exists a con-
dition T ′ ∈ S with T ′ ≤ T such that if G ⊆ S is generic with T ′ ∈ G,
then

Xi[G] ≺ Xj [G] ≺ Lµ[G]
for i < j < ω.

This section’s first task remains:

Lemma 2.4. Sacks forcing adds no immune reals over L.

P r o o f. Work in L. Let r◦ be a term for a real and let T be a Sacks
condition. We may assume that

(2.1) {n ∈ ω : T ′ ° ň ∈ r◦} is finite for all T ′ ≤ T .

Define an increasing sequence of natural numbers 〈ni : i < ω〉 and a
fusion sequence 〈Ti : i < ω〉 such that Ti ° ňi 6∈ r◦ by recursion on i: Set
T0 = T and

ni =
{

the least n > nj , for all j < i, such that
Ti¹t 6° ň ∈ r◦ for all t ∈ (Ti)i.

(Here Ti¹t = {s ∈ Ti : t ⊆ s or s ⊆ t}.) Using (2.1) and that (Ti)i is finite,
there exists such an n. To define Ti+1, let X ⊆ (Ti)i comprise all ⊆-maximal
nodes and choose Tt ≤ Ti¹t such that Tt ° ňi 6∈ r◦ for each t ∈ X. Then set
Ti+1 =

⋃
t∈X Tt.

Note that Ti+1 ≤i Ti and that Ti+1 ° ňi 6∈ r◦. Set T ′ =
⋂
i∈ω Ti. Then

T ′ ° ňi 6∈ r◦ for all i.

R e m a r k. An alternative to Sacks forcing is sparse tree forcing . We say
that a tree T ⊆ 2<ω is sparse if ta0 ∈ T whenever ta1 ∈ T \ stem(T ). The
sparse tree conditions consist of all sparse perfect trees T ⊆ 2<ω, ordered
by set inclusion.

With sparse tree forcing it is not necessary to work below a special
condition to obtain a sparse real. In fact, if rG ⊆ ω is sparse-tree-generic
over L, then rG has the following property which is strictly stronger than
sparseness:

Suppose F : ω → ω is constructible and non-decreasing. Then there
exists an infinite constructible y ⊆ ω such that y ∩ F”rG = ∅.

(No real in a Sacks extension of L enjoys this property because in such a
model every f : ω → ω is dominated by a constructible function g : ω → ω.)
The Fusion Lemma and Lemmas 2.2–2.4 hold for sparse tree forcing by
essentially the same proofs.

3. Sparse sets of ordinals. Suppose that κ > ω is regular. Let Qκ
consist of all functions q : α→ 2, for some α < κ, such that if x is an infinite
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constructible set of ordinals, then there exists an infinite constructible y ⊆ x
such that y ∩ q−1(1) = ∅. Let Qκ be ordered by reverse inclusion, that is,
by reverse functional extension.

Lemma 3.1. Suppose that q ∈ Qκ and that dom(q) < δ < κ. Then there
exists a condition q extending q in Qκ such that q(δ) = 1.

P r o o f. Define q with dom(q) = δ + 1 by setting q(ξ) = 0 for ξ ∈
[dom(q), δ), and setting q(δ) = 1.

If G ⊆ Qκ is generic, set

Qκ = {δ < κ : q(δ) = 1 for some q ∈ G}.
Then Qκ ⊆ κ is sparse, since κ > ω is regular in L. What is not evident
is that forcing with Qκ preserves cardinals. In fact, if there exists a sparse
Qτ ⊆ τ for each regular τ < κ, then Qκ is <κ-distributive. A proof of this
is implicit in the proof of the analogous fact for the iteration P̂ in §5. Since
it is unnecessary, we shall not give an explicit proof.

4. Immune ω-partitions of sets. Suppose that κ > ω is regular. Let
Rκ consist of all functions r : α→ ω, for some α < κ, such that if x ⊆ α is
infinite and constructible, then r”x is infinite. Let Rκ be ordered by reverse
set inclusion, that is, by reverse functional extension.

Lemma 4.1. Assume that there exists an immune ω-partition of τ for
each infinite L-cardinal τ < κ. Suppose that r ∈ Rκ and that δ < κ. Then
there exists a condition r extending r in Rκ such that δ ⊆ dom(r).

P r o o f. Begin by noting that there exists an immune ω-partition of δ.
Indeed, if g : |δ|L → ω is an immune partition of |δ|L and h : δ ↔ |δ|L is a
constructible bijection, then g ◦ h is an immune ω-partition of δ.

Let f : δ → ω be an immune ω-partition and set r = r∪ (f¹[dom(r), δ)).
Then r is as required.

It follows that if there exists an immune ω-partition of each infinite
L-cardinal τ < κ, and if G ⊆ Rκ is generic, then Rκ =

⋃
G is an im-

mune ω-partition of κ. Again, it is not evident that forcing with Rκ pre-
serves cardinals. Though, again, we shall not need this fact explicitly, if
also there exists a sparse subset of τ , for each regular τ < κ, then Rκ is
<κ-distributive.

5. The iteration. Work in L. Let CARD denote the class of infinite
cardinals. If A,B ⊆ 2<α, it will be convenient to let A × B comprise only
pairs (a, b) with a ∈ A and b ∈ B such that dom(a) = dom(b). Let ht((a, b))
denote δ, where δ is the common domain of a and b.
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If κ is an infinite cardinal, let P̂κ denote the backwards Easton support
iteration of Sacks forcing below a fixed condition forcing the generic real
to be sparse, followed by Qα × Rα for uncountable regular α < κ. We may
identify conditions in P̂κ with functions p satisfying the following require-
ments:

(1) sp(p) ⊆ CARD∩κ and |sp(p) ∩ τ | < τ for all regular τ , where sp(p)
denotes the domain of the function p.

(2) Suppose that α ∈ sp(p).

(a) If α = ω, then p(α) ∈ S and p(α) ≤ T∗, where T∗ is a fixed
condition forcing the Sacks real to be sparse;

(b) p(α) = ∅ if α is singular; and

(c) p(α) is a P̂α-term such that P̂α ° p(α) ∈ Qα × Rα if α is
uncountable and regular.

Set P̂ =
⋃
κ∈CARD P̂κ.

In clause (2a) we can let T∗ be the Sacks condition constructed in §2.
Then P̂ is definable without parameters in L.

As usual, P̂κ is ordered by

p ≥ p iff sp(p) ⊆ sp(p) and

p¹α ° p(α) ≥ p(α) for all regular α ∈ sp(p).

The main fact to be proved about P̂κ is that if τ < κ is regular, then
P̂τ+

forces that P̂κτ+ is ≤τ -distributive, where P̂κτ+ is the tail of the itera-
tion beginning at τ+. To do this, we shall define a descending τ -sequence
of conditions in P̂κτ+ below a given condition, gradually meeting τ many
predense sets in P̂κτ+ . Of course, if p is a limit condition in this process and
α is an uncountable regular cardinal in the support of p, then p(α) must be
a term for a condition in Qα × Rα. Conditions in Qα are approximations
to a sparse subset of α. The twist is that sparseness is a requirement with
respect to L rather than L[G], where G is P̂τ+

generic. And it is in L[G] that
this distributivity construction is naturally described. A similar observation
applies to Rα.

One way out of this is to carry out the distributivity construction fol-
lowing elementary towers that are definable in L. Most of our work will be
with a sub-ordering Pκ of P̂κ that comprises the conditions in P̂κ that are
pointwise of low rank. We shall argue simultaneously by induction on κ that
Pκ has the distributivity property mentioned above and that Pκ is dense
in P̂κ.

Define Pκ to consist of those conditions p ∈ P̂κ satisfying the following
two additional requirements:
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(2c′) p(α) is a Pα-term (rather than merely a P̂α-term) and Pα ° p(α) ∈
Qα × Rα if α is uncountable and regular.

(3) If α ∈ sp(p) and α > ω, then p(α) ∈ Lα.

Then P is definable without parameters in L.
The reason that it is not obvious that Pκ is dense in P̂κ is that Pλ has

antichains of size λ+ when λ is singular.
Note that

(5.1) Pκ ⊆ Lκ+ for all infinite cardinals κ;
(5.2) if κ > ω is regular, then Pκ+ ⊆ Lκ and Pκ+ ∈ Lβ if β > κ is a

ZF−-ordinal; and if κ > ω is singular, then Pκ is isomorphic to a
dense open subset of Pκ+

;
(5.3) if κ is inaccessible, then Pκ ⊆ Lκ; and
(5.4) Pω1 ⊆ Lω1 and Pω1 ∈ Lβ if β > ω1 is a ZF−-ordinal.

Let us summarize the cardinality analogs of these observations, towards
verifying that P̂ is cardinal and GCH preserving.

Lemma 5.1. Suppose that κ is an infinite cardinal. Then

(a) |Pκ+ | = κ if κ > ω is regular.
(b) |Pκ| = κ if κ = ω1, or if κ is inaccessible, or if κ is the successor of

a singular cardinal.
(c) |Pκ| = κ+ if κ is singular.

Suppose that τ is regular and that κ ≥ τ+ is a cardinal. Set

P̂κτ+ = {p¹[τ+, κ) : p ∈ P̂κ} and Pκτ+ = P̂κτ+ ∩ Pκ.
Order P̂κτ+ (respectively, Pκτ+) in L[G], where G is P̂τ+

(respectively, Pτ+
)

generic, by
p ≥ p iff p′ ∪ p ≥ p′ ∪ p, for some p′ ∈ G.

As mentioned above, the main fact to be proved is the

Distributivity Lemma. Suppose that κ is an uncountable cardinal and
that τ < κ is infinite and regular. Then

Pτ
+ ° “Pκτ+ is ≤τ -distributive”.

Three auxiliary facts will be needed.

Antichain Lemma. Suppose that κ is an uncountable cardinal , that
〈Aγ : γ < α〉 is a sequence of antichains in P̂κ, where α < κ, and that
p ∈ P̂κ. Then there exists a condition p extending p such that |Aγ¹p| ≤ |α|
for all γ < α.

Recall that Aγ¹p = {p′ ∈ Aγ : p′ is compatible with p}.
Density Lemma. Suppose that κ is an uncountable cardinal.
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(a) Pκ is dense in P̂κ.
(b) If τ < κ is uncountable and regular , and if p ∈ P̂κτ+ , then there exists

a condition p ∈ Pκτ+ such that P̂τ+ ° p ≤ p.

Note that it follows from (a) that if τ < κ is an infinite cardinal, then

(5.5) P̂τ
+ ° “Pκτ+ is dense in P̂κτ+”.

Part (b) is a stronger form of (5.5) that is useful in maintaining the inductive
proof of the Density Lemma.

Extension Lemma. Suppose that κ is an uncountable cardinal , that
τ < κ is an infinite cardinal , that p ∈ Pκτ+ , and that f : CARD∩ [τ+, κ)→ κ
is such that f(α) < α for all α. If p¹α ° ht(p(α)) < f(α) for all un-
countable regular α ∈ sp(p), then there exists a condition p extending p in
Pκ such that sp(p) = sp(p) and p¹α ° ht(p(α)) = f(α) for all uncountable
regular α ∈ sp(p).

Of course, using these lemmas, we have what we want:

Corollary. Forcing with P̂ preserves all L-cardinals and the GCH. In
any P̂ generic extension of L there exists a sparse subset of and an immune
ω-partition of each infinite cardinal.

To be precise, these four lemmas are proved simultaneously by induction
on κ. The following table indicates how they depend on each other.

The proof at κ of the depends on the

Antichain Lemma Distributivity Lemma at κ and Density Lemma at κ
Distributivity Lemma Extension Lemma at κ and Density Lemma below κ
Density Lemma Extension and Antichain Lemmas below κ
Extension Lemma Density Lemma below κ

P r o o f o f t h e A n t i c h a i n L e m m a. Set τ = |α|. We may assume
that τ is infinite.

First suppose that τ is a regular cardinal. Note that P̂τ+ ° “P̂κτ+ is ≤τ -
distributive”. Indeed, P̂τ+ ° “Pκτ+ is dense in P̂κτ+”, the sub-ordering Pτ+

is
equivalent to P̂τ+

, and Pτ+ ° “Pκτ+ is ≤τ -distributive”. Also, P̂κ ∼= P̂τ+∗P̂κτ+ .
The lemma then follows from |Pτ+ | = τ if τ > ω, and from Lemma 2.2
(countable antichain reduction in S) if τ = ω.

If τ is singular, say cf(τ) = µ, then let 〈βi : i < µ〉 be an increasing
sequence of infinite regular cardinals that is cofinal in τ . For each i < µ, let
Di ⊆ P̂κ be a maximal antichain of conditions p′ such that |Aj¹p′| ≤ βi for
all j < βi. Choose p ≤ p such that |Di¹p| ≤ µ for all i < µ.
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P r o o f o f t h e E x t e n s i o n L e m m a. For each uncountable regular
α ∈ sp(p), choose q◦α and r

◦
α such that

Pα ° q
◦
α ∈ Qα,

p¹α ° dom(q◦α) = f(α)∨,

Pα ° r
◦
α ∈ Rα,

p¹α ° dom(r◦α) = f(α)∨,

Pα ° (q◦α, r
◦
α) ≤ p(α).

Note first that we may assume that q◦α, r
◦
α ∈ Lα. Indeed, using p(α) ∈ Lα,

it is trivial to choose q◦α ∈ Lα (cf. Lemma 3.1). By the proof of Lemma 4.1,
an adequate r◦α can be defined in Lα from

(1) p(α);
(2) an h : f(α)↔ |f(α)|L; and
(3) a term g

◦ such that Pα ° “g◦ is an immune ω-partition of |f(α)|L”,

provided that g◦ ∈ Lα. If α = ω1, then (3) is trivial. If α > ω1 is not the
successor of a singular cardinal, then we have P|f(α)|+ ∈ Lα, by lines (5.1)
and (5.2). Using the Density Lemma, it follows that there exists a term
g
◦ ∈ Lα as in (3). On the other hand, if α = λ+, where λ is a singular
cardinal, then a term g

◦ for an immune ω-partition of λ is definable from
terms for immune ω-partitions of L-cardinals less than λ (cf. Lemma 1.2).
It follows that there exists a term g

◦ ∈ Lα as in (3).
Let z◦α ∈ Lα be such that Pα ° z

◦
α = (q◦α, r

◦
α) and set

p(α) =
{
z
◦
α if α ∈ sp(p) is uncountable and regular,
p(α) if α ∈ sp(p) is singular or α = ω.

P r o o f o f t h e D i s t r i b u t i v i t y L e m m a. Suppose p ∈ Pκ and
that ~D = 〈D◦ i : i < τ〉 is a sequence of Pτ+

-terms for predense subsets of
Pκτ+ . We may assume that ~D ∈ Lκ++ . We may also assume that τ+ < κ.
Define 〈Xi : i < τ〉 by setting

Xi = Skolem HullLκ++ (κ ∪ {κ, p, ~D} ∪ {Xj : j < i}).
Next, for α+ ∈ CARD∩ [τ+, κ), define

Xα+i = Skolem HullLκ++ (α ∪ {α+, κ, p, ~D} ∪ {Xj : j < i})
and, if α ∈ CARD∩ [τ+, κ) is inaccessible, define

Xαi = Skolem HullLκ++ (ω1 ∪ τ ∪ {τ+, α, κ, p, ~D} ∪ {Xj : j < i}).
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Note that if i < τ is a limit ordinal, then

Xi =
⋃

j<i

Xj , and

Xαi =
⋃

j<i

Xαj for all regular α ∈ CARD∩ [τ+, κ).

Also note that

〈Xβj : β ∈ CARD∩ [τ+, κ) is regular and j ≤ i〉 ∈ Xα(i+1)

for all α and all i. This is because these Skolem hulls obey

Xβj ≺ Xj ≺ Xi ≺ Lκ++

and Xi ∈ Xα(i+1). Set

fi(α) = sup(Xαi ∩ α)

for i < τ and regular α ∈ CARD∩ [τ+, κ). Then

(1) 〈fi(α) : i < τ〉 is a continuous, strictly increasing sequence of ordinals
less than α;

(2) fi(α+) = Xα+i ∩ α+;
(3) if α is inaccessible, then fi(α) is a (singular) cardinal; and
(4) 〈fj : j ≤ i〉 ∈ Xτ+(i+1).

Set fτ (α) = supi<τ fi(α).
Note that if p ∈ Pκτ+ ∩Xτ+i, then p¹α ° ht(p(α)) < fi(α) for all regular

α ∈ sp(p). Let us make this observation explicit, since we employ the sub-
ordering Pκ mainly for its sake. Fix a regular α ∈ sp(p). Then p ∈ Xαi, be-
cause the parameters from which p is definable in Xτ+i are included in Xαi.
Also, α ∈ Xαi, so p(α) ∈ Xαi. The term rank of p(α) can be calculated
in Xαi, and this rank is less than fi(α), since p(α) ∈ Lα. It follows that
p¹α ° ht(p(α)) < fi(α).

Our next task is to define functions gα
+

i canonically projecting fi(α+)
into α satisfying the following three requirements:

(1) gα
+

i : fi(α+) 1:1−→ α;
(2) gα

+

i ⊆ gα+

j for i < j < τ ; and

(3) 〈gα+

j : α+ ∈ CARD∩ [τ+, κ) and j ≤ i〉 ∈ Xτ+(i+1).

Towards this, we shall need two auxiliary objects, namely an ordering Cα

and a function hα.
Suppose that α ∈ CARD∩ [τ, κ). Let α<ω denote the set of all finite

increasing sequences of elements of α. Let Cα be the L-least well ordering
of τ<ω × α<ω × ω such that

(5.6) if ~ı,~ ∈ τ<ω and max(~ı ) < max(~ ), then (~ı, ~ξ, n) Cα (~, ~ζ,m)
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for all ~ξ, ~ζ ∈ α<ω and all n,m ∈ ω. Then 〈Cβ : β ∈ CARD∩ [τ, κ)〉 ∈ Xαi

for all α and i. Let hα be the L-least bijection

hα : τ<ω × α<ω × ω ↔ α.

We use Cα and hα to define gα
+

: fτ (α+) 1:1−→ α as follows:

(5.7) gα
+

(δ) =





hα(〈i0, . . . , ik〉, ~ξ, pϕq), where (~ı, ~ξ, pϕq)

is the Cα-least triple with the property that

δ is the least ordinal such that

ϕLκ++ [δ,Xi0 , . . . , Xik ,
~ξ, α+, κ, p, ~D].

Since

fτ (α+) = α+ ∩ Skolem HullLκ++ (α ∪ {α+, κ, p, ~D} ∪ {Xi : i < τ}),
we have dom(gα

+
) = fτ (α+). Set gα

+

i = gα
+¹fi(α+). Then properties (1)

and (2) above are clear. For (3), note that 〈gα+

j : α+ ∈ CARD∩ [τ+, κ)〉
is (uniformly) definable in Xτ+(i+1) from Xj . This uses the fact that for
δ < fj(α+), the Cα-least triple in (5.7) lies in Xj on account of (5.6).

Claim. There exists a p′ ≤ p¹τ+ in Pτ+
such that if p′ ∈ G and G is

Pτ+
generic over L, then

Xαi[G] ≺ Xαj [G] ≺ Lκ++ [G]

for all regular α ∈ CARD∩ [τ+, κ) and all i < j < τ .

P r o o f. If α > ω1, then Pτ+ ∪ {Pτ+} ⊆ Xα0, using line (5.2) if τ > ω,
and line (5.4) and ω1 ⊆ Xα0 if τ = ω. The claim is immediate in this case.

On the other hand, if α = ω1 and τ = ω, then by Lemma 2.3, there
exists a T ′ ≤ p(ω) in S such that

T ′ ° Xω1i[G] ≺ Xω1j [G] ≺ Lκ++ [G]

for i < j < ω. Let p′ ∈ Pω1 be such that p′(ω) = T ′. The claim is proved.

Without loss of generality, assume that p¹τ+ itself is such a master con-
dition.

Let Q
◦
τ be a Pτ+

-term for a sparse subset of τ such that (for later con-
venience) p¹τ+ ° 0 ∈ Q◦τ . We may assume that Q

◦
τ lies in Xτ+0.

For α ∈ CARD∩ [τ, κ), let R
◦
α be a (canonically chosen) Pα+

-term for
an immune ω-partition of α. The point of making these choices canonically
is insuring that 〈R◦α : α ∈ CARD∩ [τ, κ)〉 ∈ Xτ+0.

We shall define 〈pi : i ≤ τ〉, a sequence of conditions in Pκτ+ , such that

(1) p0 = p¹[τ+, κ) and Pτ+ ° pi ≥ pj if i < j ≤ τ ;
(2) pi¹α ° ht(pi(α)) = fi(α) if i > 0 and α ∈ sp(pi) is regular and

uncountable; and
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(3) 〈pj : j ≤ i〉 ∈ Xτ+(i+1).

Begin by setting p0 = p¹[τ+, κ).
Now suppose that pi has been defined. In defining pi+1 there are two

cases to consider. For simplicity, let us describe these cases as though we
were working in a Pτ+

generic extension, keeping in mind that in fact we
are describing elaborate Pτ+

-terms in L.
First of all, if i ∈ Qτ , choose pi+1 ≤ pi to be L-least such that pi+1 meets

Dot(Qτ∩i) and pi+1¹α ° ht(pi+1(α)) = fi+1(α) for all uncountable regular
α ∈ sp(pi+1). (Here ot(Qτ ∩ i) is the order-type of the set of ordinals Qτ ∩ i.)

Note that pi+1 ∈ Xτ+(i+2), since pi ∈ Xτ+(i+1) and Xτ+(i+2)[G] ≺
Lκ++ [G] when G is Pτ+

generic with p¹τ+ ∈ G. This insures that pL[G]
i

has an extension that lies in Xτ+(i+2)[G] meeting D
L[G]
ot(Qτ∩i). In fact, we

have 〈pj : j ≤ i+ 1〉 ∈ Xτ+(i+2).
The other case to consider is that of i 6∈ Qτ . In this case, choose pi+1 ≤ pi

to be L-least such that sp(pi+1) = sp(pi) and, for each uncountable regular
α ∈ sp(pi), the condition pi+1¹α forces

ht(pi+1(α)) = fi+1(α) and pi+1(α) = (q, r),

where

q(δ) = 0 for all δ ∈ [fi(α), fi+1(α)),

r(δ) = 〈〈Rfi+1(α)(δ), Rτ (i)〉〉 if α is inaccessible and δ ∈ [fi(α), fi+1(α)),

r(δ) = Rβ(gαi+1(δ)) if α = β+ and δ ∈ [fi(α), fi+1(α)).

(Note that pi¹α ° ht(pi(α)) = fi(α) for uncountable regular α ∈ sp(pi),
since i 6= 0 on account of our insistence that 0 ∈ Qτ .)

Note also that pi+1 ∈ Xτ+(i+2) and that, in fact, 〈pj : j ≤ i + 1〉 ∈
Xτ+(i+2). This uses that Q

◦
τ , 〈R

◦
α : α ∈ CARD∩ [τ, κ)〉 ∈ Xτ+0 and that

〈gβ+

j : β ∈ CARD∩ [τ, κ) and j ≤ i+ 1〉 ∈ Xτ+(i+2), as well as induction.
If i is a limit ordinal, choose pi to be L-least such that

pi¹α ° pi(α) =
∧

j<i

pj(α),

where
∧
j<i(qj , rj) = (

⋃
j<i qj ,

⋃
j<i rj). Then pi¹α ° ht(pi(α)) = fi(α) for

all uncountable regular α ∈ sp(pi). The construction of 〈pj : j ≤ i〉 can be
carried out inside Xτ+(i+1). Hence 〈pj : j ≤ i〉 ∈ Xτ+(i+1). The only clause in
the definition of Pκτ+ which is not evident for pi is that Pα ° pi(α) ∈ Qα×Rα
for α ∈ sp(pi). It suffices to see that pi¹α ° pi(α) ∈ Qα × Rα.

Let H be Pα generic over L with pi¹α ∈ H. (So, formally, we are pro-
ceeding by induction on α.) Work in L[H]. Say pj(α) = (qj , rj) for j < i.
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We must argue that qi =
⋃
j<i qj ∈ Qα and that ri =

⋃
j<i rj ∈ Rα. Let

i0 < i be the least j such that α ∈ sp(pj).
First we argue that qi ∈ Qα. Suppose that y ⊆ fi(α) is infinite and

constructible. We may assume that y ∩ fj(α) is finite for each j < i. Using
the fact that Qτ ⊆ τ is sparse and that 〈fi(α) : i ≤ τ〉 ∈ L, we can find an
infinite constructible z ⊆ (y \ fi0(α)) such that

(5.8) z ∩
⋃

j∈Qτ
[fj(α), fj+1(α)) = ∅.

But by construction,

q−1
i (1) \ fi0(α) ⊆

⋃

j∈Qτ
[fj(α), fj+1(α)).

Thus z ∩ q−1
i (1) = ∅, as required to verify that qi ∈ Qα.

Next we argue that ri ∈ Rα. Suppose that y ⊆ fi(α) is infinite and
constructible. We must see that ri”y is infinite. Again we may assume that
y∩fj(α) is finite for each j < i. As before, first choose z ⊆ (y \fi0(α)) to be
infinite and constructible and as in (5.8). Then z is an infinite constructible
subset of

⋃
j 6∈Qτ∪i0 [fj(α), fj+1(α)). It suffices to see that ri”z is infinite.

There are two cases to consider.
The first of these cases is that of inaccessible cardinals α. By construc-

tion,

ri¹
⋃

j 6∈Qτ∪i0
[fj(α), fj+1(α)) = R¹

(
fi(α) ∩

⋃

j 6∈Qτ∪i0
[fj(α), fj+1(α))

)
,

where R(δ) = 〈〈Rfj+1(α)(δ), Rτ (j)〉〉, for δ ∈ [fj(α), fj+1(α)). But Rfj+1(α) is
an immune ω-partition of fj+1(α) and Rτ is an immune ω-partition of τ . As
we saw in the proof of Lemma 1.2, the function R is an immune ω-partition
of fτ (α). It follows that ri”z is infinite.

The other case to consider is that of successor cardinals α. Say α = β+.
Then by construction,

ri¹
⋃

j 6∈Qτ∪i0
[fj(α), fj+1(α)) = (Rβ ◦ gα)¹

⋃

j 6∈Qτ∪i0
[fj(α), fj+1(α)).

Since gα is one-to-one and constructible, and since Rβ is an immune ω-
partition, it follows that ri”z is infinite.

This completes the construction of 〈pi : i ≤ τ〉.
If G is Pτ+

generic with p¹τ+ ∈ G, then Q
◦L[G]
τ is unbounded in the

regular cardinal τ . By construction, then, pτ meets D
◦L[G]
i for each i < τ .

The proof of the Distributivity Lemma is complete.
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P r o o f o f t h e D e n s i t y L e m m a. We shall argue for (b). Then for
(a) it suffices to see that Pω2 is dense in P̂ω2 . This can be seen as below in
the case κ = µ+, where µ > τ+ is regular.

If κ is inaccessible, or if κ = µ+, where µ is singular, then our claim is
immediate by induction.

Suppose now that κ = µ+, where µ > τ+ is regular. (The non-trivial
case is µ = λ+, where λ is singular.) Let q◦ and r

◦ be P̂µ-terms such that
P̂µ ° p(µ) = (q◦, r◦). By induction, it suffices to find Pµ-terms q◦′ and r

◦′, and
a condition p extending p¹µ in P̂µ

τ+ such that

• q◦′ ∈ Lµ and p ° q
◦′ = q

◦; and
• r◦′ ∈ Lµ and p ° r

◦′ = r
◦.

First, choose p′ ≤ p¹µ in P̂µ
τ+ (that is, P̂τ+ ° p′ ≤ p¹µ) such that p′ °

ht(p(µ)) ≤ β̌ for some β < µ. Then, for each γ < β, let Aγ ⊆ P̂µ be
an antichain maximal among the set of conditions p′′ such that if p′′ is
compatible with p′, then p′′ ° q

◦(γ̌) = ı̌ for i = 0 or i = 1, and p′′ ° r
◦(γ̌) = ň

for some n ∈ ω. By induction we may assume that in fact Aγ ⊆ Pµ. Now
choose p ≤ p′ in P̂µ

τ+ such that |Aγ¹p| ≤ |β| for all γ < β. Then set

q
◦′ = {((γ, i)∨, p′′) : p′′ ∈ Aγ¹p and p′′ ° q

◦(γ̌) = ı̌}
and define r◦′ analogously. Note that since Aγ ⊆ Pµ ⊆ Lµ and |Aγ¹p| ≤ |β| <
µ and µ is regular, the terms q◦′ and r◦′ lie in Lµ. By construction, p ° q

◦′ = q
◦

and p ° r
◦′ = r

◦.
Note next that if κ = µ+ and µ = τ+, then in the above construction, it

is unnecessary to extend p¹µ (now in P̂τ+

τ+ = {∅}!) to force ht(p(µ)) ≤ β for
some β < µ, or to reduce the antichains Aγ , because Pµ = Pτ+ ⊆ Lτ .

Finally, suppose that κ is singular. The construction in this case is a
diagonal version of the proof of the Distributivity Lemma. Note that it
suffices to handle the case τ ≥ cf(κ); the case τ < cf(κ) then follows by
induction.

Fix a condition p in P̂κτ+ and let λ > κ+ be a cardinal sufficiently large
that p ∈ Lλ and that P̂κ ∩ Lλ is equivalent to P̂κ.

Let ~κ = 〈κi : i < cf(κ)〉 be a continuous, increasing sequence of cardinals
that is cofinal in κ with κ0 = τ+.

For i < cf(κ), set

Di = {p ∈ Pκi+1

τ+ : P̂τ
+ ° p ≤ p¹[τ+, κi+1)}.

Of course, Di is not predense in general. However, if p ∈ Pκi
τ+ and P̂τ+ °

p ≤ p¹κi, then, by induction, p has an extension that lies in Di.
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Define the Skolem hulls Xαi as in the proof of the Distributivity Lemma,
only taking hulls inside Lλ+ and including the parameters ~κ and P̂κ ∩ Lλ.

Then define fi and the gα
+

i as in the proof of the Distributivity Lemma.
Finally, define 〈pi : i ≤ cf(κ)〉 as in the proof of the Distributivity

Lemma, except setting p0 = ∅. (So at stages i ∈ Qτ , the condition pi+1

is chosen to extend both pi and p¹κi+1, and at stages i 6∈ Qτ , we have
sp(pi+1) = sp(pi).) Then p =

∧
i<cf(κ) pi is a condition in Pκτ+ such that

P̂τ+ ° p ≤ p.

6. One more time. Let us now turn to the class version R∞ of Rκ,
defined in a P̂ generic extension of L. The purpose of R∞ is finally to add
an immune ω-partition of the ordinals.

Working in a P̂ generic extension of L, let R∞ consist of all functions
r : α→ ω, for some ordinal α, such that if x ⊆ α is infinite and constructible,
then r”x is infinite. Let R∞ be ordered by reverse set inclusion, that is, by
reverse functional extension. Set P̂+ = P̂ ∗ R∞.

Using the fact that P̂ adds an immune ω-partition to each uncountable
cardinal α, the following extension lemma is clear.

Lemma 6.1. Assume that (p, r) ∈ P̂+ and that p ° dom(r) = α̌. Suppose
δ > α. Then there exists a term r ∈ R∞ such that (p, r) ≥ (p, r) and
p ° dom(r) = δ̌.

It is evident, then, that if G ∗H is P̂+ generic over L, then

R∞ = {rL[G] : (p, r) ∈ G ∗H for some p}
is an immune ω-partition of the ordinals.

Since R∞ adds an amenable class to a P̂ generic extension, it is imme-
diate that P̂+ is cardinal and GCH preserving. It remains to check that P̂+

preserves ZFC.
Working in L, define the sub-ordering P+ of P̂+ to consist of all pairs

(p, r) such that

(1) p ∈ P =
⋃
κ∈CARD Pκ, and

(2) r is a P-term and P ° r ∈ R∞.

Then P+ is a dense subclass of P̂+. Let P+
τ+ consist of those pairs (p, r) in

P+ such that sp(p) ∩ τ+ = ∅. By the Density Lemma in §5, P+
τ+ is dense

in P̂+
τ+ , when τ is regular.

In order to verify that P̂+ preserves ZFC, it suffices to establish this

Metalemma 6.2. Suppose τ is regular. Then

Pτ
+ ° “Pτ+ ∗ R∞ is definably ≤τ -distributive”.



216 M. C. Stanley

That is, if 〈D◦ i : i < τ〉 is a uniformly definable sequence of Pτ+
-terms for

predense classes in Pτ+ ∗R∞ and if (p, r) ∈ P+, then there exists a condition
(p, r) ≤ (p, r) such that

p¹τ+ ° “ (p¹[τ+,∞), r) meets D
◦
i”

for all i < τ .

P r o o f s k e t c h. The proof of this lemma is similar to that of the Dis-
tributivity Lemma in §5. Let us outline the necessary modifications of that
proof.

Suppose 〈D◦ i : i < τ〉 is uniformly definable over L from the parameter a.
Begin by defining

αi = the least α such that τ ∪ {τ, p, a} ∪ {αj : j < i} ⊆ Lα and Lα ≺Σn L,
where n ≥ 2 is sufficiently large. Then, in the notation of the Distributivity
Lemma, set Xi = Lαi . Set

Xα+i = Σn- Skolem HullL(α ∪ {α+, p, a} ∪ {Xj : j < i})
and, if α is inaccessible, set

Xαi = Σn- Skolem HullL(ω1 ∪ τ ∪ {τ+, α+, p, a} ∪ {Xj : j < i}).
The proof then proceeds as does that of the Distributivity Lemma, mutatis
mutandis. (For example, instances of ≺ are replaced with ≺Σn and, in the
definition of gα

+
, the formulas ϕ are restricted to being Σn formulas.)

This completes the proof of the first sentence of Theorem 3. Adding
a Cohen real over a P̂+ generic extension suffices for the first sentence of
Theorem 2. To establish the second parts of these theorems what remains
is constructing P generic classes in L[0#].

7. The construction from 0#. Working in L[0#], our goal is to define
a class G that is P generic over L. If α is L-regular, let Rα denote the
(canonical) immune ω-partition of α added by this generic class. Then G
will have the following coherence property:

(7.1) Rῑ = Rι¹ι whenever ι < ι are Silver indiscernibles.

Let I denote the class of Silver indiscernibles. Then R∞ =
⋃
ι∈I Rι will

be an L[0#]-definable ω-partition of the ordinals that is amenable to an
L-cardinal preserving inner model. It follows that R∞ is as required for the

second part of Theorem 3. Since ωL[R∞]
1 = ωL1 < ω

L[0#]
1 , in L[0#] there exist

reals that are Cohen generic over L[R∞]. The second part of Theorem 2
follows.

It is not difficult to see that G ∗ {R∞¹α : α ∈ OR} is P+ generic over L.
However, we shall not need this fact.
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Some ad hoc conventions will be useful in this section. We shall use ~α, ~β,
and so forth, to denote increasing finite sequences of ordinals 〈α0, . . . , αk〉
where each αi is either ω1 or is an L-inaccessible cardinal. We shall use α+

to denote the least L-cardinal greater than α, and α∗ to denote the least
indiscernible greater than α.

By recursion on |~α| ≥ 2 we shall define conditions p~α in such a way that

(1) p~α ∈ Pα
+
1

α+
0

;

(2) Pα
+
0 ° p~α ≥ p~αaα when α > max(~α) is L-inaccessible; and

(3) the function ~α 7→ p~α is definable without parameters over L.

Then a Pω2 generic class will be generated by the conditions p~α for ~α ∈
({ω1} ∪ I)<ω. The definition of the p~α’s, and hence of this generic class, is
quite easy. The work to be done in this section is in verifying that this class
is indeed Pω2 generic.

If |~α| = 2, then choose p~α to be L-least such that

(a) sp(p~α) = {α1}, and
(b) Pα

+
0 ° p~α(α1) = (

⋃
Q
◦
α0 ,
⋃
R
◦
α0),

where Q
◦
α0 and R

◦
α0 are terms for Qα0 and Rα0 generic objects, respectively.

If α > max(~α) is L-inaccessible, choose p~α
aα to be L-least such that

(a) Pα
+
0 ° p~α ≥ p~αaα, and

(b) Pα
+
0 ° p~α

aα ∈ D◦ ,
where D

◦
is a term such that if H is Pα

+
0 generic over L, then

D
◦
L[H] =

⋂
{X◦L[H] : X

◦ ∈ Skolem HullLα(α0 ∪ {~α}) and

X
◦
L[H] is a dense open subset of Pα

+
1

α+
0
}.

Since Pα
+
0 ° “Pα

+
1

α+
0

is ≤α0-distributive”, such a condition p~α
aα exists. This

completes the definition of p~α.
Suppose that α < β and that D ⊆ Pβ is constructible and predense.

Then a condition p ∈ Pβα reduces D below α iff there exists a (constructible)
predense D′ ⊆ Pα such that p′ ∪ p meets D whenever p′ ∈ D′.

Claim 1. Suppose ι ∈ I and that D ⊆ Pι+ is a constructible predense
set. Then there exists an ~α ∈ ({ω1}∪I)<ω with α1 = ι such that p~α reduces
D below α+

0 .

P r o o f. Working in L, let us begin by making a general observation about
predensity reduction in P. Assume that τ is an uncountable regular cardinal
and that κ > τ is a cardinal. Suppose that D ⊆ Pκ is predense and that
p ∈ Pκτ+ . Then there exists a condition p ∈ Pκτ+ such that Pτ+ ° p ≤ p and
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p reduces D below τ+. Indeed, it is a general fact about full iterations that
there exists p′ ∈ P̂κτ+ such that p′ reduces D below τ+ and P̂κτ+ ° p′ ≤ p.
(Simply construct a P̂τ+

-term with this property.) But then by the Density
Lemma, there exists a condition p ∈ Pκτ+ as required extending p′.

Now suppose that D ⊆ Pι+ is a constructible predense set. Set α1 = ι
and choose α0 and α2, . . . , αk+1 from {ω1} ∪ I such that α0 < α1 < α2 <
· · · < αk+1 and D lies in the Skolem hull in Lαk+1 of α0 ∪ {α0, . . . , αk}. Let

X
◦

be a Pα
+
0 -term in this Skolem hull for

{p ∈ Pα
+
1

α+
0

: p reduces D below α+
0 }.

Then Pα
+
0 ° “X

◦
is dense and open”. Setting ~α = 〈α0, . . . , αk〉, we have

Pα
+
0 ° p~α

aαk+1 ∈ X◦ .
Claim 2. Suppose that ~α0, . . . , ~αn ∈ ({ω1} ∪ I)<ω. Then the conditions

p~α
0
, . . . , p~α

n

have a common extension in P.

P r o o f. The proof is really just an exercise in indiscernibility using two
features of the current setting, namely, the coherence enforced by our defi-
nition of p~α when |~α| = 2, and the fact that p(α) ∈ Lα when α > ω.

We may assume that |~αi| = |~αj | for all i, j ≤ n. Note first that sp(p~α
i

) ⊆
(αi0, α

i∗
0 ) ∪ {αi1} by indiscernibility. Also by indiscernibility we may assume

that there exists a fixed sequence ~ι ∈ I<ω such that ~αi = 〈αi0, αi1,~ι 〉 for all
i ≤ n.

Choose a finite set B ⊆ {ω1} ∪ I such that each of ~α0, . . . , ~αn lies in

{〈β0, β1,~ι 〉 : β0 < β1 lie in B}.
And let 〈β0, . . . , βk〉 enumerate B in increasing order.

We maintain that the condition p defined by

p =
⋃

i<k

p〈βi,βi+1,~ι 〉

is a common extension of all of p~α
0
, . . . , p~α

n

. In fact, fixing i ≤ k, let us
argue that

(7.2) p ≤ p〈βj ,βi,~ι 〉 for all j < i.

This is trivial if i = 0, so suppose that i > 0. If j < i, then

sp(p〈βj ,βi,~ι 〉) ⊆ (βj , βj+1) ∪ {βi},
and by indiscernibility

p〈βj ,βi,~ι 〉¹(βj , βj+1) = p〈βj ,βj+1,~ι 〉¹(βj , βj+1) = p¹(βj , βj+1).

So p¹βi ≤ p〈βj ,βi,~ι 〉¹βi for all j < i.
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Now proceed by induction on i− j, for i > j ≥ 0, to see that

p¹βi ° p〈βj ,βi,~ι 〉(βi) ≥ p〈βi−1,βi,~ι 〉(βi).

Because p(βi) = p〈βi−1,βi,~ι 〉(βi), this suffices to finish the proof of (7.2).
If j = i− 1, then this claim is trivial. Suppose that 0 ≤ j < i− 1. Note

first that by indiscernibility,

p〈βj ,βi,~ι 〉(βi) = p〈βj ,βj+1,~ι 〉(βj+1).

So

(7.3) p〈βj ,βj+1,~ι 〉¹βj+1 ° p〈βj ,βi,~ι 〉(βi) ∈ Q
◦
βj+1 ×R

◦
βj+1 .

Also,

(7.4) p〈βj+1,βi,~ι 〉¹βi ° ∀(q, r) ∈ Q◦βj+1 ×R
◦
βj+1(q, r) ≥ p〈βj+1,βi,~ι 〉(βi),

by the definition of p〈βj+1,βi〉.
Now

p¹βi ≤ p¹βj+1 ≤ p〈βj ,βj+1,~ι 〉¹βj+1

and

p¹βi ≤ p¹(βj+1, βj+2) = p〈βj+1,βj+2,~ι 〉¹βj+2 = p〈βj+1,βi,~ι 〉¹βi.
Hence from (7.3) and (7.4) we obtain

p¹βi ° p〈βj ,βi,~ι 〉(βi) ≥ p〈βj+1,βi,~ι 〉(βi)

and so by induction

p¹βi ° p〈βj ,βi,~ι 〉(βi) ≥ p〈βi−1,βi,~ι 〉(βi).

If X ⊆ P, define Gen(X) by

p ∈ Gen(X) iff there exist conditions p1, . . . , pn ∈ X such that

if p′ ≤ p1, . . . , pn, then p′ ≤ p.
Choose H ⊆ PωL2 to be PωL2 generic over L. Then set

G = Gen(H ∪ {p~α : ~α ∈ ({ω1} ∪ I)<ω}).
We maintain that G is P generic over L. It is evident from the definition

of p~α when |~α| = 2 that G has the coherence property (7.1). Thus showing
G to be P generic over L will complete the proofs of Theorems 2 and 3.

Certainly, if p ∈ G and p ≥ p, then p ∈ G. It follows from Claim 2
(and the fact that ω, ω1 6∈ sp(p~α) for ~α ∈ ({ω1} ∪ I)<ω) that G consists
of pairwise compatible conditions. Thus it suffices to see that G ∩ A 6= ∅
whenever A ⊆ P is an L-definable maximal antichain.

First note that if A ⊆ P is an L-definable antichain, then A ∈ L. This
observation uses the facts that conditions in P have Easton support and that
in the presence of 0# there exist unboundedly many L-Mahlo cardinals α
such that Lα ≺ L.
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So suppose A ∈ L is a maximal antichain in P. Then A is a maxi-
mal antichain in Pι for some ι ∈ I, hence a maximal antichain in Pι+ . It
follows from Claim 1 and the well-foundedness of the ordinals that there
exist finitely many ~α1, . . . , ~αn ∈ ({ω1} ∪ I)<ω such that if p~α

1
, . . . , p~α

n ≥ p,
then p reduces A below ωL2 . Since H is PωL2 generic over L, we conclude
that G ∩A 6= ∅.

R e m a r k. It is evident from the construction of G that if j : L → L
is an elementary endomorphism, then p ∈ G iff j(p) ∈ G. It follows that
the Silver indiscernibles remain indiscernible in L[G] (and L[R∞], for that
matter).

8. Questions. It is possible to explore in at least two directions, namely,
(1) supplying appropriate definitions and considering immune κ-partitions
for κ > ω, and (2) considering immune partitions of unordered n-tuples of
ordinals for 1 < n < ω. Some questions can be settled by adapting the proof
of Theorems 2 and 3.

For example, suppose 1 < κ ≤ ω and 1 ≤ n < ω and define an n-
immune κ-partition of a set (class) X to be a function F : [X]n → κ such
that if x ⊆ X is infinite and constructible, then |F”[x]n| = κ. The immune
partitions discussed heretofore are 1-immune partitions in this terminology.
Let us briefly consider 2-immune partitions.

It is not difficult to see that 2-immune partitions can be added generically
by essentially the same method as 1-immune partitions. For example, the
following forcing operations add a 2-immune 2-partition of the ordinals:

(a) Add sparse subsets to ω and ω1, say using Sacks forcing and Qω1 .
(b) Add a sparse subset to each regular α > ω1 and add a 2-immune

ω-partition of the ordinals, using an adaptation of the backwards
Easton support iteration P̂+. At regular cardinals α > ω1, add a
2-immune ω-partition of α with conditions that are 2-immune ω-
partitions of ordinals δ < α. Notice that there is no need to add any
new subsets of ω1 on account of F : [ω1]2 → ω, where F ({α < β}) =
fβ(α) and fβ projects β into ω.

(c) Add a Cohen real to obtain a 2-immune 2-partition of the ordinals.

In fact, adding a 1-immune 2-partition of the ordinals adds a 2-immune
2-partition of the ordinals: If F : µ → κ is a 1-immune κ-partition, then
G : [µ]2 → κ defined by G({α < β}) = F (β) is a 2-immune κ-partition. The
converse is open.

Matters to explore include:

(1) Does the existence of an (n+ 2)-immune κ-partition ever imply the
existence of an (n+ 1)-immune κ-partition?
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(2) Is there anything interesting to say about immune κ-partitions for
κ > ω?

(3) Is there anything interesting to say about immunity relativized to
inner models other than L?

(4) (Sy Friedman in [F]) Suppose that 1 < κ ≤ ω. We say F : X → κ is
weakly immune iff |F”x| > 1 whenever x ⊆ X is infinite. Does the
existence of a weakly immune κ-partition, where 2 < κ < ω, imply
the existence of an immune 2-partition?

We say that an immune κ-partition F : OR → κ is minimal iff F is
definable over L[x] whenever x is an infinite set of ordinals with the property
that |F”x| < κ.

The ω-partition of Theorem 3 satisfies a weak version of this property.
Suppose that 1 < κ ≤ ω and F : OR → κ is an immune κ-partition of
the ordinals. We say that F is weakly minimal when there exists a fixed
non-constructible real r such that r ∈ L[x] whenever x ⊆ OR is infinite and
|F”x| < κ.

Theorem 4. There exists a weakly minimal immune ω-partition of the
ordinals in a cardinal and GCH preserving generic extension of L. If 0#

exists, then such a generic extension of L is definable over L[0#].

P r o o f. The forcing property P̂+ is equivalent to S ∗ P̂+
ω1

, where S is
Sacks forcing below the condition T∗. Work in a P̂+ generic extension. Fix a
Sacks real r. Suppose x is an infinite set of ordinals, but that R∞”x is finite.
We may assume that x is countable. Since S ° “P̂+

ω1
is ≤ω-distributive”, we

deduce that x ∈ L[r] and that x is non-constructible. Thus r ∈ L[x].

It remains open whether it is consistent that there exists a minimal
immune partition of the ordinals.
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