

Commutativity of compact selfadjoint operators

by

G. GREINER (Erlangen) and W. J. RICKER (Kensington, N.S.W.)

Abstract. The relationship between the joint spectrum $\gamma(A)$ of an n-tuple $A=(A_1,\ldots,A_n)$ of selfadjoint operators and the support of the corresponding Weyl calculus $T(A):f\mapsto f(A)$ is discussed. It is shown that one always has $\gamma(A)\subset \operatorname{supp}(T(A))$. Moreover, when the operators are compact, equality occurs if and only if the operators A_j mutually commute. In the non-commuting case the equality fails badly: While $\gamma(A)$ is countable, $\operatorname{supp}(T(A))$ has to be an uncountable set. An example is given showing that, for non-compact operators, coincidence of $\gamma(A)$ and $\operatorname{supp}(T(A))$ no longer implies commutativity of the set $\{A_i\}$.

Introduction. A notion of joint spectrum $\gamma(A)$ for a commuting n-tuple of bounded linear operators $A = (A_1, \ldots, A_n)$ in a Banach space X was introduced by McIntosh and Pryde in [5]. Namely

(1)
$$\gamma(A) = \left\{ \lambda \in \mathbb{R}^n : 0 \in \sigma\left(\sum_{j=1}^n (A_j - \lambda_j I)^2\right) \right\},$$

where $\sigma(B)$ is the usual spectrum of a single operator B. For n-tuples A satisfying $\sigma(A_j) \subset \mathbb{R}$, $1 \leq j \leq n$, this particular joint spectrum $\gamma(A)$ coincides with most other known joint spectra [6], and has proved to be effective in the solution of certain linear systems of operator equations [5, 7].

For commuting n-tuples A satisfying an estimate of the form

$$||e^{i\langle \xi, A\rangle}|| \le C(1+|\xi|)^s, \quad \xi \in \mathbb{R}^n,$$

for some positive constants C and s (where $\langle \xi, A \rangle = \sum_{j=1}^n \xi_j A_j$ and $|\cdot|$ denotes the usual Euclidean norm in \mathbb{R}^n) it turns out that $\gamma(A)$ is precisely the support, supp(T(A)), of a certain functional calculus $T(A): \mathcal{A}_s \to \mathcal{L}(X)$, that is,

(2)
$$\operatorname{supp}(T(A)) = \gamma(A)$$

¹⁹⁹¹ Mathematics Subject Classification: 47A13, 47A25, 47A60, 47B15.

The support of an Alexander von Humboldt Fellowship is gratefully acknowledged by the second author.

(see [5], for example). Here \mathcal{A}_s is an algebra of functions containing the Schwartz space $\mathcal{S}(\mathbb{R}^n)$ of all rapidly decreasing, \mathbb{C} -valued functions on \mathbb{R}^n and $\mathcal{L}(X)$ is the space of all bounded linear operators of X into itself. For the case s=0, the algebra \mathcal{A}_s reduces to $\mathcal{S}(\mathbb{R}^n)$ itself and the calculus $T(A):\mathcal{S}(\mathbb{R}^n)\to\mathcal{L}(X)$, given by the formula

(3)
$$T(A)f = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle \xi, A \rangle} \widehat{f}(\xi) d\xi, \quad f \in \mathcal{S}(\mathbb{R}^n),$$

may be interpreted as an operator-valued distribution (where \widehat{f} denotes the Fourier transform of f). In this case T(A) is called the Weyl calculus of A [1, 2, 12], and $\operatorname{supp}(T(A))$ is precisely the support of T(A) in the usual sense for distributions; it is always a non-empty compact subset of \mathbb{R}^n [1, Lemma 2.3].

So, for commuting n-tuples A which generate bounded groups $\xi \mapsto e^{i\langle \xi, A \rangle}$, $\xi \in \mathbb{R}^n$, the joint spectral set $\gamma(A)$ is intimately related to the Weyl calculus T(A). An examination of (1) shows that the definition of $\gamma(A)$, unlike many other joint spectra, also makes perfectly good sense for non-commuting n-tuples A. Moreover, the recent articles [8, 9] show that $\gamma(A)$ also has useful applications in the non-commutative setting. Of course, the Weyl calculus (3) is also well defined for certain non-commuting n-tuples A; indeed, it was introduced by H. Weyl precisely because of this point. So, the natural question is: How closely related are the sets $\gamma(A)$ and supp(T(A)) in general?

The aim of this note is to give a detailed answer to this question for the case of n-tuples A of selfadjoint operators in Hilbert space. A suggestion as to what might be expected can be found in [3] where a detailed study is made of certain properties of the sets $\gamma(A)$ for (possibly) non-commutative A (call A commutative if the operators A_i , $1 \le j \le n$, mutually commute). For an n-tuple A of selfadjoint operators in a 2-dimensional Hilbert space it is known that A is commutative if and only if (2) holds [3, Proposition 8]. We show that the same is true in any finite-dimensional Hilbert space H: see Theorem 2. Moreover, commutativity of A turns out to be equivalent to supp(T(A)) being a finite subset of \mathbb{R}^n with at most k elements, where $k = \dim(H)$. For non-commutative n-tuples A (still with $\dim(H) < \infty$) the equality (2) "fails badly". Indeed, the set $\gamma(A)$ remains finite (always being a subset of $\sigma(A_1) \times \ldots \times \sigma(A_n)$ whereas $\operatorname{supp}(T(A))$ is necessarily an uncountable subset of \mathbb{R}^n ; see Theorem 3. This dichotomy makes it somewhat unclear what to expect in arbitrary Hilbert spaces. Surprisingly, for n-tuples A consisting of compact selfadjoint operators the analogy with the finite-dimensional case is rather close. It turns out that equality in (2) is still equivalent to commutativity of A, which, in turn, is equivalent to supp(T(A)) being a countable subset of \mathbb{R}^n (cf. Theorem 4). So (curiously),

the commutativity of A is equivalent to the equality of a purely algebraic notion (namely, the set $\gamma(A)$) with a purely analytic notion (namely, the set $\sup(T(A))$).

The main ingredients in the proofs of the above results are the notion of the maximal abelian subspace of A (introduced in [3]), Theorem 1 below which states that particular kinds of isolated points of $\operatorname{supp}(T(A))$ (called hyperisolated) are joint eigenvalues of A, and the fact (cf. Proposition 4) that every isolated point of $\operatorname{supp}(T(A))$ is hyperisolated whenever $\operatorname{supp}(T(A))$ is a countable set.

Since any compact subset of \mathbb{R}^n is the support of some (even commuting) n-tuple of bounded selfadjoint operators [1, p. 255], it cannot be expected that Theorem 4 has a larger range of applicability. Indeed, we exhibit a pair $A = (A_1, A_2)$ of bounded selfadjoint (but not compact) operators A_1 and A_2 in an infinite-dimensional Hilbert space for which equality in (2) does hold, but such that $A_1A_2 \neq A_2A_1$; see Example 1.

In the final section of the paper a study is made, for pairs $A = (A_1, A_2)$ of compact selfadjoint operators A_1 and A_2 , of the connection between the sets $\gamma(A)$, supp(T(A)) and $\sigma(A_1+iA_2)$ with the aim of extending Proposition 10 of [3] from 2-dimensional spaces to finite-dimensional spaces.

1. Basic properties of $\gamma(A)$ and $\operatorname{supp}(T(A))$. In this section we collect together some basic facts about the sets $\gamma(A)$ and $\operatorname{supp}(T(A))$ which are needed in the sequel. We begin with a simple but useful result.

LEMMA 1. Let $A = (A_1, ..., A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H and M be a closed linear subspace of H which is invariant for A (i.e., invariant for each operator A_j , j = 1, ..., n).

- (i) The orthogonal complement M^{\perp} is invariant for each operator A_j , $1 \leq j \leq n$.
- (ii) If A_M (respectively, $A_{M^{\perp}}$) denotes the selfadjoint n-tuple in the Hilbert space M (respectively, M^{\perp}) consisting of the restrictions of A_j , $1 \leq j \leq n$, to M (respectively, M^{\perp}), then
 - (a) $\operatorname{supp}(T(A)) = \operatorname{supp}(T(A_M)) \cup \operatorname{supp}(T(A_{M^{\perp}}))$, and
 - (b) $\gamma(A) = \gamma(A_M) \cup \gamma(A_{M^{\perp}}).$

Proof. (i) follows from $A_j^*(M^{\perp}) \subset M^{\perp}$ and the selfadjointness of each A_j , $1 \leq j \leq n$.

- (ii) We have $H = M \oplus M^{\perp}$ and $A_j = (A_j)_M \oplus (A_j)_{M^{\perp}}$ for each $j = 1, \ldots, n$.
- (a) It follows that $(i\langle \xi, A \rangle)^r = (i\langle \xi, A_M \rangle)^r \oplus (i\langle \xi, A_{M^{\perp}} \rangle)^r$, $\xi \in \mathbb{R}^n$, $r \in \mathbb{N}$, and hence, via the power series expansion of the exponential function, that

$$e^{i\langle \xi, A \rangle} = e^{i\langle \xi, A_M \rangle} \oplus e^{i\langle \xi, A_{M^{\perp}} \rangle}, \quad \xi \in \mathbb{R}^n.$$

an 1989 .

It is then clear from the definition of T(A)f as a Bochner integral with respect to the uniform operator topology of $\mathcal{L}(H)$ (see (3)) that

$$T(A)f = T(A_M)f \oplus T(A_{M^{\perp}})f, \quad f \in \mathcal{S}(\mathbb{R}^n),$$

from which (a) follows.

(b) follows from the formulae

$$\sum_{j=1}^{n} (\lambda_{j} I - A_{j})^{2} = \sum_{j=1}^{n} (\lambda_{j} I - (A_{j})_{M})^{2} \oplus \sum_{j=1}^{n} (\lambda_{j} I - (A_{j})_{M^{\perp}})^{2}, \quad \lambda \in \mathbb{R}^{n},$$

together with the fact that $U \oplus V$ is invertible in $H = M \oplus M^{\perp}$ if and only if U is invertible in M and V is invertible in M^{\perp} .

We recall that $\lambda \in \mathbb{C}^n$ is called a *joint eigenvalue* of an *n*-tuple of bounded operators $A = (A_1, \ldots, A_n)$ if there exists a non-zero vector $x \in H$ such that $A_j x = \lambda_j x$ for each $j = 1, \ldots, n$. The vector x is then called a *joint eigenvector* of A corresponding to λ .

LEMMA 2. Let $A = (A_1, ..., A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H and $\lambda \in \mathbb{R}^n$ be a joint eigenvalue of A. Then $\lambda \in \gamma(A) \cap \text{supp}(T(A))$.

Proof. Let $x \neq 0$ be a joint eigenvector of A corresponding to λ . A simple calculation (using power series expansion) shows that $e^{i\langle \xi, A \rangle}x = e^{i\langle \xi, \lambda \rangle}x$, $\xi \in \mathbb{R}^n$. It then follows from (3) and the Fourier inversion theorem that

(4)
$$[T(A)f]x = (2\pi)^{-n/2} \Big[\int_{\mathbb{R}^n} e^{i\langle \xi, \lambda \rangle} \widehat{f}(\xi) \, d\xi \Big] x = f(\lambda)x$$

for every $f \in \mathcal{S}(\mathbb{R}^n)$. So, given any neighbourhood U of λ in \mathbb{R}^n choose $f \in C_c^{\infty}(\mathbb{R}^n)$ satisfying $\operatorname{supp}(f) \subset U$ and $f(\lambda) = 1$. Then $[T(A)f]x = x \neq 0$, that is, $T(A)f \neq 0$. Accordingly, $\lambda \in \operatorname{supp}(T(A))$.

Since joint eigenvalues of A are also joint approximate eigenvalues, it follows from [3, Proposition 2] that $\lambda \in \gamma(A)$.

LEMMA 3. Let $A = (A_1, ..., A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H. Then $\gamma(A) \subset \text{supp}(T(A))$.

Proof. Let $\lambda \in \gamma(A)$. Then λ is a joint approximate eigenvalue of A by [3, Proposition 2]. Choose vectors $x_n \in H$ satisfying $||x_n|| = 1$ for all $n \in \mathbb{N}$ and such that $\lim_{n\to\infty} ||A_jx_n - \lambda_jx_n|| = 0$ for $j=1,\ldots,n$. Let \mathcal{U} be a free ultrafilter on \mathbb{N} and $H_{\mathcal{U}} = \ell^{\infty}(H)/c_{\mathcal{U}}(H)$ denote the \mathcal{U} -product of H (where $\ell^{\infty}(H)$ is the space of all bounded sequences in H and $c_{\mathcal{U}}(H)$ is the subspace of those sequences converging to 0 along \mathcal{U} ; see [11, V.1]). Furthermore, let $(A_j)_{\mathcal{U}}$ be the canonical extension of A_j . Then $A_{\mathcal{U}} = ((A_1)_{\mathcal{U}}, \ldots, (A_n)_{\mathcal{U}})$ is an n-tuple of selfadjoint operators on the Hilbert space $H_{\mathcal{U}}$ and $x_{\mathcal{U}} = (x_n) + c_{\mathcal{U}}(H) \in H_{\mathcal{U}}$ is an eigenvector of $(A_j)_{\mathcal{U}}$ corresponding to λ_j , for each

$$(T(A)f)_{\mathcal{U}} = T(A_{\mathcal{U}})f, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

To establish this identity we note that the mapping $B\mapsto B_{\mathcal{U}}$ is an isometric homomorphism of the Banach algebra $\mathcal{L}(H)$ into $\mathcal{L}(H_{\mathcal{U}})$; see [11, V.1.2]. Thus we have $\langle \eta, A \rangle_{\mathcal{U}} = \langle \eta, A_{\mathcal{U}} \rangle$ for $\eta \in \mathbb{R}^n$. Then (by power series expansion) it follows that $(e^{i\langle \eta, A \rangle})_{\mathcal{U}} = e^{i\langle \eta, A_{\mathcal{U}} \rangle}$ and finally, for $f \in \mathcal{S}(\mathbb{R}^n)$, we have (by approximating the integral via Riemann sums)

$$(2\pi)^{n/2} (T(A)f)_{\mathcal{U}} = \left(\int_{\mathbb{R}^n} e^{i\langle \eta, A \rangle} \widehat{f}(\eta) \, d\eta \right)_{\mathcal{U}}$$
$$= \int_{\mathbb{R}^n} e^{i\langle \eta, A_{\mathcal{U}} \rangle} \widehat{f}(\eta) \, d\eta = (2\pi)^{n/2} T(A_{\mathcal{U}}) f. \blacksquare$$

DEFINITION 1. For $\lambda \in \mathbb{R}^n$ and $A = (A_1, \ldots, A_n)$ an *n*-tuple of selfadjoint operators in a Hilbert space H, define

$$H_{\lambda}(A) = \{0\} \cup \{x \in H : x \text{ is a joint eigenvector of } A \text{ for } \lambda\}.$$

Then $H_{\lambda}(A)$, called the *joint eigenspace* of λ , is a closed subspace of H. The orthogonal projection onto $H_{\lambda}(A)$ is denoted by $E_{\lambda}(A)$ and is called the *joint eigenprojection* of A corresponding to λ .

We recall that M[A] denotes the maximal abelian subspace for A; see [3]. It is the largest closed subspace of H which is invariant for A and such that the restrictions $(A_j)_{M[A]}$ of A_j to M[A], for $j=1,\ldots,n$, mutually commute in the Hilbert space M[A]. The connection between M[A] and the joint eigenprojections of A is given by the following

PROPOSITION 1. Let $A = (A_1, ..., A_n)$ be an n-tuple of compact selfadjoint operators in a Hilbert space H. Then

- (i) $E_{\lambda}(A)E_{\mu}(A)=0=E_{\mu}(A)E_{\lambda}(A)$ for all $\lambda,\mu\in\gamma(A)$ with $\lambda\neq\mu$, and
- (ii) $M[A] = \bigoplus_{\lambda \in \gamma(A)} H_{\lambda}(A)$ is the closed subspace of H generated by the family of joint eigenspaces $\{H_{\lambda}(A) : \lambda \in \gamma(A)\}$.
- Proof. (i) Choose any index $j \in \{1, \ldots, n\}$ such that $\lambda_j \neq \mu_j$. Since A_j is selfadjoint and $\lambda_j, \mu_j \in \sigma(A_j)$ [3, Proposition 2], it follows that $\ker(A_j \lambda_j I)$ is orthogonal to $\ker(A_j \mu_j I)$. Since $H_{\lambda}(A) = \bigcap_{r=1}^n \ker(A_r \lambda_r I)$ and $H_{\mu}(A) = \bigcap_{r=1}^n \ker(A_r \mu_r I)$ it follows that $H_{\lambda}(A)$ is orthogonal to $H_{\mu}(A)$ and (i) follows.
- (ii) It is clear that each closed subspace $H_{\lambda}(A)$, $\lambda \in \gamma(A)$, is invariant for each operator A_j , $1 \leq j \leq n$, and the restrictions of A_j to $H_{\lambda}(A)$ mutually

commute. By definition of M[A] it follows that the closed subspace of H generated by $\{H_{\lambda}(A): \lambda \in \gamma(A)\}$ is contained in M[A]. On the other hand, the restrictions $(A_j)_{M[A]}, \ 1 \leq j \leq n$, form a mutually commuting family of compact selfadjoint operators in the Hilbert space M[A]. Accordingly, there exists an orthonormal basis of M[A] consisting of joint eigenvectors of $\{(A_j)_{M[A]}: 1 \leq j \leq n\}$. Each such joint eigenvector $x \in M[A]$ of $A_{M[A]}$ is also a joint eigenvector of A with the same joint eigenvalue μ as for $A_{M[A]}$. Lemma 2 implies that $\mu \in \gamma(A)$ and hence, M[A] is contained in the closed subspace of H generated by $\{H_{\lambda}(A): \lambda \in \gamma(A)\}$.

The next result shows that for compact n-tuples A the Weyl calculus T(A) almost takes its values in the compact operators on H.

PROPOSITION 2. Let $A = (A_1, ..., A_n)$ be an n-tuple of compact self-adjoint operators in a Hilbert space H. Then T(A)f - f(0)I is a compact operator for every $f \in \mathcal{S}(\mathbb{R}^n)$.

Proof. For $\xi \in \mathbb{R}^n$ fixed, a consideration of the power series expansion of $e^{i\langle \xi,A\rangle}$, together with the fact that each operator $(i\langle \xi,A\rangle)^r$, $r=1,2,\ldots$, is compact, shows that $e^{i\langle \xi,A\rangle}-I$ is compact. Let $B_N=\{x\in\mathbb{R}^n:|x|< N\}$ for each $N=1,2,\ldots$ and fix $f\in\mathcal{S}(\mathbb{R}^n)$. Since the map $\xi\mapsto e^{i\langle \xi,A\rangle}$, $\xi\in\mathbb{R}^n$, is continuous for the operator norm topology in $\mathcal{L}(H)$ the integral

$$K_N(f) = \int_{B_N} (e^{i\langle \xi, A \rangle} - I) \widehat{f}(\xi) d\xi$$

exists as the operator norm limit of Riemann sums and hence, is a compact operator. The conclusion follows from the identities

$$(2\pi)^{n/2}(T(A)f-f(0)I) = \int\limits_{B_N} (e^{i\langle \xi,A\rangle}-I)\widehat{f}(\xi)\,d\xi + \int\limits_{\mathbb{R}^n\backslash B_N} (e^{i\langle \xi,A\rangle}-I)\widehat{f}(\xi)\,d\xi,$$

together with the estimates

$$\left\| \int_{\mathbb{R}^n \setminus B_N} (e^{i\langle \xi, A \rangle} - I) \widehat{f}(\xi) \, d\xi \right\| \le 2 \int_{\mathbb{R}^n \setminus B_N} |\widehat{f}(\xi)| \, d\xi,$$

valid for $N=1,2,\ldots$, which show that $K_N(f)\to T(A)f-f(0)I$ as $N\to\infty$ in the operator norm topology.

Given a function $f: \mathbb{R}^n \to \mathbb{C}$ and $\nu \in \mathbb{R}^n$ define the ν -translate $f_{\nu}: \mathbb{R}^n \to \mathbb{C}$ of f by $f_{\nu}(x) = f(x - \nu)$ for $x \in \mathbb{R}^n$. For a subset $K \subset \mathbb{R}^n$ let $K - \nu = \{x - \nu : x \in K\}$. Finally, if $A = (A_1, \ldots, A_n)$ is an n-tuple of elements from $\mathcal{L}(H)$ denote the n-tuple $(A_1 - \nu_1 I, \ldots, A_n - \nu_n I)$ by $A - \nu I$.

LEMMA 4. Let $A = (A_1, ..., A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H and $\lambda \in \mathbb{R}^n$. Then

- (i) $T(A)f_{\lambda} = T(A \lambda I)f$ for every $f \in \mathcal{S}(\mathbb{R}^n)$,
- (ii) $supp(T(A \lambda I)) = supp(T(A)) \lambda$, and
- (iii) $\gamma(A \lambda I) = \gamma(A) \lambda$.

Proof. (i) follows from the definition of $T(A)f_{\lambda}$, the fact that $\widehat{f}_{\lambda}=e^{-i\langle\cdot,\lambda\rangle}\widehat{f}$ and the observation that

$$e^{-i\langle \xi,\lambda\rangle}e^{i\langle \xi,A\rangle}=e^{-i\langle \xi,\lambda I\rangle}e^{i\langle \xi,A\rangle}=e^{i\langle \xi,A-\lambda I\rangle},\quad \xi\in\mathbb{R}^n,$$

since the operators $\langle \xi, \lambda I \rangle$ and $\langle \xi, A \rangle$ commute.

- (ii) follows from (i), the definition of the support of a distribution, and the fact that $\operatorname{supp}(f_{\lambda}) = \lambda + \operatorname{supp}(f)$ for every $f \in C_c^{\infty}(\mathbb{R}^n)$.
 - (iii) follows from the definition of the sets involved.

We conclude this section with a topological result needed later.

PROPOSITION 3. Let K be a subset of \mathbb{R}^n which is compact, infinite and countable. Let P denote the set of all isolated points of K. Then

- (i) P is an infinite set, and
- (ii) $K = \overline{P}$ (the bar denoting closure).
- Proof. (i) The set $K = \bigcup_{\lambda \in K} \{\lambda\}$ is a countable union. By Baire's Theorem at least one set $\{\lambda\}$ has non-empty interior, that is, $\lambda \in P$. Choose any $\lambda \in P$. Then $K \setminus \{\lambda\}$ is again compact, infinite and countable and hence, also has isolated points. Continuing this argument inductively it follows that P is infinite.
- (ii) Suppose $\overline{P} \neq K$. Then $M = K \setminus \overline{P}$ is a non-empty, open subset of the compact space K. The set $M = \bigcup_{\lambda \in M} \{\lambda\}$ is a countable union, hence by Baire's Theorem at least one set $\{\lambda\}$, $\lambda \in M$, is open in M. Since M is open (in K), $\{\lambda\}$ is open in K, that is, $\lambda \in P$, a contradiction.
- 2. Commutativity criteria. The purpose of this section is to present some criteria which characterize commutativity of n-tuples $A=(A_1,\ldots,A_n)$ of compact selfadjoint operators. These results are consequences of the following important fact concerning the nature of particular kinds of isolated points of supp(T(A)). First we require a new notion.

DEFINITION 2. Let M be a compact subset of \mathbb{R}^n . A point $\lambda \in M$ is called *hyperisolated* if it is isolated and there is a hyperplane (i.e. a maximal proper affine subspace of \mathbb{R}^n), say L, such that $L \cap M = \{\lambda\}$.

Analytically this means that there is a (necessarily non-zero) $\eta \in \mathbb{R}^n$ and $\varepsilon > 0$ such that $|\langle \lambda - \mu, \eta \rangle| \ge \varepsilon$ for every $\mu \in M$ with $\mu \ne \lambda$.

Remark 1. λ is hyperisolated in M if and only if there exists a direction η and $\varepsilon > 0$ such that the n-dimensional strip

$$S(\lambda, \eta, \varepsilon) = \lambda + \{x \in \mathbb{R}^n : |\langle x, \eta \rangle| < \varepsilon\}$$

intersects M only at the point λ .

THEOREM 1. Let $A=(A_1,\ldots,A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H and $\lambda \in \operatorname{supp}(T(A))$ be hyperisolated. Then λ is a joint eigenvalue of A. Moreover, the decomposition $H=H_{\lambda}(A)\oplus H_{\lambda}(A)^{\perp}$ reduces the n-tuple A (that is, $A=A_{H_{\lambda}}\oplus A_{H_{\lambda}^{\perp}}$), one has $A_{H_{\lambda}}=\lambda I$ and $\operatorname{supp}(T(A_{H_{\lambda}^{\perp}}))=\operatorname{supp}(T(A))\setminus\{\lambda\}$.

Remark 2. (a) It will be shown in the course of the proof of Theorem 1 that the corresponding eigenprojection $E_{\lambda}(A)$ equals $T(A)\varphi$, where $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ is supported in a neighbourhood U_{λ} of λ with $U_{\lambda} \cap \operatorname{supp}(T(A)) = \{\lambda\}$ and φ is constantly equal to 1 in a (smaller) neighbourhood of λ . It follows from Proposition 2 that $E_{\lambda}(A)$ is a finite rank projection whenever the operators A_j , $1 \leq j \leq n$, are compact and $\lambda \neq 0$.

(b) As a consequence of Theorem 1 we obtain $\operatorname{supp}(T(A)) = \{\lambda\}$ if and only if $A = \lambda I$. Furthermore, if $\operatorname{supp}(T(A))$ is a finite set, say $\operatorname{supp}(T(A)) = \{\lambda^{(1)}, \ldots, \lambda^{(m)}\}$, then we can successively split off the joint eigenspaces. After m steps we end up with the following representation of A: there exist non-zero orthogonal projections P_1, \ldots, P_m satisfying $\sum_{j=1}^m P_j = I$ and $P_k P_j = P_j P_k = 0$ for $k \neq j$ such that $A = \sum_{j=1}^m \lambda^{(j)} P_j$. In particular, $A_r = \sum_{j=1}^m \lambda^{(j)}_r P_j$ for each $1 \leq r \leq n$, where $\lambda^{(j)} = (\lambda^{(j)}_1, \ldots, \lambda^{(j)}_n)$.

For ease of reading we postpone the proof of Theorem 1 to the end of this section. We prefer first to establish some consequences. We begin with a finite-dimensional result.

THEOREM 2. Let H be a Hilbert space of finite dimension $k \geq 1$ and $A = (A_1, \ldots, A_n)$ be an n-tuple of selfadjoint operators in H. The following statements are equivalent.

- (i) The operators A_j , $1 \le j \le n$, mutually commute.
- (ii) supp(T(A)) is a finite subset of \mathbb{R}^n .
- (iii) supp(T(A)) has at most k elements.
- (iv) $\gamma(A) = \operatorname{supp}(T(A))$.

Proof. (i) \Leftrightarrow (ii) follows from the main Theorem in [10]; see also Remark 2(b). The implication (i) \Rightarrow (iv) is well known (cf. Introduction) and (iv) \Rightarrow (ii) since $\gamma(A) \subset \sigma(A_1) \times \ldots \times \sigma(A_n)$; see [3, Proposition 2]. Clearly (iii) \Rightarrow (ii). So, it remains to establish (ii) \Rightarrow (iii). Since each point of a finite set is hyperisolated it follows from Theorem 1 that each point of supp(T(A)) is a joint eigenvalue of A. Since joint eigenvectors corresponding to distinct

The next result illustrates "how different" the set supp(T(A)) is when the n-tuple A does not commute.

THEOREM 3. Let H be a Hilbert space of finite dimension $k \geq 1$ and $A = (A_1, \ldots, A_n)$ be an n-tuple of selfadjoint operators in H. Then supp(T(A)) is either a set with at most k elements (in which case A commutes), or supp(T(A)) is an uncountable set (in which case A is not commutative).

Proof. Suppose that $\operatorname{supp}(T(A))$ has more than k elements, in which case it is an infinite set by Theorem 2. Suppose that it is a countable set. Then Proposition 3 implies that the set P of all isolated points of $\operatorname{supp}(T(A))$ is infinite as well. Since each point of P is hyperisolated (see the following Proposition 4) each such point is a joint eigenvalue of A by Theorem 1. This is impossible as H is finite-dimensional and joint eigenvectors of A corresponding to distinct joint eigenvalues are orthogonal. Accordingly, $\operatorname{supp}(T(A))$ is an uncountable subset of \mathbb{R}^n .

PROPOSITION 4. Let $A = (A_1, ..., A_n)$ be an n-tuple of bounded selfadjoint operators in a Hilbert space H. If supp(T(A)) is a countable subset of \mathbb{R}^n , then

- (i) each isolated point of supp(T(A)) is hyperisolated, and
- (ii) $supp(T(A)) = \gamma(A)$.

Proof. (i) By a suitable translation it suffices to consider the special case of 0 being an isolated point of $\operatorname{supp}(T(A))$; see Lemma 4. Since the countable union of hyperplanes $V = \bigcup \{\ker(\langle \cdot, \lambda \rangle) : \lambda \in \operatorname{supp}(T(A)) \setminus \{0\}\}$ cannot be all of \mathbb{R}^n (hyperplanes have Lebesgue measure 0) there must exist a point $\eta \in \mathbb{R}^n \setminus V$. Then the hyperplane $\ker(\langle \cdot, \eta \rangle)$ intersects $\operatorname{supp}(T(A))$ only in 0. Here $\langle \cdot, \lambda \rangle$ denotes the linear functional $x \mapsto \langle x, \lambda \rangle$, $x \in \mathbb{R}^n$.

(ii) By Theorem 1 and part (i) all isolated points of $\operatorname{supp}(T(A))$ are joint eigenvalues. By Lemma 2 they belong to $\gamma(A)$. By Proposition 3, $\operatorname{supp}(T(A))$ is the closure of its isolated points. Since $\gamma(A)$ is a closed set [3, Proposition 1], it follows that $\operatorname{supp}(T(A)) \subset \gamma(A)$. The converse inclusion is just Lemma 3.

The following result may be viewed as a natural extension of Theorem 2 to a class of operators in infinite-dimensional spaces.

THEOREM 4. Let $A = (A_1, ..., A_n)$ be an n-tuple of compact selfadjoint operators in a Hilbert space H. The following statements are equivalent.

- (i) The operators A_j , $1 \le j \le n$, mutually commute.
- (ii) supp(T(A)) is a countable subset of \mathbb{R}^n .

(iii) $\operatorname{supp}(T(A))$ is a countable subset of \mathbb{R}^n with 0 as only possible limit point.

(iv)
$$\gamma(A) = \operatorname{supp}(T(A))$$
.

Proof. (i) \Rightarrow (iv) is well known (cf. Introduction) and (iv) \Rightarrow (iii) by Corollary 3.1 of [3]. The implication (iii) \Rightarrow (ii) is obvious and (ii) \Rightarrow (iv) follows from Proposition 4.

So, it remains to establish (iv) \Rightarrow (i). Let M=M[A] be the maximal abelian subspace of A, in which case $H=M\oplus M^{\perp}$. By Lemma 1 it follows that

$$\operatorname{supp}(T(A_{M^{\perp}})) \subset \operatorname{supp}(T(A)) = \gamma(A)$$

and hence, $\operatorname{supp}(T(A_{M^{\perp}}))$ is a countable set. Suppose that $M^{\perp} \neq \{0\}$. Then $\operatorname{supp}(T(A_{M^{\perp}}))$ is a nonempty, countable, compact set, hence it has an isolated point λ (by Proposition 3). By Proposition 4(i) it is hyperisolated and then by Theorem 1 it is a joint eigenvalue of $A_{M^{\perp}}$. Clearly a corresponding joint eigenvector $x \in M^{\perp}$ of $A_{M^{\perp}}$ is also a joint eigenvector of A. This is a contradiction since, by Proposition 1(ii), joint eigenvectors belong to M.

Remark 3. Slightly more is true than proved in Theorem 4. Namely, let $A = (A_1, \ldots, A_n)$ be any *n*-tuple of bounded selfadjoint operators. It is not assumed that the operators A_j , $1 \le j \le n$, are compact. If $\operatorname{supp}(T(A))$ is a countable set, then the operators A_j , $1 \le j \le n$, mutually commute. This follows from the same argument as used to establish (iv) \Rightarrow (i) in the proof of Theorem 4, after noting that Proposition 4 implies $\gamma(A) = \operatorname{supp}(T(A))$.

Theorem 4 shows that the spectral set $\gamma(A)$, originally introduced for commuting n-tuples A actually characterizes commutativity of A for the case of n-tuples of compact selfadjoint operators. The following example shows that the hypothesis of the operators A_j , $1 \leq j \leq n$, being compact cannot be omitted.

EXAMPLE 1. Let $B=(B_1,B_2)$ where $B_1=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $B_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are considered as selfadjoint operators in \mathbb{C}^2 . It will be shown in Example 2 of Section 3 that $\operatorname{supp}(T(B))=\mathbb{D}$, where $\mathbb{D}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$. Since $B_1B_2\neq B_2B_1$, it follows from [3, Proposition 7] that $\gamma(B)=\emptyset$. Let $\{\lambda^{(k)}\}_{k=1}^\infty$ be a countable dense subset of \mathbb{D} and let T be the multiplication operator on ℓ^2 with the (bounded) sequence $(\lambda^{(k)})_{k=1}^\infty$. Then T is normal, hence $C_1=\Re(T)=\frac{1}{2}(T+T^*)$ and $C_2=\Im(T)=\frac{1}{2i}(T-T^*)$ commute. Thus, for the pair $C=(C_1,C_2)$, we have $\gamma(C)=\operatorname{supp}(T(C))$. Each $\lambda^{(k)}$ is a joint eigenvalue of C (the kth unit vector is a corresponding eigenvector) and so, by the closedness of $\gamma(C)$, it follows that $\mathbb{D}\subset\gamma(C)$. Since T is a contraction, for each $\nu=\nu_1+i\nu_2,\ \nu\not\in\mathbb{D}$, the operator

$$(\nu_1 I - C_1)^2 + (\nu_2 I - C_2)^2 = (\nu I - T)(\nu I - T)^*$$

is invertible, that is, $(\nu_1, \nu_2) \notin \gamma(C)$. Accordingly, $\gamma(C) = \operatorname{supp}(T(C)) = \mathbb{D}$. Let $A_j = B_j \oplus C_j$, for $j \in \{1, 2\}$, act in the Hilbert space $H = \mathbb{C}^2 \oplus \ell^2$ $(\equiv \ell^2)$. Then Lemma 1 implies that

$$\operatorname{supp}(T(A)) = \operatorname{supp}(T(B)) \cup \operatorname{supp}(T(C)) = \mathbb{D} \cup \mathbb{D} = \mathbb{D}$$

and also that

$$\gamma(A) = \gamma(B) \cup \gamma(C) = \emptyset \cup \mathbb{D} = \mathbb{D}.$$

However, $A_1A_2 \neq A_2A_1$ since $B_1B_2 \neq B_2B_1$.

Proof of Theorem 1. By translating to the origin (cf. Lemma 4) it suffices to prove the result for the case when 0 is a hyperisolated point of supp(T(A)).

Choose a non-negative function $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ which is supported inside a disc $B_{\varepsilon} = \{x \in \mathbb{R}^n : |x| < \varepsilon\}$, for some $\varepsilon > 0$, such that φ is constantly 1 near 0 (say, in $B_{\varepsilon/2}$) and $\overline{B}_{\varepsilon} \cap \operatorname{supp}(T(A)) = \{0\}$.

Define a distribution $\mathcal{U}:\mathcal{S}(\mathbb{R}^n)\to\mathcal{L}(H)$ by

$$\mathcal{U}(f) = T(A)(\varphi f), \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Then $\operatorname{supp}(\mathcal{U}) = \{0\}$ and \mathcal{U} is of finite order, say N (with N not exceeding the (finite) order of T(A) [1, Lemma 3.8]). So, there exist bounded operators R_{α} for $|\alpha| \leq N$ (multi-index notation) such that

$$\mathcal{U}(f) = \sum_{|\alpha| \le N} (D^{\alpha} f)(0) R_{\alpha}, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Being compactly supported, this distribution has a (unique) extension to $C^{\infty}(\mathbb{R}^n)$. For fixed $\xi \in \mathbb{R}^n$, let $e_{\xi}(x) = e^{i\langle x, \xi \rangle}$, $x \in \mathbb{R}^n$, in which case

(5)
$$T(A)(\varphi e_{\xi}) = \sum_{|\alpha| \le N} i^{|\alpha|} \xi^{\alpha} R_{\alpha}.$$

On the other hand, since $(\varphi e_{\xi})^{\wedge} = (\widehat{\varphi})_{\xi}$ it follows that

$$T(A)(\varphi e_{\xi}) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle y, A \rangle} \widehat{\varphi}(y - \xi) \, dy = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{i\langle u + \xi, A \rangle} \widehat{\varphi}(u) \, du$$

and hence, since $||e^{i\langle u+\xi,A\rangle}||=1$, we have

$$||T(A)(\varphi e_{\xi})|| \le (2\pi)^{-n/2} \int_{\mathbb{R}^n} |\widehat{\varphi}(u)| du < \infty$$

for all $\xi \in \mathbb{R}^n$. It follows from (5) that $R_{\alpha} = 0$ whenever $|\alpha| > 0$. Denoting R_0 simply by R gives

(6)
$$T(A)(\varphi f) = f(0)R, \quad f \in C^{\infty}(\mathbb{R}^n).$$

FACT 1. The operator R is non-zero, selfadjoint and coincides with $T(A)\varphi$.

Proof. Substitute $f=\varphi$ into (6) and use the fact that $\varphi^2=\varphi$ in a neighbourhood of $\operatorname{supp}(T(A))$ yields $R=T(A)\varphi$. That R is selfadjoint then follows from [1, Theorem 2.9]. To see that $R\neq 0$, let $f_\varepsilon\in C_c^\infty(\mathbb{R}^n)$ be any function supported in B_ε such that $T(A)f_\varepsilon\neq 0$; since $0\in\operatorname{supp}(T(A))$ such a function f_ε exists. Then $f_\varepsilon\varphi$ coincides with f_ε in a neighbourhood of $\operatorname{supp}(T(A))$ and so $T(A)(f_\varepsilon\varphi)=T(A)f_\varepsilon\neq 0$. But $T(A)(f_\varepsilon\varphi)=f_\varepsilon(0)R$ by (6). Accordingly, $f_\varepsilon(0)R\neq 0$ and hence, also $R\neq 0$.

Since 0 is hyperisolated there is $\eta \in \mathbb{R}^n$ with $|\eta| = 1$ and $\delta > 0$ such that the strip $S(\eta, \delta) = \{x \in \mathbb{R}^n : |\langle x, \eta \rangle| < 2\delta\}$ intersects supp(T(A)) only in 0. Let $M_{\eta} = (m_{jk})_{1 \leq j,k \leq n}$ be an orthogonal $(n \times n)$ -matrix which maps the unit vector η onto the unit vector $e_1 = (1, 0, \dots, 0)$, i.e. $M_{\eta} \eta = e_1$. Let $M_{\eta} A$ be the n-tuple of selfadjoint operators given by $(M_{\eta} A)_j = \sum_{k=1}^n m_{jk} A_k$. By [1, Theorem 2.9(a)] we have

(7)
$$T(M_{\eta}A)f = T(A)(f \circ M_{\eta}), \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Since both distributions T(A) and $T(M_{\eta}A)$ have compact support, identity (7) also holds for $f \in C^{\infty}(\mathbb{R}^n)$. We choose a non-zero C^{∞} -function $\varphi_1: \mathbb{R} \to [0,1]$ which is constantly 1 on a neighbourhood of 0 and vanishes on $\{t \in \mathbb{R}: |t| \geq \delta\}$. Define $\widetilde{\varphi} \in C^{\infty}(\mathbb{R}^n)$ by $\widetilde{\varphi}(x) = \varphi_1(\langle x, \eta \rangle)$. Then $\widetilde{\varphi}$ coincides with φ on a neighbourhood of supp(T(A)) and hence,

$$R = T(A)\varphi = T(A)\widetilde{\varphi} = T(M_{\eta}A)(\widetilde{\varphi} \circ M_{\eta}^t),$$

where M_{η}^{t} denotes the transpose of M_{η} . We have

$$(\widetilde{\varphi} \circ M_n^t)(x) = \varphi_1(\langle M_n^t x, \eta \rangle) = \varphi_1(\langle x, M_n \eta \rangle) = \varphi_1(x_1).$$

That is, $\widetilde{\varphi} \circ M_{\eta}^t$ is a function depending on just one of the variables. It follows from Theorem 2.9(b) of [1] that

$$R = T(M_n A)(\widetilde{\varphi} \circ M_n^t) = T((M_n A)_1)\varphi_1.$$

Note that $M_{\eta}\eta = e_1$ implies $M_{\eta}^t e_1 = \eta$, that is, $m_{1j} = \eta_j$ for $j = 1, \ldots, n$. It follows that $(M_{\eta}A)_1 = \sum_{j=1}^n m_{1j}A_j = \sum_{j=1}^n \eta_j A_j = \langle \eta, A \rangle$. Thus we have

$$R = T(M_{\eta}A)(\widetilde{\varphi} \circ M_{\eta}^{t}) = T(\langle \eta, A \rangle)\varphi_{1} = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{it\langle \eta, A \rangle} \widehat{\varphi}_{1}(t) dt.$$

By multiplicativity of the Weyl calculus for a single operator [1, Lemma 3.1] and the fact that $\widetilde{\varphi}^2 = \widetilde{\varphi}$ on a neighbourhood of $\operatorname{supp}(T(A))$ we have

$$R = T(A)(\widetilde{\varphi}^2) = T((M_{\eta}A)_1)(\varphi_1^2) = [T(\langle \eta, A \rangle)(\varphi_1)]^2 = R^2.$$

Thus we have established

FACT 2. R is a projection.

It is well known that the Weyl calculus for a single selfadjoint operator B coincides with the standard $C(\sigma(B))$ -functional calculus $f \mapsto f(B)$ for selfadjoint operators; in particular, T(B)f = f(B) for $f \in \mathcal{S}(\mathbb{R})$. Define $\varphi_{1,n}(t) = \varphi_1(nt), t \in \mathbb{R}$, and $\widetilde{\varphi}_n(x) = \varphi_{1,n}(\langle x, \eta \rangle), x \in \mathbb{R}^n$; the functions $\widetilde{\varphi}$ and $\widetilde{\varphi}_n$ coincide on a neighbourhood of supp(T(A)), hence

$$R = T(A)\widetilde{\varphi}_n = T(\langle \eta, A \rangle)\varphi_{1,n} = \varphi_{1,n}(\langle \eta, A \rangle)$$
 for all $n \in \mathbb{N}$.

For the $C(\sigma(B))$ -functional calculus the operator norm of $\psi(B)$ can be estimated by the sup-norm of ψ , i.e. $\|\psi(B)\| \leq \sup_{t \in \mathbb{R}} |\psi(t)|$. Since $\sup_{t \in \mathbb{R}} |t\varphi_{1,n}(t)| \to 0$ as $n \to \infty$ it follows that we have $\|\langle \eta, A \rangle R\| = \|\langle \eta, A \rangle \varphi_{1,n}(\langle \eta, A \rangle)\| \leq \sup_{t \in \mathbb{R}} |t\varphi_{1,n}(t)| \to 0$ as $n \to \infty$. We conclude that

$$\langle \eta, A \rangle R = R \langle \eta, A \rangle = 0.$$

So far η was fixed. However, this holds for every η which generates a strip separating 0 from the rest of $\operatorname{supp}(T(A))$. By the compactness of $\operatorname{supp}(T(A))$ the set of all such η 's forms an open subset of \mathbb{R}^n . In particular, there exist n linearly independent vectors $\eta^{(1)}, \ldots, \eta^{(n)} \in \mathbb{R}^n$ such that

$$\langle \eta^{(j)}, A \rangle R = R \langle \eta^{(j)}, A \rangle = 0, \quad 1 \le j \le n.$$

In matrix notation $\eta(AR) = \eta(RA) = 0$, where η is the invertible $(n \times n)$ -matrix having rows η_1, \ldots, η_n . Multiplying by η^{-1} from the right we obtain AR = RA = 0, i.e.

$$A_j R = R A_j = 0$$
 for all $1 \le j \le n$.

From this it follows that R maps H into the joint eigenspace $H_0(A)$. Actually, R is also onto as the following argument shows. Suppose $x \in H_0(A)$. Then by (4) and (6) we have $Rx = [T(A)\varphi]x = \varphi(0)x = x$, that is, $x \in R(H)$. Summarizing these results and taking into account that $R \neq 0$ (by Fact 1) we obtain

FACT 3. The joint eigenspace $H_0(A)$ is non-zero and R is the joint eigenprojection $E_0(A)$ of A corresponding to 0.

The joint eigenspace $H_0(A)$, being invariant for every A_j , reduces the n-tuple A, that is, A can be considered as a direct sum $A = A_{H_0} \oplus A_{H_0^\perp}$ corresponding to the decomposition $H = H_0(A) \oplus H_0(A)^\perp$. We have $A_{H_0} = 0$, hence $\operatorname{supp}(T(A_{H_0})) = \{0\}$. Since $\operatorname{supp}(T(A)) = \operatorname{supp}(T(A_{H_0})) \cup \operatorname{supp}(T(A_{H_0^\perp}))$ (by Lemma 1), it follows that either $\operatorname{supp}(T(A_{H_0^\perp})) = \operatorname{supp}(T(A))$ or $\operatorname{supp}(T(A_{H_0^\perp})) = \operatorname{supp}(T(A)) \setminus \{0\}$. Actually 0 cannot be an element of $\operatorname{supp}(T(A_{H_0^\perp}))$, since otherwise the result proved above, applied to the n-tuple $A_{H_0^\perp}$ on the Hilbert space $H_0(A)^\perp$, implies that there is a joint eigenvector $x \in H_0(A)^\perp$ of A corresponding to 0, a contradiction. So, we have finally shown that $\operatorname{supp}(T(A_{H_0^\perp})) = \operatorname{supp}(T(A)) \setminus \{0\}$ and Theorem 1 is proved. \blacksquare

3. Pairs of selfadjoint operators. The aim of this section is to extend Proposition 10 of [3], formulated for 2-dimensional Hilbert spaces, to arbitrary finite-dimensional Hilbert spaces. First a preliminary result is needed.

PROPOSITION 5. Let $A = (A_1, A_2)$ be a pair of bounded selfadjoint operators in a Hilbert space H. Then

(i)
$$\gamma(A) \subset \sigma(A_1 + iA_2)$$
.

Suppose, in addition, that A_1 and A_2 are compact.

(ii) If
$$A_1 A_2 = A_2 A_1$$
, then $\gamma(A) = \sigma(A_1 + iA_2)$.

Proof. (i) Choose $\lambda \in \gamma(A)$. Then $0 \in \sigma(S)$, where $S = (A_1 - \lambda_1 I)^2 +$ $(A_2 - \lambda_2 I)^2$. Since S is selfadjoint, there are unit vectors x_n such that $Sx_n \to \infty$ 0 in H as $n \to \infty$. Then also $(Sx_n, x_n) \to 0$ and hence, $(A_j - \lambda_j I)x_n \to 0$ as $n \to \infty$, for each $j \in \{1, 2\}$, from which the result follows.

(ii) Since $A_1 + iA_2$ is a compact (normal) operator its spectrum is a countable set with 0 as only possible limit point. Suppose that $\lambda \in$ $\sigma(A_1+iA_2)\setminus\{0\}$, in which case λ is an eigenvalue of A_1+iA_2 . So, there is $x \neq 0$ such that $(A_1 + iA_2)x = (\lambda_1 + i\lambda_2)x$, where $\lambda = \lambda_1 + i\lambda_2$. That is, $[(A_1 - \lambda_1 I) + i(A_2 - \lambda_2 I)]x = 0$ and hence, also

$$[(A_1 - \lambda_1 I) - i(A_2 - \lambda_2 I)][(A_1 - \lambda_1 I) + i(A_2 - \lambda_2 I)]x = 0.$$

Expanding this identity and using $A_1A_2 = A_2A_1$ gives

$$[(A_1 - \lambda_1 I)^2 + (A_2 - \lambda_2 I)^2]x = 0.$$

Since $x \neq 0$ it follows that $\lambda = (\lambda_1, \lambda_2)$ belongs to $\gamma(A)$. This shows that $\sigma(A_1+iA_2)\setminus\{0\}\subset\gamma(A)$. If 0 is also an eigenvalue of A_1+iA_2 , then the same argument shows that $0 \in \gamma(A)$. Otherwise, 0 is a limit point of $\sigma(A_1 + iA_2)$, in which case the closedness of $\gamma(A)$ ensures that $0 \in \gamma(A)$. Hence, $\sigma(A_1 + iA_2) \subset \gamma(A)$ and so, by part (i), $\sigma(A_1 + iA_2) = \gamma(A)$.

Proposition 6. Let H be a Hilbert space of dimension $k < \infty$ and A = (A_1, A_2) be a pair of selfadjoint operators in H. The following statements are equivalent.

- (i) $A_1A_2 = A_2A_1$.
- (ii) $A_1 + iA_2$ is a normal operator.
- (iii) The standard (polynomial) functional calculus $S(A_1 + iA_2)$: $C^{(k-1)}(\mathbb{R}^2) \to \mathcal{L}(H)$ of the single operator $A_1 + iA_2$, when restricted to $C^{\infty}(\mathbb{R}^2)$, agrees with the extension of the Weyl calculus $T(A): \mathcal{S}(\mathbb{R}^2) \to$ $\mathcal{L}(H)$ to $C^{\infty}(\mathbb{R}^2)$.
 - (iv) $S(A_1 + iA_2)\overline{\lambda} = T(A)\overline{\lambda}$, where $\overline{\lambda}(x, y) = x iy$.
 - (v) The Weyl calculus T(A) is multiplicative in $C^{\infty}(\mathbb{R}^2)$.
 - (vi) supp(T(A)) is a finite subset of \mathbb{R}^2 .
 - (vii) T(A) has order zero as a distribution.

(viii) $supp(T(A)) = \gamma(A)$.

(ix) supp $(T(A)) = \sigma(A_1 + iA_2)$, where $\lambda_1 + i\lambda_2 \in \mathbb{C}$ is identified with $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

Proof. The mutual equivalence of the first five statements follows from [3, Proposition 9]. The equivalence of (i) with both (vi) and (vii) is the main Theorem in [10]; see also [4] for the case k=2. Theorem 2 implies that (i)⇔(viii). Clearly (ix)⇒(vi). Finally, (i)⇒(ix) by Proposition 5 and the implication (i)⇒(viii). ■

Remark 4. In Proposition 10 of [3] it is shown (for 2-dimensional Hilbert spaces) that each of the statements in Proposition 6 is equivalent to

(x) $\gamma(A) \neq \emptyset$.

(xi) $\sigma(A_1 + iA_2) = \gamma(A)$, where $\lambda_1 + i\lambda_2 \in \mathbb{C}$ is identified with $(\lambda_1, \lambda_2) \in \mathbb{R}^2$.

It is shown in Remark 2 of [3] that the statements of Proposition 6 are not equivalent to statement (x) for $\dim(H) > 2$. We conclude with an example which shows that the statements of Proposition 6 are also not equivalent to statement (xi) for $2 < \dim(H) < \infty$. Indeed, it is shown that $\gamma(A) = \sigma(A_1 + iA_2)$ is a proper subset of supp(T(A)).

EXAMPLE 2. Let B_1 and B_2 be the (2×2) -selfadjoint matrices given in Example 1 and $u \in \mathbb{R}^2$. Let $A_j = \begin{pmatrix} B_j & 0 \\ 0 & u_j \end{pmatrix}$ for $j \in \{1, 2\}$, considered as operators in the Hilbert space $H = \mathbb{C}^3$. Since $B_1 + iB_2$ is nilpotent (of order 2) it follows that $\sigma(B_1 + iB_2) = \{0\}$. Since $A_1 + iA_2$ equals the direct sum $(B_1 + iB_2) \oplus (u_1 + iu_2)I$ in $\mathbb{C}^3 = \mathbb{C}^2 \oplus \mathbb{C}$ it follows that

$$\sigma(A_1 + iA_2) = \sigma(B_1 + iB_2) \cup \sigma((u_1 + iu_2)I) = \{0\} \cup \{u_1 + iu_2\}.$$

It was shown in Remark 2 of [3] that $\gamma(A) = \{(u_1, u_2)\}$, where $A = (A_1, A_2)$. Moreover, Lemma 1 implies that

$$\operatorname{supp}(T(A)) = \operatorname{supp}(T(B)) \cup \{(u_1, u_2)\}.$$

Putting $u_1 = u_2 = 0$ shows that $\gamma(A) = \sigma(A_1 + iA_2)$, even though $A_1A_2 \neq 0$ A_2A_1 . However, as must be the case, $\sigma(A_1+iA_2)=\gamma(A)$ is a proper subset of supp(T(A)).

It remains to show that $supp(T(B)) = \mathbb{D}$. Let $\mathbb{S}^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$ be the 2-dimensional sphere and m denote normalized surface measure on \mathbb{S}^2 . For $f \in \mathcal{S}(\mathbb{R}^2)$, the functions

 $x = (x_1, x_2, x_3) \mapsto f(x_1, x_2) \pm \partial_1 f(x_1, x_2) + (x_1 + x_2) \partial_2 f(x_1, x_2), \quad x \in \mathbb{S}^2,$

are denoted by $f \pm \partial_1 f + (x_1 + x_2)\partial_2 f$. It follows from Theorem 4.1 of [1] that

for every $f \in \mathcal{S}(\mathbb{R}^2)$; see [4] for the details. It is clear from (8) that $\operatorname{supp}(T(B)) \subset \mathbb{D}$. Since $\operatorname{supp}(T(B))$ is equal to the union of the supports of the four distributions forming the entries of the right-hand side of (8) it suffices to show that the support of the \mathbb{C} -valued distribution

$$V: f \mapsto \int\limits_{\mathbb{S}^2} \, \partial_2 f \, dm(x), \quad \ f \in \mathcal{S}(\mathbb{R}^2),$$

contains \mathbb{D} . But $Vf = 2 \int_{\mathbb{S}^2_+} \partial_2 f \, dm(x)$ where $\mathbb{S}^2_+ = \{x \in \mathbb{S}^2 : x_3 \geq 0\}$ and so the problem reduces to showing that the support of the distribution

$$\mathcal{U}: f \mapsto \int\limits_{\mathbb{S}^2_+} \partial_2 f \, dm(x), \quad \ f \in \mathcal{S}(\mathbb{R}^2),$$

contains \mathbb{D} . Let $\varphi(u,v)=(1-u^2-v^2)^{-1/2}$ for $u^2+v^2<1$. Then a transformation of measure shows that $\mathcal{U}f=\int_{\mathbb{D}}\varphi(u,v)\partial_2f(u,v)\,du\,dv$. By considering functions of the form f(u,v)=g(u)h(v), for suitable g and h, it can be shown that all interior points of \mathbb{D} belong to $\mathrm{supp}(\mathcal{U})$ and hence, $\mathbb{D}\subset\mathrm{supp}(\mathcal{U})$.

References

- R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240– 267.
- [2] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, 1989.
- [3] G. Greiner and W. J. Ricker, Joint spectral sets and commutativity of systems of (2 × 2) selfadjoint matrices, Linear and Multilinear Algebra 36 (1993), 47-58.
- [4] B. R. F. Jefferies and W. J. Ricker, Commutativity for systems of (2 × 2) self-adjoint matrices, ibid. 35 (1993), 107-114.
- [5] A. McIntosh and A. J. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 421-439.
- [6] A. McIntosh, A. J. Pryde and W. J. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. 88 (1988), 23-36.
- [7] A. McIntosh, A. J. Pryde and W. J. Ricker, Systems of operator equations and perturbation of spectral subspaces of commuting operators, Michigan Math. J. 35 (1988), 43-65.
- [8] A. J. Pryde, A non-commutative joint spectral theory, Proc. Centre Math. Anal. (Canberra) 20 (1988), 153-161.
- [9] -, Inequalities for exponentials in Banach algebras, Studia Math. 100 (1991), 87-94.
- [10] W. J. Ricker, The Weyl calculus and commutativity for systems of selfadjoint matrices, Arch. Math. (Basel) 61 (1993), 173-176.

- [11] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974.
- [12] M. E. Taylor, Functions of several selfadjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98.

IMMD IX
UNIVERSITÄT ERLANGEN
91058 ERLANGEN, GERMANY
E-mail: GREINER@INFORMATIK.UNI-ERLANGEN.DE

E-mail: WERNER@SOLUTION.MATHS.UNSW.EDU.AU

SCHOOL OF MATHEMATICS
UNIVERSITY OF NEW SOUTH WALES
SYDNEY, NEW SOUTH WALES 2052
AUSTRALIA

Received August 13, 1992 Revised version June 21, 1994 (2985)