icm

STUDIA MATHEMATICA 112 (2) (1995)

Commutativity of compact selfadjoint operators
by

G. GREINER (Erlangen) and W. J. RICKER (Kensington, N.5.W.)

Abstract. The relationship between the joini spectrum v(A) of an n-tuple A =
(A1,...,4n) of selfadjoint operators and the support of the corresponding Weyl calcu-
lus T(A) : f — f(A) is discussed. It is shown that one always has v(A) C supp(T(A))-
Moreover, when the operators are compact, equality occurs if and only if the operators
A; mutually commute. In the non-commuting case the equality fails badly: While {4}
is countable, supp(T(A4)) has to be an uncountable set. An example is given showing
that, for non-compact operators, coincidence of v(4) and supp(T(4)) no longer implies
commutativity of the set {4;} .

Introduction. A notion of joint spectrum v(A4) for a commuting n-tuple
of bounded linear operators A = (44,...,4,) in a Banach space X was
introduced by McIntosh and Pryde in [5]. Namely

(1) +(4) = {,\ eR":0¢ J(an(Aj - )\jI)z) }

where o(B) is the usual spectrum of a single operator B. For n-tuples A

satisfying ¢(4;) C R, 1 < j < n, this particular joint spectrum -y(A)

coincides with most other known joint spectra [6], and has proved to be

effective in the solution of certain linear systems of operator equations {5, 7].
For commuting n-tuples A satisfying an estimate of the form

e < c+g)®,  EeR™,

for some positive constants C and s (where (£,4) = 377, ;4 and | |
denotes the usual Euclidean norm in R™) it turns out that y(A) is precisely
the support, supp(T(A)), of a certain functional calculus T'(4) : As — LX),
that is,

(2) ' supp(T'(4)) = 7(4)
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(see [5], for example). Here A, is an algebra of functions containing the
Schwartz space S(R™) of all rapidly decreasing, C-valued functions on R
and £(X) is the space of all bounded linear operators of X into itself. For
the case s = 0, the algebra A, reduces to S(R™) itself and the calculus
T(A) : S(R™) — L(X), given by the formula

(3) T(A)f = (@m) 2 [ A ),  fe SR,

R

may be interpreted as an operator-valued distribution (where f denotes the
Fourier transform of f). In this case T(A) is called the Weyl calculus of 4
11, 2, 12], and supp(T(4)) is precisely the support of T(A) in the usual
sense for distributions; it is always a non-empty compact subset of R"
[1, Lemma 2.3]. :

So, for commuting n-tuples 4 which generate bounded groups &
e#6 A ¢ € R™, the joint spectral set v(A) is intimately related to the Weyl
calculus T'(A). An examination of (1) shows that the definition of v(A),
unlike many other joint spectra, also makes perfectly good sense for non-
commuting n-tuples A . Moreover, the recent articles [8, 9] show that y(4)
also has useful applications in the non-commutative setting. Of course, the
Weyl calculus (3) is also well defined for certain non-commuting n-tuples A;
indeed, it was introduced by H. Wey] precisely because of this point. So, the
natural question is: How closely related are the sets v(A) and supp(T({A))
in general?

The aim of this note is to give a detailed answer to this question for the
case of n-tuples A of selfadjoint operators in Hilbert space. A suggestion as
to what might be expected can be found in [3] where a detailed study is
made of certain properties of the sets v(A) for (possibly) non-commutative
A (call A commutative if the operators A;, 1 < j < n, mutually commute).
For an n-tuple A of selfadjoint operators in a 2-dimensional Hilbert space it
is known that A is commutative if and only if (2) holds [3, Proposition 8).
We show that the same is true in any finite-dimensional Hilbert space H;
see Theorem 2. Moreover, commutativity of 4 turns out to be equivalent
to supp(T'(A)) being a finite subset of R™ with at most k elements, where
k = dim(H). For non-commutative n-tuples A (still with dim(H) < co)
the equality (2) “fails badly”. Indeed, the set y(A) remains finite (always
being a subset of o'(A;) % ... % o(A,)) whereas supp(T(4)) is necessar-
ily an uncountable subset of R™; see Theorem 3. This dichotorny makes it
somewhat unclear what to expect in arbitrary Hilbert spaces. Surprisingly,
for n-tuples A consisting of compact selfadjoint operators the analogy with
the finite-dimensional case is rather close. It turns out that equality in (2)
is still equivalent to commutativity of A, which, in turn, is equivalent to
supp(T(4)}) being a countable subset of R™ (cf. Theorem 4). So (curiously)

EH
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the commutativity of A is equivalent to the equality of a purely algebraic
notion (namely, the set y(A4)) with a purely analytic notion (namely, the set
supp(T(A)))- '

The main ingredients in the proofs of the above results are the notion
of the maximal abelian subspace of A (introduced in [3]), Theorem 1 below
which states that particular kinds of isolated points of supp(T'(4)) (called
hyperisolated) are joint eigenvalues of A, and the fact {cf. Proposition 4) that
every isolated point of supp(T'(4)) is hyperisolated whenever supp(7'(4)) is
a countable set.

Since any compact subset of R™ is the support of some (even commuting)
n-tuple of bounded selfadjoint operators [1, p. 255], it cannot be expected
that Theorem 4 has a larger range of applicability. Indeed, we exhibit a pair
A = (A4;, A3) of bounded selfadjoint (but not compact) operators A; and
Ag in an infinite-dimensional Hilbert space for which equality in (2) does
hold, but such that A; As # AsA;; see Example 1.

In the final section of the paper a study is made, for pairs 4 = (41, A3) of
compact selfadjoint operators A; and As, of the connection between the sets
v(A), supp(T'(A)) and o(A; +iAz) with the aim of extending Proposition 10
of {3] from 2-dimensional spaces to finite-dimensional spaces.

1. Basic properties of y(A) and supp{7'(A)). In this section we collect
together some basic facts about the sets v(A) and supp(T'(4)) which are
needed in the sequel. We begin with a simple but useful result.

LeMMa 1. Let A = (A1,...,4n) be an n-tuple of bounded selfadjoint
operators in o Hilbert space H and M be o closed linear subspace of H
which is invariant for A (i.e., invariant for each operator 4;, i =1,...,n}.

(i) The orthogonal complement ML is invariant for each operator A;,
1<j<n. :

(i) If Apr (respectively, Apri) denotes the selfadjoint n-tuple in the
Hilbert space M {respectively, M) consisting of the restrictions of A;, 1 <
i < n, to M (respectively, ML), then

(a) supp(T'(4)) = supp(T(An)) U supp(T(Ayss)), and

(b) ¥(A) = v(An)Ur(Ang)- |

Proof. (i) follows from A%(M1) C M+ and the selfadjointness of each
A, 15 m. :

(ii) We have H = M & M' and A; = (A;)m © (A;) e for each 7 =
L...,m. :

(a) Tt follows that (1(€, A))" = (i{€, Aa)) ®(i(€, Apr))", EER™, r €N,
and hence, via the power series expansion of the exponential function, that .
GEA) . gil6Aan) @ gilEAns) ¢ e R™,
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Tt is then clear from the definition of T'(4)f as a Bochner integral with
respect to the uniform operator topology of L{H) (see (3)) that

T(A)f =T(Am)f @ T(Ays)f, fe SR,
from which (a) follows.
(b) follows from the formulae
Th 3 n
ST =4 =) (T = (Adm)* @ Y (OgT — (A)me)?,  AEeRY,
i=1 j=1 i=1
together with the fact that U @ V' is invertible in H = M & M- if and only
if U is invertible in M and V is invertible in M. m

We recall that A € C™ is called a joint eigenvalue of an n-tuple of
bounded operators A = (A4y,..., Ay,) if there exists a non-zero vector z &€ H
such that A,z = Ao for each j = 1,...,n. The vector z is then called a
joint eigenvector of A corresponding to A.

LEmMMA 2. Let A = (A1,...,4,) be an n-tuple of bounded selfadjoint
operators in a Hilbert space H and X ¢ B"™ be a joint eigenvalue of A. Then
A € v(4) Nsupp(T'(4)).

Proof. Let z 5 0 be a joint eigenvector of A corresponding to A, A sim-
ple calculation (using power series expansion) shows that ¢!(é4) g = iéN g,
¢ € R™. It then follows from (3) and the Fourier inversion theorem that

& [T(A)fle = 2m)~2] [ eV flg)dew = F(N)e
-

for every f € S(R™). So, given any neighbourhood U of A in R™ choose
f € C(R™) satisfying supp(f)} C U and f(A) = 1. Then [T(A4) flz = = 5 0,
that is, T(A)f # 0. Accordingly, A € supp(T'(4)).

Since joint eigenvalues of A are also joint approximate eigenvalues, it
follows from (3, Proposition 2] that A € y(4). »

LEMMA 3. Let A = (Ay,...,A,) be an n-tuple of bounded selfadjoint
operators in a Hilbert space H. Then v(A) C supp(T'(4)).

Proof. Let A € y(A4). Then A is a joint approximate eigenvalue of A by
(3, Proposition 2]. Choose vectors &, € H satisfying ||z,|| == 1 for alln € N
and such that limg . [|4j2, — Ajza|| =0 for j=1,...,n. Let i be a free
ultrafilter on N and Hy = £%°(H) /ey (H) denote the U-product of H (where
£°°(H) is the space of all bounded sequences in H and ey (H) is the subspace
of those sequences converging to 0 along I{; see [11, V.1]). Furthermore, let
(A;)u be the canonical extension of A;. Then Ay = ({(A1)u,-..,{(Anlu)
is an n-tuple of selfadjoint operators on the Hilbert space Hy and zy =
(zn) + e (H) € Hy is an eigenvector of {A4;)y corresponding to J;, for each
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1 < 7 £ n. That is, 2y Is a joint eigenvector of Ay corresponding to A. From
Lemma 2 we conclude that A € supp(T(Ay)). So, it remains to show that
supp(T(Aw)) = supp(T(A)). This will follow from the identity

(T(A)u=T(Au)f, feSR™).
To establish this identity we note that the mapping B — By, is an isometric
homomorphism of the Banach algebra £(H) into L£(Hy); see [11, V.1.2].
Thus we have (9, A)y = (n, Ay) for € R". Then (by power series expan-
sion) it follows that (e?"4)), = ¢i™mAu) and finally, for f € S(R"), we have
(by approximating the integral via Riemann sums)

@m) 2T (A) flu = ([ 2 Fnydn)
&

= [ &) Fn)dn = (2m)"T(4) £ m
RT‘A
DEFINITION 1. For A € R™ and 4 = (A1,..., An) an n-tuple of selfadjoint
operators in a Hilbert space H, define

Hy(A4) = {0} U{z € H : z is a joint eigenvector of A for A}.

Then H,(A), called the joint eigenspace of A, is a closed subspace of H.
The orthogonal projection onto H)(A) is denoted by Ex(A) and is called
the joint eigenprojection of A corresponding to A.

We recall that M[A] denotes the mazimal abelian subspace for A; see
[3]. It is the largest closed subspace of H which is invariant for A and such
that the restrictions (A;)a) of 4; to M[A], for j = 1,...,n, mutually
commute in the Hilbert space M[A]. The connection between M[A] and the
joint eigenprojections of A is given by the following

PROPOSITION 1. Let A= (Ay,...,An) be an n-tuple of compact selfad-
joint operators in o Hilbert space H. Then

(i) Ex(A)E.(A) = 0 = E,(A)Ex(4) for all A, p € v(A) with X # p,
and '

(if) M[A] = Dyeqyqay HA(A) is the closed subspace of H generated by
the family of joint eigenspaces {Hx(A) : X € v(4)}.

Proof. (i) Choose any index j € {1,...,n} such that A; # ;. Since 4;
is selfadjoint and Ay, uy; € o(4;) [3, Proposition 2], it follows that ker(A; —
;1) is orthogonal to ker(4; — ;I ). Since Hy(A) = [\, ker(A, — A,1) and
H,(A) = e, ker(A, — poT) it follows that Hx(A) is orthogonal to H, (A)
and (i) follows. :

(ii) It is clear that each closed subspace Hx(A), A € v(A), is invariant for
each operator 4;, 1 < j < n, and the restrictions of A; to Hy(A) mutually
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commute. By definition of M[A] it follows that the closed subspace of A
generated by {H)(A4) : A € y{A4)} is contained in M[A]. On the other hand,
the restrictions (Aj)aa), 1 <7 £ n, form a mutually commuting family
of compact selfadjoint operators in the Hilbert space M{A]. Accordingly,
there exists an orthonormal basis of A[A] consisting of joint eigenvectors of
{(Aj)u4) * 1 < J < n}. Bach such joint eigenvector z € M[A] of Ay is
also a joint eigenvector of A with the same joint eigenvalue u as for A prpa).
Lemma 2 implies that p € +(A) and hence, M [A] is contained in the closed
subspace of H generated by {Hx(A4): X € v(4)}. =

The next result shows that for compact n-tuples A the Weyl calculus
T(A) almost takes its values in the compact operators on H.

PROPOSITION 2. Let A = (Ajy,...,A,) be an n-tuple of compact self-
adjoint operators in o Hilbert space H. Then T(A)f -~ f(0)I 1s a compact
operator for every f € S(R™).

Proof For £ € R™ fixed, a consideration of the power series expansion
of eX&4) | together with the fact that each operator (Z(€, AT, r=1,2,...,
is compact shows that e'{&4) — T is compact: Let By = {z € R™ : || < N}
for each N'=1,2,... and fix f € S{R™). Since the map & — &4) | ¢ € R7,
is continuous for the operator norm topology in L(H) the integral

En(f)= [ (&%~ nf(e)de

By

exists as the operator norm limit of Riemann sums and hence, is a compact
operator. The conclusion follows from the identities

@m)"HT(A)f - FO)T) = f @O -nfeyde+ [ (460 -nfle) e,
R™\ By
together with the estimates

“ f (ez'(ﬁ,A) {f) d&H <9 j‘ (&) de,
E"\By R™\ By

valid for N = 1,2,. .., which show that Kn(f) — T(4)f - F(0)] as N — o0
in the operator norm topology. m

Given a function f : R® — C and v € R" define the »-translate fu
R™ — C of f by fu(z) = f(z ~v) for z € R”. For a subset X C R" let
K~v={z—-v:z e K} Finally, if 4 = (Al, o n) is an n-tuple of
elements from L(H) denote the n-tuple (A; —141,. A vpd) by A—vl,

LeEMMA 4. Let A = (A1,...,A.) be an n-tuple of bounded selfadjoint
operators in a Hilbert space H and X € R™. Then
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(1) T(A)fr=T(A—\)f for every f € S(R™),
(i) supp(T(A — AI)) = supp(T(4)) — A, and
(iii) v(A4 — AT) = y(A) — A.

Proof. (i) follows from the definition of T(A)fx, the fact that A=
) f and the observation that

e HEN GHEA) = —HEM) A L HEA-D ¢ g R

since the operators (£, AI) and (£, A) commute.

(i) follows from (i), the definition of the support of a distribution, and
the fact that supp(fy) = A + supp(f) for every f € C°(R™).

(iii) follows from the definition of the sets involved. m

We conclude this section with a topological result needed later.

PROPOSITION 3. Let K be a subset of R™ which is compact, infinite and
countable, Let P denote the set of all isolated points of K. Then

(i) P is an infinite set, and
(i) K == P (the bar denoting closure).

Proof. (i} The set K = |J,cx{A} is a countable union. By Baire’s
Theorem at Jeast one set {A} has non-empty interior, that is, A € P. Choose
any A € P. Then K\ {)} is again compact, infinite and countable and hence,
also has isolated points. Centinuing this argument inductively it follows that
P is infinite.

(ii) Suppose P # K. Then M = K \ P is a non-empty, open subset of
the compact space K. The set M = {J, o5, {A} is a countable union, hence
by Baire’s Theorem at least one set {A}, A € M, is open in M. Since M is
open (in K), {\} is open in K, that is, A € P, a contradiction. =

2, Commutativity criteria. The purpose of this section is to present
some criteria which characterize commutativity of n-tuples A=(A4;,..., 4x)
of compact selfadjoint operators. These results are consequences of the fol-
lowing important fact concerning the nature of particular kinds of isolated
points of supp(T(A}). First we require a new notion.

DEFINITION 2. Let M he a compact subset of R”. A point A € M is
called hyperisolated if it is isolated and there is a hyperplane (i.e. a maximal
proper affine subspace of R"), say L, such that LN M = {A}.

Analytically this means that there is a (necessarily non-zero) 7 € R™ and
£ > 0 such that |(A — p,m)| > ¢ for every p € M with p # A.
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Remark 1. Xishyperisolated in M if and only if there exists a direction
5 and £ > 0 such that the n-dimensional strip

SOme) = A+ o e R : [{o,n}] < )
intersects M only at the point A.

THEOREM 1. Let A = (A;,...,An) be an n-tuple of bounded selfodjoint
operators in a Hilbert space H and A € supp(T(A)) be hyperisolated. Then
A is @ joint eigenvalue of A. Moreover, the decomposition H = H,(A) @
H,(A)* reduces the n-tuple A (that i3, A = Ay, GBAH«*), one has Ay, = A

and supp(T(Agy)) = supp(T(A))\ {A}.

Remark 2. (a) It will be shown in the course of the proof of Theorem 1
that the corresponding eigenprojection E»{A) equals T{A)p, where ¢ €
O (R™) is supported in a neighbourhood Uy of A with Uy Nsupp(T{A)) =
{7} and @ is constantly equal to 1 in a (smaller) neighbourhood of A, It
follows from Proposition 2 that E5{A) is a fnite rank projection whenever
the operators A4;, 1 < j < n, are compact and A # 0.

(b) As a consequence of Theorem 1 we obtain supp(T(A)) = {A} if and
only if A = AI. Furthermore, if supp(T'(A)} is a finite set, say supp(7'(4)) =
A0 A1), then we can successively split off the joint eigenspaces.
After m steps we end up with the following representation of A: there ex-
jst non-zero orthogonal projections Py,..., Pr, satisfying 77", P; = I and
FpFP; = PjFy = 0 for k # j such that A = E;"ml AU Py In particular,
A, = Z;m:l ,\9)1:7,- for each 1 < r < n, where AW = (Agj), . ,/\5,:'")).

For ease of reading we postpone the proof of Theorem 1 to the end of
this section. We prefer first to establish some consequences. We begin with
a finite-dimensional result.

THEOREM 2. Let H be o Hilbert space of finite dimension k > 1 and
A= (A1,...,A,) be an n-tuple of selfadjoint operators in H. The following
statemnents are equivalent.

(i) The operators Aj, 1 < § < n, mutually commute.
(ii) supp(T(A)) is a finite subset of R™.
{iil) supp(T'(A)) has at most k elements.
(v} 7(A) = supp(T'(4)).

Proof. (i) (ii) follows from the main Theorem in [10]; see also Re-
mark 2(b). The implication (i)=>(iv) is well known (cf. Introduction) and
(iv)=>(ii) since v(A) C (A1) x ... x o(A,); see [3, Proposition 2]. Clearly
(iii)=>(ii}. So, it remains to establish (ii)=(iii). Since each point of a finite
set is hyperisolated it follows from Theorem 1 that each point of supp(7T(4))
is a joint eigenvalue of A. Since joint eigenvectors corresponding to distinct
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joint eigenvalues are eigenvectors of some A;, 1 < j < n, corresponding to
distinct eigenvalues of A5, these joint eigenvectors are necessarily orthogonal
in H. So, there can be at most & points in supp(T{4)). =

The next result illustrates “how different” the set supp{T'(A4)) is when
the n-tuple A does not commute.

THREOREM 3. Let H be ¢ Hilbert space of finite dimension k > 1 and A =
(A1,...,An) be an n-tuple of selfadjoint operators in H. Then supp{T(A))
is either a set with at most k elements (in whick case A commutes), or
supp(T(A)) is an uncountable set (in which case A is not commutative).

Proof. Suppose that supp(T(4)) has more than k elements, in which
case it is an infinite set by Theorem 2. Suppose that it is a countable
set. Then Proposition 3 implies that the set P of all isolated points of
supp(T'(A)} is infinite as well. Since each point of P is hyperisclated (see the
following Proposition 4} each such point is a joint eigenvalue of 4 by The-
orem 1. This is impossible ags H is finite-dimensional and joint eigenvectors
of A corresponding to distinet joint eigenvalues are orthogonal. Accordingly,
supp(T'(A)}) is an uncountable subset of R™. =

ProroSITION 4. Let A = (A1,...,A,) be an n-tuple of bounded selfad-
joint operators in a Hilbert space H. If supp(T(A)) is a countable subset of
R™, then

(i} each isolated point of supp(T(A)) is hyperisolated, and

(i) supp(T'(A)) = ~(A).

Proof. (i) By a suitable translation it suffices to consider the special
case of 0 being an isolated point of supp(T(A}); see Lemuma 4. Since the
countable union of hyperplanes V' = [ {ker({-, A}) : A € supp{T(4)) \ {0}}
cannot be all of R™ {hyperplanes have Lebesgue measure 0) there must exist
a point 7 € R™ \ V. Then the hyperplane ker({-,7}) intersects supp(T(A))
only in 0. Here (-, ) denotes the linear functional = — (x, A}, © € R".

(ii) By Theorem 1 and part (i) all isolated points of supp(7'(A)) are joint
eigenvalues. By Lemma 2 they belong to v(A). By Proposition 3, supp(7(4))
is the closure of its isolated points. Since y(A) is a closed set {3, Proposi-
tion 1], it follows that supp(T'(4)) C v(A). The converse inclusion is just
Lemma 3. m .

The following result may be viewed as a natural extension of Theorem 2
to a class of operators in infinite-dimensional spaces.

THEOREM 4. Let A = (Ay,..., An) be an n-tuple of compact selfadjoint
operators in a Hilbert space H. The following statements are equivalent.

(i) The operators A;, 1 < j < n, mutually commute.
(ii) supp(T(A)} is o countable subset of R™.
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(iii) supp(T'(A)) is a countuble subset of R™ with 0 as only possible limit
point.

(iv) v(A) = supp(T'(4)).

Praoof. (i)=>{iv) is well known (cf. Introduction) and (iv)=>(iii) by Corol-
lary 3.1 of [3]. The implication (iii)=>(ii) is obvious and (ii)=>(iv} follows from
Proposition 4.

So, it remains to establish (iv)=-(i). Let M = M[A4] be the maximal
abelian subspace of 4, in which case H = M @& M=*. By Lemma 1 it follows
that

supp(T(Ay)) C supp(T'(A4)) = 7(4)
and hence, supp(7'(A,7+)) is a countable set. Suppose that M~ 5 {0}. Then
supp(T{A s )) is a nonempty, countable, compact set, hence it has an iso-
lated point A (by Proposition 3). By Proposition 4(i) it is hyperisolated and
then by Theorem 1 it is a joint eigenvalue of Ao, Clearly a corresponding
joint eigenvector £ € M+ of Ay is also a joint eigenvector of A. This is a
contradiction since, by Proposition 1(ii), joint eigenvectors belong to M. w

Remark 3. Slightly more is true than proved in Theorem 4. Namely,
let A= (A4,...,A4,) be any n-tuple of bounded selfadjoint operators. It is
not assumed that the operators 4y, 1 < j < n, are compact. If supp(7'(4)) is
a countable set, then the operators A;, 1 < j < n, mutually commute. This
follows from the same argument as used to establish (iv)=-(i) in the proof
of Theorem 4, after noting that Proposition 4 implies v(A) = supp(T(4)).

Theorem 4 shows that the spectral set v(A), originally introduced for
commuting n-tuples A actually characierizes commutativity of A for the
case of n-tuples of compact selfadjoint operators. The following example
shows that the hypothesis of the operators A;, 1 < 7 < n, being compact
cannot be omitted.

EXAMPLE 1. Let B = (B1, By) where By = (é _g) and By = (g é) are
considered as selfadjoint operators in C%. It will be shown in Example 2 of
Section 3 that supp(T(B)) = D, where I = {(z,y) € R? : 22 +4? < 1},
Since BBy # ByBy, it follows from [3, Proposition 7] that v(B) = 0. Let
{Ak)}eo  be a countable dense subset of I} and let T be the multiplication
operator on £ with the (bounded) sequence (A®))¢2 . Then T is normal,
hence Oy = R(T) = (T + T*) and Cy = KT) = -Q%(T — T™) commute.
Thaus, for the pair €' = (Cy, C3), we have v(C) = supp(T(C)). Each A ig
a joint eigenvalue of C' (the kth unit vector is a corresponding eigenvector)
and so, by the closedness of ¥(C), it follows that D C 4((). Since T' is a
contraction, for each v = 11 +1va, v ¢ I, the operator

(I — C1)? + (vo — Co)? = (w1 = TY(wI ~ T)*
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1s invertible, that is, (v1, 1) & 4(C). Accordingly, v(C) = supp(T(C)) = D.
Let A; = B; & Cj, for j € {1, 2}, act in the Hilbert space H = C? @ £2
(= ¢*). Then Lemma 1 implies that
supp(T(4)) = supp(T(B)) U supp(T(C)) = DU = D
and also that
Y(A)=v(B)u~y(C)=08UD=D.
However, Ay Aq 5 As A, since By Bs # By By,

Proof of Theorem 1. By translating to the origin {cf. Lemma 4)
it suffices to prove the result for the case when 0 is a hyperisolated point of
supp(T'(4)).

Choose a non-negative function ¢ € C°{R™) which is supported inside
a disc B = {z € R™: |2| < ¢}, for some £ > 0, such that ¢ is constantly 1
near 0 (say, in B,/s) and B, Nsupp(T(4)) = {0}.

Define a distribution I : S{R™) — L(H) by

Uy =T(A)ef), f&SER™).

Then supp(U) = {0} and U is of finite order, say N (with N not exceeding
the (finite) order of T'(A) [1, Lemma 3.8]). So, there exist bounded operators
R, for |a| € N (multi-index notation) such that

U(fy= > (D*f0)Ra, feSER™.
xS
Being compactly supported, this distrib_ution has a (unique) extension to
C°(R™). For fixed £ € R”, let eg(z) = X&), z € R”, in which case
() T(A)(weg) = D i*I¢*Ra,
. foe| <V
On the other hand, since (pes)* = (&), it follows that

T(A)(pee) = (2m)™"/? [ vy - &) dy = (2m) " [ HHENG(u) du
o7 R™

and hence, since [|e*®* 64N = 1, we have

IT(A)(pes)l| < (2m) ™" [ |§(u)| du < o
R'ﬂ
for all £ € R™. Tt follows from (5) that Ro = 0 whenever |a| > 0. Denoting
Ry simply by R gives
(6) T(A)(ef) = F(OR, [feC™(R").
FacT 1. The operator R is non-zero, selfadjoini and coincides with
T(A)g.
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Proof. Substitute f = ¢ into (6) and use the fact that w? = @ ina
neighbourhood of supp(T(A4)} yields R = T'(A)p. That Ris selfadjoint then
follows from [1, Theorem 2.9]). To see that & # 0, let fe € C(R™) be
any function supported in B, such that T(A)f # 0; since 0 € supp(T'(A))
such a function f. exists. Then f.¢ coincides with fe in a neighbourhood of
supp(T(A)) and s0 T(A)(few) = T(A)fe # 0. But T(A)(ferp) = f-(0)R by
(6). Accordingly, f-(0)R # 0 and hence, also B 0. u

Since 0 is hyperisolated there is n € R"™ with j7] = 1 and 6 > 0 such that
the strip S(n, 8) = {z € R™ : |{z,n}| < 26} intersects supp(T(A)) only in 0.
Let M, = (mjx)1<jk<n be an orthogonal (n x n)-matrix which maps the
unit vector n onto the unit vector e; = (1,0,...,0), ie. Myn = e1. Let MyA
be the n-tuple of selfadjoint operators given by (MyA); = S het MsrAg. By
(1, Theorem 2.9(a}] we have
(M T(M,A)f =T(A)(f o My),  feSRY).

Since both distributions T(A) and T(MpA) have compact support, identity
(7) also holds for f € C(R"). We choose a non-zero C°°-function (o :
R — [0,1] which is constantly 1 on a neighbourhood of 0 and vanishes on
{t e R:|t| > 6}. Define § € C(R™) by &(z) = ¢1({z,m)). Then & coincides
with @ on a neighbourhood of supp(7'(A)) and hence,

R = T(A)p = T(A)F = T(M, 4)(F o M),
where M, denotes the transpose of M,. We have

(@ o My)(z) = pr((Mpz,m) = pr({z, Myn)) = 1 (z1).

That is, pc Mff is a function depending on just one of the variables. It follows
from Theorem 2.9(b) of [1] that

R =T(M,4)(F o M}) = T((My ).

Note that Mpn = e; implies Mjey = n, that is, my; = n;for j=1,...,n. It
follows that (MnA)l = 2?:1 mlej = 2?m1 T,’jAj = (T],A). Thus we have

R = T(M,A)(H o ML) = T({n, A)er = (2m)~"/? f eHA) By () dit.

=00

By multiplicativity of the Weyl calculus for a single operator [1,
Lemma 3.1] and the fact that $* = & on a neighbourhood of supp(T'(A))
we have

R =T(A)(§) = T(MyAn)(e}) = [T{(m, 4))(p1)} = B*.
Thus we have established

FacT 2. R is a projection.
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It is well known that the Weyl calculus for a single selfadjoint operator
B coincides with the standard C(o(B))-functional calculus f — f(B) for
selfadjoint operators; in particular, T(B)f = f(B) for f € S(R). Define
w1,n(t) = p1(nt), t €R, and Fn(z) = @1, ({2, 7)), v € R™; the functions &
and @, coincide on a neighbourhood of supp(T'(A)), hence

R=T(A)gn =T, A)o1,n = 01.,({n,A}) forallneN.
For the C(o{B))-functional calculus the operator norm of (B} can be
estimated by the sup-morm of %, ie [[4(B)| < sup,cg|w(t)|. Since

SUDyep [E01,n(t)] — 0 as n — oo it follows that we have |[{n, AYR| =
14m, Aysn({n, A < supyeg [tp1,n(t)] — 0 as n — co. We conclude that

{n, A)R = R(n, A) = 0.

So far n was fixed. However, this holds for every 5 which generates a strip
separating 0 from the rest of supp(7'(4)). By the compactness of supp(7'(4))
the set of all such n’s forms an open subset of R™. In particular, there exist
n linearly independent vectors n'1,. .., ™) & R™ such that

(", A)R =R, 4)=0, 1<j<n
In matrix notation n(AR) = n(RA) = 0, where 1 is the invertible (n x n)-
matrix having rows 91, ..., n.. Multiplying by 1~ from the right we obtain
AR = RA =0, ie.
AjR=RA; =0 foralll <j<n.

From this it follows that R maps H into the joint eigenspace Hg(A). Actu-
ally, R is also onto as the following argument shows. Suppose z € Hp(A).
Then by (4) and (6) we have Rz = [T'(A)plz = ¢(0)z = =z, that i,
r € R(H). Summarizing these results and taking into account that R # 0
(by Fact 1) we obtain

Fact 3. The joint eigenspace Hy(A) is non-zero and R 1s the joint eigen-
projection Fo(A) of A corresponding to 0.

The joint eigenspace Hy(4), being invariant for every A;, reduces the
n-tuple A4, that is, A can be considered as a direct sum 4 = Ag, @ A HA
corresponding to the decomposition H = Ho(A) & Ho(A):. We have
Agy, = 0, hence supp(T'(Ag,)) = {0}. Since supp(T'(4)) = supp(T(Am,)) U
supp(T'(Ayy)) (by Lemma 1), it follows that either supp(T(A HOL)) =
supp(Z(4)) or supp(T(Agy)) = supp(T(A)) \ {0}, Actually 0 cannot be
an element of supp(T'(A H{,]L)), since otherwise the result proved above, ap-
plied to the n~tuple AH& on the Hilbert space Hg(A)", implies that there
is a joint eigenvector z € Ho(A)! of A corresponding to 0, a contradic-
tion. So, we have finally shown that supp(T(Ag L)) = supp(T(4))\ {0} and
Theorem 1 is proved. = '
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3. Pairs of selfadjoint operators. The aim of this section is to extend
Proposition 10 of [3], formulated for 2-dimensional Hilbert spaces, to arbi-
trary finite-dimensional Hilbert spaces. First a preliminary result is needed.

PROPOSITION 5. Let A = (A1, As) be a pair of bounded selfadjoint oper-
ators in a Hz’lbert space H. Then

(i) ")f(A) C G'(Al + ’bAz)
Suppose, in addition, that Ay and Ay are compact.
(11) If A]_.Ag = AgAl, then ’Y(A) = O'(A1 -+ ’hAz)

Proof. (i) Choose A € ¥{4). Then 0 & o(5), where § = (41 — M J)? +
(Ag—Aal )2. Since S is selfadjoint, there are unit vectors z, such that Sz, —
0in H as n — oco. Then also (Sz,,z,) — 0 and hence, (A; — Aj I}y — 0
as n — oo, for each j € {1,2}, from which the result follows.

(i) Since A; + idy is a compact (normal) operator its spectrum is
a countable set with 0 as only possible limit point. Suppose that A €
o(A; +iAz) \ {0}, in which case A is an eigenvalue of Ay +74s. So, there
is £ # 0 such that (A; + idp)z = (A1 + iX2)z, where A = Xy + ida.
That is, [(41 — M) + (A2 — Ael)]z = 0 and hence, also

(A1 — A T) —i(Ay — A D)][(Ax ~ Aul) + i( Az — deT)]z = 0.

Expanding this identity and using A14; = A4, gives

(s = MD2 + (A — XDz = 0.
Since z # 0 it follows that A = (A1, Ag) belongs to ¥(A). This shows that
o(Ar +442) \ {0} C v(4). If 0 is also an eigenvalue of A; -+ 4y, then
the same argument shows that 0 € ({A). Otherwise, 0 is a limit point of
o(A1 +iAs), in which case the closedness of y(A) ensures that 0 € y(4).
Hence, o(A; +14y) C v(A) and so, by part (1), o(A; +idz) = y(A). =

ProrPoOSITION 6. Let H be o Hilbert space of dimension k < co and A =
(A1, A2) be a pair of selfadjoint operators in H. The following statements
are equivalent.

(i) AjAy = Ag 4.

(ii) Ay +iAz 45 o normal operator.

(iii) The standard (polynomial) functional caleulus S(A; + 1Ay)
CBP=D(R?Y — L(H) of the single operator Ay + idy, when restricted to
C*(R?), agrees with the extension of the Weyl calculus T(A) : S(R?) —

L(H) to C>=(R?).

(iv) S(A1 +i4:)X = T(A)X, where Xz, y) = z — iy.

(v) The Weyl calculus T(A) is multiplicative in C°°(R?).

(vi) supp(T(A)) is o finite subset of R2.

(vil) T(A) has order zero as a distribution.
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(viit) supp(T(A4)) = y(4).
(ix) supp(T(A)) = o(A1 + i42), where Ay + iAo € C s identified with
(A1, A2) &€ R2.

Proof. The mutual equivalence of the first five statements follows from
3, Proposition 9]. The equivalence of (i) with both (vi) and (vii) is the main
Theorem in [10]; see also [4] for the case k = 2. Theorem 2 implies that
(1)< (viii). Clearly (ix)=-(vi}. Finally, (i)=>(ix) by Proposition 5 and the
implication (1)=>(viil). =

il

Remark 4. In Proposition 10 of [3] it is shown (for 2-dimensional
Hilbert spaces) that each of the statements in Proposition 6 is equivalent to

x) 7(4) # 0.

(xi) o(Ay +iA2) = v(A), where Ay + iAz € C is identified with (A1, A2)
€ R%

Tt is shown in Remark 2 of [3] that the statements of Proposition 6
are not equivalent to statement (x) for dim(H) > 2. We conclude with
an example which shows that the statements of Proposition 6 are also not
equivalent to statement (xi) for 2 < dim{H) < co. Indeed, it is shown that
7(A) = ¢(Ay +1A2) is a proper subset of supp(T{A)).

ExAMPLE 2. Let B; and By be the (2 x 2)-selfadjoint matrices given
in Example 1 and u € B2 Let 4; = (?"u?) for 5 € {1,2}, considered
as operators in the Hilbert space H = 3. Since By + 1B is nilpotent (of
order 2) it follows that o(By + iB3) = {0}. Since A; +4iA4; equals the direct
sum (By +iB2) © (u1 + iug)l in C® = C* @ C it follows that

o(Ar +ido) = a(By +1Ba) U o((uy 4 u) ) = {0} U {ug + iug}.

It was shown in Remark 2 of [3] that v(A4) = {(u1,u2)}, where A = (41, Az).
Moreover, Lemma 1 implies that

supp(T'(4)) = supp(T{(B)) U {(u1, u2)}-
Putting u; = ug = 0 shows that ~v(A) = o(A; +1Ay), even though A1 Az #
Az A, . However, as must be the case, o(A; +14s) = 7(4) is a proper subset
of supp(T'(A4)).
It remains to show that supp(T(B)) = D. Let 82 = {z € R? : |z| = 1}
be the 2-dimensional sphere and m denote normalized surface measure on
§%. For f € S(R?), the functions

z = (1, B2, 23} — f(@1,22) £ 01 f (21, 22) + (w1 +72)0af (x1,29), T € 82,

are denoted by f = O f + (71 + 22)82f. It follows from Theorem 4.1 of
[1] that
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(8) T(B)f :

_ (fsz(f + O f + (31 + z2)Ba f) dm(z) Joz O2f dm(z) )
B Js2 Oaf dmi{z) Jor (f=00f + (21 + 22)82f) dm(z)

for every f € S(R?); see [4] for the details. It is clear from (8) that
supp(T(B)) € D. Since supp(T(B)) is equal to the union of the supports
of the four distributions forming the entries of the right-hand side of (8) it
suffices to show that the support of the C-valued distribution

Vifre [ &afdm(z), feS®?),
52
contains II. But Vf = 2f§i Baf dm(z) where S2 = {z € §%: z3 > 0} and
so the problem reduces to showing that the support of the distribution

U:fr [ oofdm(z), fe SR,
s

contains . Let o(u,v) = (1 — u? — ?)~%/? for u® + v < 1. Then a trans-
formation of measure shows that U f = [ w(u,v)df(u,v)dudv. By con-
sidering functions of the form f(u,v) = g(u)h(v), for suitable g and A, it
can be shown that all interior points of I} belong to supp{l{) and hence,
D C supp(U). =
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