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w-Calderén-Zygmund operators
by

SIJUE WU (Evanston, Il1.)

Abstract. We prove a T'1 theorem and develop a version of Calderén—Zygmund theory
for w-CZO when w € As.

1. Introduction. Let T be a linear operator mapping test functions on
R™ continuously into distributions and with an associated kernel K (z,y),
z # y (in the sense that (T'f,q) = [[g(z)K(z,y)f(y)dzdy whenever f
and g are test functions with compact support). Let w be an A, weight
with critical exponent po, and set wi(z) = ¢ | w(y) dy. We say that

z—y|<t
K (z,y) satisfies w-standard estimates if for some € > 0,
1
(1.1) |K(z,y)| < C“’]mvyl(fﬂ)m
and
. |m _ m/ls
K (z,y) — Tw K (z,y)| < Cw\x—x’i(m)w
if |l —2'| < $lz — 9],
(1.2)
<o ly —'|°
| K (2,y) — Ty K (z,y)| < w[y—y'l(y)m
if [y —y'| < 3lo— 9],
where

Tw’K(w'ny) = K(mlﬂy) + ((m - "N;’) ' Dﬂ:)K(m’ry)
+ a{z =) DPPE(E,9)

.. _.+ -J%((:c —z') DINEK (', y)
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and
Ty K(z,y) = K(z,y') + (v —¢) - Dy)K(z. o)

+ %((y ~y') - Dy K (x,y)

1 -
+.ot m((y -y DIJ)NR (z,y)
{with D, = (8/8z1,...,8/82,) and Dy = (8/0y1,...,0/0yn)) are the Tay-
lor polynomials of degree N of K (, ) with respect to z (at z') and y (at ¢/),
respectively, and N = [n{pg — 1)], where [a] stands for the biggest integer
<.
An example of such an operator is the fractional integral

[ lz—ylomr) dy

I f(z) = g 1 .
fny!O‘_“‘ flz—y)dy ifa>0and a=n+ 2,
Rn

ifa>0and a#n+ 2,

where [ is an integer. In these cases, we can take w = |z|®.

For the case w € Ay, a version of the 1T'1 Theorem has been proved and
a Calderén—Zygmund theory for w-CZO has been developed in [3]. In this
paper, we will give a version of the T1 Theorem for w € A, and prove a
Calderén-Zygmund theory for w-CZ0 which contains the theory in [3] as a
special case.
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2. The statement of the 71 Theorem. Let w be an A, weight
with critical exponent pp. Suppose N = [n(pg — 1)]. Let T be a continuous
linear operator from test functions to distributions. We say that T satisfies
the w-WBPF (weak boundedness property) if for each ball B and any test
functions ¢y, ¢y supported in B that satisfy the estimate |¢}||ce < [B]™+/"
for i = 1,2 and the cancellation law

[at¢(@)dz=0 fork=0,1,...,N,
where ¢ = ¢ or ¢, we have
{(T¢1,¢2)| < Cw(B).

This will hold if T' is associated with an antisymmetric kernel satisfying the
first standard estimate {1.1).
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The space BMO,, = (H*(w))" has been studied in [5]. The definition is,
for w & Ap, 1 < p < oo,

BMO,, = {f : flwe ¥ (w) and for every interval 1,

loc
(Wt [ 1@~ PP e ) " <0},
by
where 1/p+1/p' = 1 and Prf is a polynomial of degree < N such that
[ (@) = Prf(@)a"de =0 for k=0,1,...,N,
I

and the BMO, norm of f € BMOQO, is the smallest constant C in the
inequality defining BMO,,. For more details, see [5]. We also refer to [5] or
6] for the definition of weighted Hardy spaces H?(w).

THEOREM 2.1. Suppose w € Aes. Let T be a continuous linear operator
from test functions to distributions thal is associoted with an w-standard
kernel. Then T+ H*(w) — L* iff T satisfies the w-WBP and T'1 and T"1 lie
in BMO,.

A corollary of this theorem is

COROLLARY 2.2. Same assumptions as in Theorem 2.1. Then T : H!(w)
= I and T : L™ — BMO,, iff T satisfies the w-WBP and Tt and T"1 lie
in BMO,,.

3. The proof of the theorem. In the following, all (s are constants,
and they need not be the same at each appearance. Moreover, 1/p+1/p’ = 1.

The proof of Theorem 2.1 follows the same steps as in [3] and [4]. We
prove the sufficiency first. Because w € Ay, we have w € A, for some
2 < p < oo,

LEMMA 3.1. Suppose ¢,% € C,supp &, v € {|z| <1}, f2F(x)dz =10
Jor k =0,1,...,N, ond b € BMO,,. Define Bif = ¢y * f, Q:if = v * [,
where ¢¢(x) = t™"¢(z/t). Then the kernel of the paraproduct operator

5f = [ Qu@nr 2
0

satisfies the second w-standard estimate {1.2) and T} b (w) — I (wl—P')_

Proof The kernel of the operator is

Ko = | uen) L= [ ule - 00—
. O g .

0 R™
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‘We have

Izt(m: y) - Tm’lt(ma y)l

- ’W}T—-l—),((m —z') -Dw)N+1lt(f:y)l

Z(Tv_i'iﬁ’f ((z ~ ') - DYV afy(€ — 2)Qub(2) (2 — y) dz

for some £ = z' +0(z — '), 0 <8 <1, and jz — & < |z — y|. Because
be BMO, and 9 € HY(w) (in fact, (w(2))""pe(z — ) is a (1, 00)-atom),
we have
Qb)) = | [ e = )b) u] < sl 1o = Ciplolacn(z)
Then for any ¢ with |z — 2| < ¢, we have
|Q:b(2)| < Clblluws(z) < Clfbfjswi(a},
- and

N1 _wi(z)
2| sVt Xfle— yl<aey (¥)

Ilt(a:ay) - Tm’lt(way)i |CG

ST

whenever |z — 2’| < |z — y|. Therefore,

7 di
| K (. y) — To Kz, y)| £ f (2, y) — Turle(2, 9)| ¥
0

o0
LN+ wy(x) di
SC—o'™ [ mom T
lz—y|/4
_ sne1 [ w(B(w,1)) di
=Cle — /| f NFIAL
lm—yl/4

Take py > po such that N - 1 ~ (nPy —n) > 0 and w € Ag,. Then

(o) < (o) wlBlale = o) = o),

and we obtain

| K (2, y) — Tw K (2, )]
. e o
_ N~ (npo—n)+1 _tTR e
L Clp — 2|77 () f NFE
lz—3|/4
= Gulas(@)g — &/ ¥21=070 1

|:17 — y‘n-l—N-l—l~('n;Eg-n)

whenever |¢ — /| < 1|z — y|, where e=N+1— (npy~n) > 0.
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The same argument as above can be applied to the estimate of |K{z,y) —
T, K (z,y)|. This proves that the kernel of T}, satisfies the second w-standard
estimate (1.2) for e = N + 1 — (np, — n).

We check the boundedness of Ty : HP (w) — L¥ (w*~?') as follows. For
g € L¥{w), we have

[Q* 9)Q:(B) P (f) dﬁdt‘
(f (;f |Qugl? %)Mzw(x) dm)l/p
g (f (Iithlﬂptflg%)p’/z

co /2 1/p
< COllgllzew) ( f ( f |thL21Ptf|2i}) w{z)t P dm) .
0

IA

) 1/p
w(z) P da:)

Now

o0 /2
S Jiopps ) w7 as
0

=J ([ 1007 1917 00§ )t + e

for some g, > 0 with fO |ge ()] ‘iT =1 for a.e. z € R®, where 1/r + p'/2
=1.

18 an w-Carleson measure.

CLAIM. |Qb[P gy ()w(z) ¥ @

’ .
Proof Because w!~P € Ay, for any interval I, we have

|72/
f f |Qﬂ7|p gz

|I

¢ dt dSL'

1=
w(z) ~F —

1/n

[ 1Qu((d - Pib)xz+) P gt(x)*w(m)lwp dz
I

oL_ﬁ

P72 ,
< ( J 10 =Py )P S) w7 o
0
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< [ 1o~ b (@) dz < Cu(D)|b]7 .

I»‘
Therefore,

00 P2
I J @uips 2)

= [ [ |1BA71Qul gu(@)w(z)

w(m)l—p' dx
t
S CIBIE [ £ wiz)de = ClBRE £ %0 o, -
where f*(z) = sup|,_y|<: [P (y)]. Consequentiy,

| [ Tf(2) - oe) do| < Cloll oy 1F s - -
This proves that Ty : H?' (w) — Frd (wl—p’).

Unlike the case in [3] and [4], we cannot obtain the same estimate for T}
by duality. Therefore we take another approach.

Lemma 3.2, Let T be a continuous linear operator from test functions
to distributions that is associated with a kernel K (z,y) which satisfies the
second w-standard estimate (1.2). If T : HY(w) — LY(w'™?) for some 1 <
q < oo, then T : L™ — BMO,,.

Proof. For any f € § (Schwartz class), and any interval I, we can write
f=7Fxr+fxre=fi+ fa, where I*=4I.
We consider T*f; first. Because T is associated with the kernel K (z,1 )
T'faly) = [ K(z,y)fa(z) de.
Take yg & 21\ %I, let Pfo(y) = [ Ty K (@, y) fa(2) dz, so Pfa(y) is a poly-
nomial of degree < N. Take p > max(2, ¢) such that w € 4,. Then

[ T £2(0)~P () |F 7 () dy

’

< f ([ 1K) - T Ko, fale) de) i) dy
I

<f
I

< J (Cwpymyol ) Flloo) w(y) =7 dy
I

/

p !
lfz(w)ldm) wly) = dy

( f Culy—yol (W)Y — 30l

Jee |z — ylmte
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<OlE: f (52) e a

= Ol 7 (fw( . Pary)(fwy)dy)

Because w € Ay,

o [ 1T £ (y) = Pha(y) w(y)*~* d )W
(w(I) ; 2lY aly Y Y

1 1-1/p' 1 1y 1/p’
<Olfls( fow) (g [ @) <Ol
I I

For T* f1, we have
! tf— PT AP W' d v
w—(f)”flel'-I fl]"—d X
I

l f (T f1)a dml

= sup
suppaCl
[ #*ade=0,k=0,1,....N

@D [, lalPw dz) /P gw(n) ™!

= sup
aa(1,p)-atom

|ff1Ta,dm15 sup [ |Ta|dz- | flloo -

aa(l,p)-atom I

Now for a a {1, p)-atom, we have
1/q /e
f |Ta|dz < ( f |Ta|%wt? dm) ( f wdm)
r - I

' /g S
< Cw(D)H9 ( [ iTajw~e dm) < Cw(D)? ||o] o) -
Following the same method as in [5, Chapter 2, §3], we get
lal] o) < Cw(I)~H7

(C does not depend on a). Thus
1/p'
1 ’ b dep’ )
e 1= PrT™ frl? P du < Cilfileo
(st J 1meh - P~ aa) <ol

Combining the two parts, we have proved
IT* fllzazo. < Cliflloo -

This means T% : L — BMO,,.
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As an immediate consequence, 7} : L™ — BMO,,. By duality, we have
Tb : Hl(w) — L7,
LeMMA 3.3. Let T be a continuous linear operator from test functions

to distributions that is associated with o kernel K (z,y) which satisfies the
second w-standard estimate (1.2). If T : L*—BMO,,, then T : H*(w)— L.

The proof of this lemma is almost the same as in [7, pp. 49-51]. For
completeness, we present it here.

Proof. We need only estimate [ |Ta|dz for a a (1,00)-atom. Suppose
a is a (1, co)-atom associated with an interval @, and ¢ = 4¢). Then

f|Ta|dm—- f|chcy y)dyldm

g g Q
Because [z*adz = 0 for £ = 0,1,
20\ 3@,

flTa,|dm— f‘f

w n(yly Yol
<Off e AW dydz < €,

..., N, it follows that, for any yy in

{z,y) — Ty K(z,y))aly) dy’d:ﬂ

where C does not depend on a.

Let Q' be a cube of the same size as @, and such that Q' and @ have a
face in common. Because T' : L — BMO,, |Tal smo, £ C/w(Q). By the
above calculation,

[ ITaldz < C.

1
J(-Q—)Q - ;@é[u)@z"a{dm

7AN
TN
£

1 . , iy
—(—a_—) f Ta— PgTal” w'=? d:c) +—11)— f | P51l da

&£

< Cllaloo + G )I|P Ta|de

< Cw{@) ™ + (1@) f |P5Tal dz,
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and
[ |PgTaldz
o}
< [ |PgTa— Py Taldz + [ |PyTal da
g g
< ! |P/(Ta ~ PTa)| do + J |Pg(Ta — P5Ta)|de + J’ \Pg/Ta) d,
4 Q Q

£

where (22; is a cube containing @ U Q' and with size comparable to Q. (For
example, |@] < 10"|Q).) Because

[1\Pefldz<C [ |fldx
Q Q
for any @ D Q and |Q| < 2"Q),
[ [P5Ta| da
Q
SO( f |Ta — P= Tald:n-l—f |Ta—PaTa, da:»{-f |Ta.|d;z:)
a
< Cllafloow(@) +C < €.

Qll

Therefore,
1
— |Ta|de < C C—r
(Qf alde < Co(Q)™! + 0 s,

and then [|Ta|dz < C, which implies

Q

f Taldz < [ [Ta|dz+ [ |Talds < C.
9] Q-
This proves
T HY(w) = L.
Up to now, we have proved that Ty : H* (w) — L' and T} : HY(w) —
L'. Take ¢4 as in Lemma 3.1 such that [5- Q2% = I, f¢dm =1, and
b=T1, b =T%1. Then M =T - T — T}, satlsﬁes Mi=M'1=0 and all

the hypotheses of Theorem 2.1 except the first w-standard estimate (1.1).
Therefore, it suffices to prove the sufficiency of Theorem 2.1 in the case
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where T1 = 0, and T*1 = 0. As in [3] and [4], we can write

r-(Ja)r(f %)
-

a@Qrena s,

O"ﬁg o

The fact that T': H'{w) — L* now follows from the following two lemmas.

LEMMA 3.4. Same notaiions and assumptions as in Theorem 2.1 and
Lemma 3.1. Assume also that ¢, % satisfy the above hypotheses, and Tl = 0,
T*1 = 0. Then the kernel K, (z,y) of Q.TQ; satisfies:

(1) for 0 < 5 <t
| K5 6(z,y)] < (s> W s{z),

(2) for0 <t < s,
t\ " §f
\K”(m y)l < ( ) th(m).
The proof of this lemma is the same as that of [3, Lemma 2.3], so we
omit it.
LenvmMa 3.5. If Ko 4(z,y) satisfies the estimates in Lemma 3.4 and [ €
H? (w), g € LP(w), then

S I I [ 1@ Ktz @ur )l dsdy = &

0 D Rn ]R'n. t
< c“f”Hn’(w)HQHLP(w)

Proof. By assumption, the integral is controlled by

66) Of [ J [ @l (3)

51 R2™

# ds di
T QU Wldedy = 5

plus an analogous term for s > t. Setting

IO p—

e h(y) dy,
J =y vme W4

we rewrite (3. 6) and dominate it by

Cf f f iQsQ(SE |w3(m ( ) Pt |Qtf|) dexdt

0 R™ t
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(=3} [ 1
o [(Jioawll [ @ (2) L) paunm et
0o R 0 |z—a|<a
<o [ Juia [(3) ] 1au)
0 RrR" 0 le—z|<s
E ds dzdt

T Q@) de S
<of feo(f (})%)

([ orpapesel)

t

|zz|<s
SGI,R[ “(2) af (%)EQl,sﬂQD( )2 Qi) ZE
<o w(z)(of( af (2) et ) )"
( )dt)l/zdz
<o( W(z)(;fo( of( ) Qustontn &) Y 0y
(]RV[ (IQ e dt)p’/zdz)llm

1IN

< (mf (ch()EQ“II()dsit)/d2>1/plifiyp'(w)
o f i Ofcz ROCESE " i) T

[mn
1/p
2) 1w 0y < Clglzote s oy

<o( [ laPud
o
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because w € Ay. The seventh and ninth inequalities are true according to
the results in [2]. Now we have proved the sufficiency of Theorem 2.1. By
Lemma 3.3 and duality, we obtain the suifficiency of Corollary 2.2.

The necessity of Theorem 2.1 and Corellary 2.2 is proved by using
Lemma 3.3 and duality. Because 7' : H'(w) — L*, by duality, we have
T¢ ;. [ — BMO,, and then by Lemma 3.3, we have 7% : H*(w) — L3,
and so T : L° — BMO,,. Therefore, T1 € BMO,, and T%1 € BMO,,.

The fact that T satisfies the w-WBP is an easy consequence of T' :
HY(w) — L.

4. The Calderén—Zygmund theory for w-CZO. The interpolation
result in [9, Chapter 2, §3] enables us to establish the Calderén~Zygmund
theory for w-CZO.

THEOREM 4.1. Suppose that w € Ay . Let T be a continuous linear opera-
tor from test functions to distributions thet is associated with an w-standard
kernel. Suppose further that T : HY(w) — L*. Then T : HP(w) — (HF (w))*
for 1 < p < oo, where 1/p+ 1/p = 1 and (HP (w))* is the dual space of
H? (). Precisely, we have

2 n/2
wn (S (andls) ) e s <l

2Ioz
where (Tf); = [T f 1y de with the notations as in [9, Chapter 2].

Preocof. By Corollary 2.2, we have T : L™ — BMO,. Applying
Tom Wolff’s theorem [8] and the interpolation result in [9], we obtain
[HY(w), L>]g = HP(w), where 1/p = 1 — §. By the duality theorem and
the reiteration theorem [1] and Tom Wolff’s theorem [8],

(L8, BMO, P € [(L®), BMO,]' = (L), (H' ()"}
= (H"(w))" = (L}, BMOs

where 1/r = 8. Therefore we have T : HP(w) — {(HP (w))*, where 1 < p <
o0, 1/p+ 1/p" = 1. (4.2) is a direct consequence of the duality result in [9].
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