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Semisimplicity, joinings and group extensions
by

A DEL JUNCO {Torouto, Ont}, M. LEMANCZYK (Toruf)
and M. K. MENTZEN (Toruh)

Abstract. We present a theory of self-joinings for semisimple maps and their group
extensions which is a unification of the following three cases studied so far:
(i) Gaussian-Kronecker automorphisms: [Th], [Ju-Th].
(ii) MSJ and simple antomorphisms: [Ru], [Vel, [Ju-Ru].
(ill) Group extension of discrete spectrum automorphisms: {Le-Me], [Le], [Me].

0. Introduction. In [Ve], Veech proved a theorem describing factors of
ergodic 2-fold simple automorphisms in terms of subgroups of the central-
izer. The property of “2-fold simplicity” is defined by 2-joinings—invariant
measures on the Cartesian square of the given gystem, projecting onto the
system as the original measures. In particular, each system is a factor of any
of its joinings.

In the 2-fold simple case, each ergodic 2-self-joining is a graph measure
or the product measure and this property is sufficient to describe all factors.
But a graph measure, as a dynamical system, is isomorphic to the original
system and the natural projection factor map is one-to-one a.s. with respect
to the joining measure. In other words, a graph measure A is a one-point
extension of the base system X. In particular, the relative product A X x A
is ergodic. .

We will use this observation to define a new class of ergodic auto-
morphisms, called semisimple automorphisms. Formally, an automorphisin
T (X, B, 1) — (X,B,1) is semisimple if for each ergodic 2-self-joining A,
the relative product X xx A is ergodic. It turns out that many classes of
awtomorphisms previously studied are semisimple. Indeed, all discrete spec-
trum, 2-fold simple, direct products of minimal self-joinings, and Gaussian—
Kronecker automorphisms are semisimple. We exhibit the structure of fac-
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tors of semisimple automorphisms; in particular, we prove that one can
decompose a given factor map X — Y of a semisimple X into X — ¥ — Y,
where the extension X — Y is relatively weakly mixing and ¥ — ¥ is a
group extension.

In order to study the structure of factors of a given automorphism, we
introduce the notion of a natural family of factors. A general factorization
theorem for an automorphism X with a natural family of factors says that
if Y is a factor of X then there exists a decomposition X — V' — Y for
some natural factor ¥ with the remaining properties as above.

We also explore ergodic group extensions of semisimple automorphisms,
In Section 6, we describe ergodic joinings of such extensions. In Section 8,
we apply the concept of a natural family of factors to give a description
of factors of group extensions of 2-fold simple automorphisms, generalizing
earlier results from [Le-Me] and [Me].

Finally, we consider the conjecture that if, for an automorphism with a
natural family of factors, all natural facters are coalescent then so are all
factors. We give an affirmative answer for group extensions of rotations.

" The authors would like to thank B. Host and D. Rudolph for some dis-
cussions on the subject.

1. Group extensions, isometric extensions and some facts about
joinings. Let T : (X,Bp) — (X,Bg) be an automorphism of a standard
compact Borel space (X, Bp), i.e. T is a bijective map such that T~ 1By = Bq.
Let 41 be a probability T-invariant measure on (X, By). Denote by B the (T-
invariant) o-algebra of all y-measurable subsets of X. Then (X, B, u) is a
probability Lebesgue space with T' being an automorphism of it. In what
follows all o-algebras under consideration will be complete with respect to
the corresponding measure.

Let & be a metric compact group equipped with the probability Haar
measure v. For a Borel map ¢ : X — G we define a (Borel) automorphism
T, X x G- X xG by

Tlp(w:g) = (T:B, (,D(m)g)

Then T, preserves the measure p x v. We call T, a group extension of T,
or, indicating the group, a G-entension of T'. For each g € G, let o4(z, h) =
(z, hg). For this right action of G on X x G we have T,0y = 07y T

If H ¢ G is a closed subgroup then we define T, yy : X x G/H —
X xG/H by '

To,r (@, gH) = (T'z,0(z)gH).

If no confusion can arise then we will denote the measure v restricted to
the sets of the form BH = | J,.5 bH with B C G, i.e. to the sets invariant
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with respect to the right action of H on X x G, again by v. Let g = u x v.
If D denotes the o-algebra of v-measurable subsets of (7 then the produet
s-algebra B @ D will be denoted by B. If p : ¢ — G/H is the natural
projection then we set By = B ® p(D). The factor Ti,z of T}, will be
called a natural factor of Ty, and T, g an isometric extension of T. If H
is normal in G, then we call T, & a normal natural factor of T,. For an
integrable function f : X x G — C, denote the conditional expectation
E(f|Bu): X xG/H—-Chby B(f |H).If f: X x @— C and g € G then
define fog: X X G = Chby (fog)(z h)= flz,hg) and go f : X x G — C
by (g0 )@, k) = f(z, oh).

If Als a measure on X x G and g € G then we denote by Ag (resp. gA)
the meagure on X X G given on rectangles by

Ag(Ax B) = AAx Bg™") (resp. gA(A x B) = X4 x g"1B))
for AC X and B C G.

ET:(X,B,p) — {(X,B,u) and S : (Y,C,m) — (V,C,m) are ergodic
automorphisms then by a joining of T and S we mean any T' x S-invariant
measure A on X x Y such that for A ¢ Band B €C,

AMAXY)=pu(Ad), AX xB)=m(B).
The set of all joinings of T and § will be denoted by J(T, S) or J(X,Y),
while the subset of J(T', §) consisting of all T"x S-ergodic joinings by J*(T', S)
or J¢(X,Y). It is well known that if A € J(T,8) and if A =[5 7 o 7 d7(7)
is its ergodic decomposition (E(T, §) stands for all T X S-ergodic measures
on X x Y), then 7(J°(T, 5)) = 1. Obviously the product measure p ¥ v is
a joining of T and §. Therefore J(T, S) 3 .

If f: X —Y is a measurable map then we define the graph measure py
on X xY by

pe(Ax B) = p(An f71(B)).

It is easy to observe that the pp-measure of the graph of f is 1. Moreover,
if A g J%T,5) then
(1) A=pp iff YVBCYZACX AMAxB°UAxB)=0.
HY = X and f = id, the identity function, then the graph measure piq will
be called the dingonal measure.

Let T: (X, B, u) — (X, B, ) be an ergodic automorphism. By C'(T") we
denote the centralizer of T, ie.

C{T) = {8 : X — X : § preserves p and ST = T'S}.

We will say that 1" is coalescent ([Ne]) if C'(T) is a group. It is easy to prove
that if f: X — X is a measurable map then

pr € JS(T,T) it feCT).
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It §: (V,C,v) — (¥,C,v) is a common factor of T} : (X, By, p) —
(Xi,Biypi), 1= 1,2, and A € J(Y,Y), then the relatively independent ex-
tension X & J(X1,X3) of )\ is the measure

[ B(AL V) (1) B4z | Y){(y2) dM(y1, 42)-
YxY

)\(A]_ X Ag

The relative product Ty x g Ts of Ty and Ty with respect to .5 is the relatively
independent extension of the diagonal measure on Y. If § : (Y,C,v) —
(Y,C,v) is a factor of T : (X, B,p) — (X, B,u), and if no confusion can
atise, we will use the following abbreviations: T — § or B — C or even
X =Y.

The fact that an extension X — Y is a group extengion can be expressed
in terms of joinings.

THEOREM ([Ve]). Suppose that X — Y is ergodic. Then X — Y is a
group extension iff each ergodic A € J¢(X, X)) projecting onto the dingonal
measure on Y x Y is o graph joining. =

Remark. It follows from this theorem and the relative version of the
main result of [Ve] that if T, : (X x G, B,Ji) = (X x @, B, i) is an ergodic
group extension of T': (X, B, u) — (X, B, ), then each factor of T, contain-
ing B is determined by a compact subgroup of G, hence it is an isometric
extension of B.

Suppose now that B; C B is a T-invariant sub-o-algebra (factor), hence
giving rise to a factor T : (X, By, ) — (X, By, ) of 7. Note that if we take
the family of all factors of T', say By, x € 4, containing B; with the property
that each A € J®(B,, B,;) that projects onto the diagonal measure on B ® By
is a graph joining, then the smallest factor of T' containing all By, s € 4,
enjoys the same property. Hence there exists a maximal factor B C B such
that B — B is a group extension. Note also that if By, By C B are factors
then the smallest factor of B containing By and B can be naturally identified
with an ergodic joining of By and Bs.

Set H = L*(X,u). If By is a factor of B then we say that the extension
B — By is a compact extension if the set of AP functions is dense in H. To

be precise, let
Mo f oz AG(T
'

be the disintegration of p over . We have T' = Tg, where
To(T,2) = (TT,0:(2)

with X = X x Z and g = 7 x v (see [Ful). Then pz can be viewed as 8
measure on B just concentrated ou the fibers of the natural map 7 : X — X
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(i.e. pz = 8z X v). We say that a function f ¢ H is AP {almost periodic) if
for each € > 0 there are g1,...,gr € H such that for each p € Z,

) 1151}.1% IfT% - gillrz(us) <&

for a.a. T € X.

THEOREM ([Zi]). X -~ X is compact if and only if there is a compact
group GG and a closed subgroup H of G such that Z = G/H and 05 =
@(ZVH for a cocycle ¢ : X — G, i.e. the extension X — X is an isometric
eztension. m

PROPOSITION 1.1. Suppose that (X, B,T) — (X, B1,T) is an ergodic iso-
metric extension. Then there exists an ergodic estension (Y,C,S) of X such
that Y — X is a group eztension and moreover for each ergodic extension
(Y',B,8") of X with Y' — X a group estension we have

Vi — X — X

N T
Y

Proof Let §: (3?, c, vy — (?, c, 7) be any ergodic extension of X which
is a group extension of X. Then take the family of all factors C, C C, k € 4,
which are group extensions of By and set
c={)¢C.
wEA
Note that if A & J*(C,C) projects onto the diagonal measure on B; & By

then any ergodic extension X of Aon ¢ ® C is a graph measure. Hence if
A € C then there is a set B € € such that

MAxY AY x B)=0.

Thus, it is clear that B e C, for each k € A, and consequently B € C. By
Veech’s Theorem, C — By is a group extension.

Take any ergodic joining of ¥* and Y which is diagonal on X, we get a
system Z. Now, in Z, Y and Y are represented by some invariant o-algebras,
say A and A’ Let ¢y = ANA' ¢ C®C. Take any ergodic self-joining A on
¢y @ C; which is diagonal on X x X. Then A has an ergodic extension X to
Z % Z. Take any set C' & C. Becanse A and A’ are group extensions of X,
there are A € A and 4’ € A’ such that

MO xZAZxA)=0,

Therefore A = A’ € ANA' = C. Hence A is a graph joining and consequently
€1 is a group extension of X. m

MCXxZAZxA)=
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The extension ¥ of X (defined up to isomorphism) will be called the
minimal group cover of X.

An extension X — X is called distal if for some ordinal 1 we have a,
family of factors By, « < 7, such that B, — B, is compact and if 5 is a
limit ordinal then By = |, o, Be- Furstenberg [y proved for each factor

B, ¢ B the existence of a maximal B ¢ B such that B — By is distal.
Actually, this follows from

Lemma L1 If By O B and By D B are ergodic distal exiensions and
A€ Jo(By, By) satisfies Mpgs = A, then (B ® B, A) is o distal extengion
of B.

Proof. Let A € J¢(B1,B2) and Apes = 4. We will see in Section 5
(Fact 5.3) that if By and By are group extensions of B then A is a group
extension of p because (B® B, A) is isomorphic to (B, 1) (in fact, this is well
known). Consequently, if By and By are isometric extensions of B, then by
the Remark after Veech's Theorem, A is also an isometric extension of B.

Now we use transfinite induction. Assume that B 1 and 32 are ergodic
extensions of B such that each ergodic joining of Bl and By which projects
onto B ® B as the diagonal measure is a distal extension of B. Let B, C Bl
and By C B2 be ergodic isometric extensions. Extend A to an ergodic joining
A of some ergodic group covers of By and By, Then X is a group extension of
B. Again by the Remark after Veech’s Theorem, A is an isometric extension
of B.

If By and Bz are inverse limits of consecutive isometric extensions, then
by the considerations above X is a distal extension of B as an inverse limit
of isometric extensions of B,

Let A € J(T,S), where T : (X,B,u) — (X,B,p) and S : (Y,C,v) —
(Y,C,v). Then there are largest o-algebras B1(\) C B and Ba()) C C such
that A identifies By (A) x ¥ with X x B2(A). Indeed, if we take the family of
all pairs (By,Bz), B1 C B, By C C, where A identifies By x Y with X x By,
then the smallest factor conta,lnmg all of By, say By, a,ncl the smallest one
containing all of By, say 15’2, has the property that ByxYy & A X x By. In fact,

consider B x ¥ and X x C as two sub-c-algebras of B x C, where equality
between sets is understood mod A. Then

BxYNXx¢

is, on the one hand, a sub-o-algebra of B x ¥, and so of the form B’ x ¥,

and on the other hand, a sub-o-algebra of X x C, so of the form X x C'. We
have

Bi(\) =B, By(\) =
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2. Some facts about weak mixing and distal extensions. Fursten-
berg decomposition. Let T : (X,B,u) — (X, B, u) be an ergodic auto-
morphism and A C B be a T-invariant o-algebra. We will often write B — A
to say that A is a factor of B. We call T relatively weakly mizing (rel.w.m.)
with respect to A if the relatively independent extension of the diagonal
meagsure on A, say A = u X 4 g, is ergodic. For short this will be denoted
by B -+ A rel.w.m. Note that if T% is weakly mixing and T} ergodic then
Ty % Ty — Ty rel.w.m.

Suppose that B — Ap relw.m. and B > A; D Ay. Then we can consider
the relatively independent extension of the diagonal measure on A5 in B& B
as well as in Ay @ A;. The latter is a factor of the former, so obviously
Ay = Ap relow.n.

Let T: (X, B, ) — (X, B, u) be ergodic and A be a factor of it. Assume
that A ¢ Ay C B is another factor. The decomposition

B—MA]—-?.A

is called a Furstenberg decomposition of B — A if B — A4, relw.m. and
Ay — A s distal. By the method presented in [Fu] we know that for each
A C B there is & Furstenberg decomposition of B — A

ProrosiTioN 2.1. There exists only one Furstenberg decomposition of
B— A

Proof. Let C be the maximal distal extension of A such that B -— C ~
A. Take any Furstenberg decomposition B — 4 — A of B — A, Then by
Lemma 1.1 each ergodic joining of C and A which projects onto A® A as the
diagonal measure is a distal extension of .A. Therefore A c €. Conversely,
since B — A is rel.w.m., sois C — A Hence C = A.

ProrosgitioN 2.2. Let T ¢ (X,B,pu) — (X,B,p) be ergodic and let
T (JYfiBfﬁﬂ‘l) —* (X"vBIHU',) and T1 : (XlsBlnu'l) - (XlaBlulu’l) be twe
ergodic extensions of T. Suppose that A € J(T' Th) with Axxx = Ax.
Assume, moreover, that (X, p) — (X, @) is distel and (X' x X3, )} —
(X', ") relwm. Then in (X' x X3, ) we have B' x X —+ X' x By.

Proof, Let (X! % X1, 3) — (X1,01) — (X1, 1) and (X',p') = (X, )

~ (X, p) be Turstenberg decompositions. It is then clear that the extension
(X1,57) — (X, ) is distal, By Lemma 1.1, the maximality of X, and the
fact that the (.xi.cnblon X — X, where X is the smallest factor of (X' x X1, A
comammg X 1 and X is distal, we must have X c X,. Therefore, (X', u')
and (X 1, i) are relatively disjoint over X. Thus, no harm arises if we as-
sume that A is the relative product of X' and X, over X. To be more precise,
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let
=X xZ2', T(%2)=(T% 04,

X\=Xx2z, T(Ez)= 07065
Hence, the relative product X' Xg }?1, say T XxZ'xZ —Xx2'x Zy,
is defined by T(a: 2! zl) (f‘ﬂ:‘ @’i\(z) ©;(z1)). By our assumption, the
relative product T = Txx T X xZ' xZixZ —XxZ %2 x Zy 19
ergodic. It is clear that

T(@, 7,2, 22) = (T5, 65,0y n(21), O3 o (22)),

where 9(:” ) \(z:) = @L(2), i = 1,2. Therefore the relative product X x o

b
Xl_, which is defined on X x Z; x Zy by
(8,21,20) = (T8, 03(1), O3(z)),
is a fastor of i?, hence is ergodic. This, however, means that X 1= X , which

completes the proof. m
As a consequence we have

ProposiTION 2.3. Let T : (X, B, ) — (X, B, u} be ergodic and {A
i € I} o family of factors of T such that B — A; relw.m. for each i € 1.
Then.
B A= m A rel.wom.
iel
Proof. Let A’ C A be the maximal distal extension of A in B. Then

B — A’ rel.w.m. From Proposition 2.2, A’ C A;, and consequently A’ C A,
hence A’ = A. u

PROPOSITION 2.4. Suppose that B D A; O Ay, B — A; relw.m. and
Ay — A relw.m. Then B — Ay relw.m.

Proof. Let Ag be the maximal distal extension of As in B. Then .Aj —
A is distal while A1 — Az rel.w.m. Therefore Ag and A] are disjoint

relative to As, so Ay NA; = Ay. From Proposition 2.3, 8 — AyN.4; rel.w.m.
and the result follows. =

8. Semisimplicity. Let T : (X, B, 1) — (X, B, ) be ergodic.

DEFINITION. We say that T is semisimple if for every acl[-;ounng, AE
J(T,T) we have

(X x X055 (X, ) rel.w.m.,
where 7 : X X X — X, m(ay,m0) =24, 4 =1,2.

Below we present some examples.
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ExaMPLE 1. T has discrete spectrum. Then each joining A € J¢(T,T) is
a graph joining, so T is semisimple.

EXAMPLE 2. T' is 2-fold simple, le. if X € J(T,T) then either X is a

graph joining or A = i x p. Immediately from this definition we see that T
is semisimple.

ExampPLE 3. 17,...
[Ruf}. Then Ty x ...

Ty 1 < k < oo, with MSJ (for the definition see
x T}, is semisimple (see [Ju-Rul).

ExaMpPLE 4. Each Gaussian-Kronecker automorphism T : (X, B, u)
— (X, B, p) is semisimple. Indeed, let E ¢ L%(X,u) be the correspond-
ing space of Gaussian vectors. Take A € J°(T,T). Then, as shown in [Ju-
Thl, T x T : (X x X,A) — (X x X,)) is again Gaussian—Kronecker de-
termined by F + E < L*(X x X,)). But E has its orthocomplement
in E+E C L*X x X,)) so again by [Ju-Th], T is a direct factor of
TxT:(XxX,A)— (X x X, ). Since all automorphisms under consider-
ation are weakly mixing, the assertion follows.

All the examples above are in some sense pure; they are either weakly
mixing or have discrete spectrum. Semisimple maps can, however, have
mixed spectrum.

ExAMPLE 5. T' = Ty x T%, where T} has discrete spectrum and T3 has
MSJ. Then each A € J{T,T) is either & graph joining (T can be viewed as
a group extension of I3 with a constant cocycle) or appears In the ergodic
decomposition of ux (1 = p1 X ug). Any such A is isomorphic to Ty x Th x Ty,
so T is semisimple.

PROPOSITION 3.1. Suppose that T': (X, B, u) — (X, B, 1) 18 semisimple
and let Ay and Ag C B be factors. Suppose that B — A; relw.m. (§ = 1,2).
Then for each A € J%(Ay, A2) we have

(Al & AQ!X) -

Proof. Extend X to A € J%(T,T) whose projection on A; ® Az is A.
Then (X x X,A) — (X, u) — (A, p) are rel.w.m. By Proposition 2.4,
(X x X, A) = (A1, ) rel.w.n. But obviously, we have a sequence of factors
(XXX, A) = (A @Ay, A) = (Ay, u) so we must have (A1 @Az, A} — (A, )

rel.w.m. =

(Aj ) relwm. forj=1,2.

Substituting, in Proposition 3.1, A; = As = A we obtain

— (X, B, ) is semisimple
(X, A7)

CoroLLARY 3.1. Suppose that T : (X,B,u) —
and let A C B be a factor. IfB — A relwm. thenT : (X, A, ) —
is sernisimple. w
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Remark. For semisimple maps on .J¢(T,T) there is a natural structure
of a monoid (see [Gl-Ho-Rul). Suppose that Ay, Ay € J4(T,T). We have

(X « X, Al) rel.w.m. x rel.w.m, (X < X, )\z)

so the relative product over X is rel.w.m. Since Ay xx Ay s ergodic, the
projection on the first and third coordinates gives an ergodic self-joining
obtained by Ay o Ay € J*(T,T). This multiplication is associative and has a
unit, the diagonal measure on X. If T is weakly mixing then pxpu € J*(T, 1"
and (g %X w)o A = p x p for each A € J¢(T,T). More gencrally, if A4 is a
factor and A € J°(T,T) is diagonal on A then (g x4 p)o X = p x4 .
In particular, the relatively independent extensions of diagonal measures
give idempotents. The only invertible elements are graph joinings pg with
S € C(T") necessarily invertible.

4. Natural factors and the structure of factors for semisimple
automorphisms. Let T : (X, B, u) — (X, B, p) be ergodic. Suppose that n
is a class of factors satisfying

(¥) 7 contains B and the trivial o-algebra A, and is closed under taking
intersections.

We will call  natural if

(i) VA € J(T, T), B:(N) €7, 5= 1,2.
(i) If Ay,.45 € 5 and S : A — Ay establishes an isomorphism then
SA3 € n provided that A} C A; and A] & .

Remark. Since n is closed under intersections, for each factor A C B
we have a smallest natural factor A € n with A ¢ A Call A the natural
cover of A.

Remark. Suppose that T' is an ergodic automorphism. Then dirvectly
from the definition it follows that there exists a smallest family ng of natural
factors. Note also that if B — A rel-w.m. then A € 7. Indeed, we have
BX g p € J%(B, B) and obviously B;(u x4 i) = A, 4 =1, 2.

PROPOSITION 4.1. 4 family n satisfying (%) is natural iff whenever A €
JHT,T) and A restricted to factors A; @ Ay establishes their isomorphism
then A is an isomorphism on the natural covers.

Proof. = Suppose A € J*T,T) and A 4,¢.4, is an isomorphism. By
(i), A C Bj(A\), 1 =1,2, and (ii) completes this part of the proof.

<= Take A€ Jo(T, T), then A establishes an isomorphism between B ()
and Ba(A). Smce these two are the largest factors with this property we

must have B, (/\) B;i(}), §=1,2, and (i) follows.
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Now, let A;, A2 €77 and S be an isomorphism between them. Lift this
isomorphism to a A € JG(T T). Take A € 1 with A C Ai. Then A is an

isomorphism of A = A with SA but also with SA. Hence SA = SA so
S.A € n, which completes the proof. w

COROLLARY 4.1, Let n be ¢ natural family of factors for T. Then for
each factor A of T the extension A — A is a group extension.

Proof. Take any ergodic self-joining A on A & A which is diagonal on
A® A. Hence A establishes an isomorphism of A with itself (determmed by

the identity). From Propomtmn 4.1, Ais an lsomorplnsm of A with itself,

s0 A is a graph joining on A @ A. By Veech’s Theorem, 4 — A is a group
extension, =

LEMMA 4.1. Let T; : ()’(:?;,gi,ﬁ%) ()?l,gz,ﬁl) i = 1,2, be ergodic
disml extensions of Ty : (X3, By, s} — (X4, Biypis), i = 1,2, Assume that
NeJe (T},Tz) has the property that its restriction X to By ® By s a graph
joining and moreover for i = 1,2 the extension (By @ By, 3) - (B,,-, i) is
rel.w.m. Then X is also a graph joining.

Proof. Note that in (B, @ B, %) we have By = Bs (mod X}. Therefore
E] ®I§a -—->§1 — By and El®go —>g2 — By

are, by assumptlon, two Furbtenberg decomposmlons of By = Ba By Propo—
sition 2.1 we have Bl = Bg (mod /\) 0 A is an isomorphism of Bl and By, w

Below, we will consider a family of natural factors (in fact it Wlll be equal
to 1g) for semisimple maps.
Let T : (X, B, u) — (X, B, 1) be ergodic and semisimple. Put

n={ACB:B— Arelwm.} U{N}.
PROPOSITION 4.2, The family n is natural.

Proof. By Proposition 2.3, 1 is closed under intersections. We will prove
that if A € J*(T', T) establishes an isomorphism of A; and As then A is also
an isomorphism of the natural covers ./’fl and ./ng Now, A1 and Ag can bhe
described as the maximal distal extensions of Ay and Ag (respectwely) in B,

By Proposition 4.1, if we denote by X the restriction of A to Al ® A, then
(A & Ay, A) — (A,,,u) rel.w.m. {¢ = 1,2), Then the previous lemma finishes
the proof.

By applying Propasition 4.2 and Corollary 4.1 we obtain the following

THEOREM 1 (Structure theorem for factors of semisimple maps). If T :
(X,B, ) — (X,B, ) s s ergodic and semisimple then for each factor A there
cvists an A with B — A rel.w.m. such that A is a group extension of A. m
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Remark. ¥ T is 2-fold simple then the only factors with respect to
which T is rel.w.m. are the trivial ones, so applying Theorem 1 we ¢btain
the well known Veech’s Theorem on factors of 2-fold simple maps (see [Ve]
and also [Ju-Ru]).

Remark. Applying Theorem 1 it is very easy to give examples of T
which are not semisimple. Indeed, if there are By C By < B such that
B — By and By — By are isometric but B — By is not isometric, then B
is not semisimple. Since B — By is distal, we must have Bz = B3, Ii B were
semisimple, then, by Theorem 1, B — By would be a group extension.

CoroLLARY 4.2. If T : (X, B, u) —
then its entropy h(T) is zero.

Proof. First, note that no Bernoulli T": (X, B, u) — (X, B, u) is semi-
simple. Indeed, take any nontrivial weakly mixing compact group extension
Ty : (X x G,B, i) = (X x G,B,}) of T. By [Rul], T o is again Bernoulli
with the same entropy as T. Now, in B we have two factors, namely, B and
B isomorphic to T If T were > semisimple, then the smallest factor containing
these two factors (equal to B) would have to be rel.w.m. with respect to B;
a contradiction.

Suppose that A{T") > 0. Then there exists a Bernoulli factor A with the
same entropy. Take the natural cover A of A Then A= Ais a compact
group extension. If A is _weakly mixing then A is Bernoulli, so that A iy
semisimple. In general, .4 can be represented as .A A® K, where A is
Bernoulli and K is the maximal Kronecker factor of A4 (see [Rul)). Moreover,
A can be represented as a nontrivial group extension of a Bernoulli factor,
say of Al Hence A® K is a nontrivial group extension of A;l 5 K. But these
two automorphisms are isomorphic so the former is not semisimple. w

(X, B, 1) is ergodic and semisimple

Remark. Suppose that T is ergodic and distal. Then T is semisimple
iff T has discrete spectrum. Indeed, if 7' i is semisimple and K is its maximal
Kronecker factor then B — K rel.w,m. (K is a group extension of K which
is a group extension of a one-point dynamical system; since K must be
semisimple, we have £ = K).

5. Basic facts on nonergodic extensions of ergodic automor-
phisms. The content of this section is rather classical and can be found
e.g. in [Ke-Nel], [Ke-Ne2], [Ke-Ne3]. We list some basic facts concerning the
ergodic decomposition of a compact group extension of an ergodic antomor-
phism and, in Section 6, apply them in our analysis of ergodic joinings for
group extensions of semisimple automorphisms.

Let (X, B, 1, T) be an ergodic dynamical system. Let G be a compact
metric group equipped with the normalized Haar measure v on the family
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D of Borel subsets of G. Assume that ¢ : X — @ is a Borel map. Because
the G-extension T}, is not necessarily ergodie with respect to i, let

B= [ xdv()
B(T,)
be the ergodic decomposition of Ji.
Take any A € E(T,). Denote by H the stabilizer of A in G, i.e. H =
{geG@:Ag=2A}.
Fact 5.1. (i) H is a closed subgroup of G.
(1) If (z,9), (x,h) €Y, then hH =

Let us decompose A over the factor (X, p, T):

A= f Ag du(x).
X
Let vy denote the Haar measure on H.

Fact 5.2, For almost each & € X there exists a ¢ = g, € G such that
Ag = 0y X grrg.
Let us define a function +: X — G/H by

(3) m(z) = g, H,

where g, is defined by Fact 5.2. By this fact, (X x G/H, A, T;) is isomorphic
to (X, 1, T): the map p : X x G/H — X, p(z,gH) = z, is measurable
and A-a.e. one-to-one. Therefore p is invertible and p~'(z) = (z,7(z)). This
forces 7 to be measurable. Also

(4) 7(Tz) = p(z)7(z).
FACT B.3. There is a function t : X — G such that (X x G,\,T,,) is
isomorphic to {X x H,pu X vi,Ty), where () = t(Tz) *p(z)t(z).

6. Joinings of ergodic group extensions of semisimple auto-
morphisms. Assume that T @ (X,B,p) — (X,8,p) and §: (¥,C,m) —
(Y,C,m) are ergodic antomorphisms. Let &) and Gy be compact metric
groups with Haar measures vy and vo respectively. Let ¢o; : X — Gy and
w2 1 ¥ — Gy be such that Ty, and S, are ergodic.

Suppose that A € J*(T, 8) has the property that the two extensions

(T x 8N —(T,u) and (Tx8 A —=(5m)
are rel.w.m. The following theorem describes any XeJe (T Ses) whose
projection on B ® C is A,

THEOREM 2. There are normal closed subgroups Hi . G and Hy C G,
a continuous group isomorphism v : Gi/Hy — Gaf/Hs and a Borel map
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X xY — GajHsy such that for any Borelsels ACX,CLC Gy, BCY
and Co C Gy we have

MAXCy x BxCy)
XxYxGi/Hy
X Blxxxpxc, | Ho)(z,y, flz,y)v{giHr)) d(A x v1)(z,y, g Hy).

The proof of Theorem 2 is long and is divided into several lemmas.
Tetm: Xx G XY xGy = XxY, w(z,91,9 02) = (@, y). Then 7*A = A,
Let us decompose A over the factor (X x V, A, T x 9

5" = f X(:z:,y) d/\('l‘: y)'
XxY

Let H = {(h1,hs) € Gy x Ga : A(h1,ha) = A} he the stabilizer of X. By
Fact 5.2,

Bxaxyxo, | Hi)(z,y,01H1)

A= f b(a) X (91, 92)vm dA(2, 1),
XxY
where (g1, g2)H = 7(z,y).
Let

H={neG :(n,e)cH}, Hy={g¢€Gs:(eL,g)€H},

where e; denotes the unit of G;, i = 1,2. Put m; : Gy x G — Gy, (g1, g2) =
g4, t= 132

LeMmMA 6.1. Tl'q;(H) = G.i, t1=1,2.

Proof. First, we note that (T, X Sy, X x G4 x Y % G, A) is & group
extension of T' x §, where the group by means of which we extend is H
{see Fact 3.3). If we take the projection onto the first three coordinates,
then we get a group extension of (I' x S, X x Y, ) by = (H). This group
extension is ergodic. On the other hand, (T, X x Gy, ) — (T, X, 1) is a
group extension and (T x 5, X x ¥, A) — (7, X, u) rel.w.an. So the relative
product TmAX (T,x.) (T x 8, ) is ergodie. This relative product is equal to
((T % 5) s Ay, L€ it Is a group extension of (T' x 8, A) via Gy. Since the
latter is ergodic, w1 {H) == Gy.

The proof of the equality mo(H) = @y is similar. w

The next lemma immediately follows from Lemma 6.1.

T;EMMA 6.2. The subgroups Hy and Hy are normal in G and Ga Tespec-
tively. m.
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LEMMA 6.3. (a) If (91,92) € H and (91,5) € H then 95 tge € Ha.
(b) If (g1,92) € H and (§1,92) € H then 'gl_lgl e Hy.
(¢) (g1,92) € H iff nH1 x goHa C H.

Proof (a) If (g1,92) € H and (g1,52) € H then (g7, 97") € H and
H > (97,95 " )(91,92) = (e1,95 " g2). Therefore 35 "¢z € Ha. The proof of
(b) is similar.

(¢) Assume that (g1,92) € H. Take by € Hy and hy € Hy. Then (hy,e3) €
H and (ey,ha) € H. Therefore (hy,he) € H and H > (g1,g2)(h1, ha) =
(g1h1,g2he). Because hy and hq were arbitrary, g1.Hy x goHo C H. m

We define a map v: &y /Hy — G/ Hy by
(5) v{g1Hy) = ma{(g1H1 x Ga) N H).
LemMa 6.4. The map v is a confinuous group isomorphism.

Proof By Lemma 6.3, v is well defined. The continuity of v is evident.
Obviously v is bijective. Because Hy x Hy C H, v(Hy) = Ha. We now prove
that v is a group homomerphism.

Take gH1,5H1 € G1/Hy. Set v(gH1§H) = §Hz, v(gH:1) = g1Ha and
v(gH) = g Hy. Then ggH1 xgHs C H,gH; % g1 Hy C H and §Hi X7, Ha C
H. This implies ggH x ¢1§;H2 € H. By Lemma 6.3, gHy = g7, Ha, ie.
v(gH1GHL) = v(gH1)v(GH)).

Obviously v(g~*Hy) = v(gH;)™ ! n

As an immediate consequence of Lemmas 6.3 and 6.4 we have
LeMMA 6.5. H = cq, gH1 X v(gH1). =

Let
(T % 8y or; t X XY X Gi/Hy = X xY x Gi/H;,
(T % 8) gy, a2 (21, 2, gH;) = (Tx1, Sz, i (wi) 9 Hi),
Then (X %Y x G/ Hy, Ax vy, (T'% 8) g, 1;), 1 = 1,2, is an ergodic dynamical
gystem. )
Our next aim i4 to define an isomorphism I of (T x S),, 5, and
(T" % 8) g,y It will have the form
T=1If: XxY x G /H — X %Y xGy/Hy,
It (. y, gHy) = (2,y, f (2, y)v(gH1)),

i=1,2

for some measurable map f: X x Y — Go/Hs.
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Let o« : (G1 % Go)/H — Ga/Hj be the (open) map given by

(6) a((g1, g2)H) = gov(gy Hy).

We have to prove that o is well defined. Assume that (g1,92)H = (G1,52)H.
Then (g7 191,95 'G2) € H and therefore

(¥) v{gT G ) = g5 YGaHo.
We will show that (gav(gy  H))) ™ G2v(GiH1) = Hj.
Indeed, by (),
(gov(gr 1 H1))  Gov Gy Hy) = v(g1 Hy) gy GaHav (37 Hy )
= v(g H)o(gy "G H )o@ Hy) = Ha.

Thus o is well defined.

Having o we can define the desired function f : X x ¥ ~ Gy/Hy by
setting

{n Flzy) = a(r{z,v)),

where 7 is defined by (3) and it satisfles (4) for ¢ = @1 % .
Now, one easily checks that '

(T X 5’)(192’1-1"2 Of“—* _TO (T X S)fPl,Hl'

We will also use the following

LEMMA 6.6.
() (2y) = | 9Hy % fz,u)e(gBy)  Mas,
geGh
X U @) x gl x flz,y)ugH) = 1.
(w,g;)eeé(le

Proof. (a) Fix (z,y) € X x Y. Set 7(z,y) = (a,b)H. Then by (6), (7)
and Lemma 6.5,

| 9H1 % f(w,y)v(gH)

geGh

= | gH1 % bu(a™  Hy)o(gH1)

gEG
= U gH1 x bu(a™ gH) = U agHy x bu{gH,)
QEGI QEGl
- (a’u b) U ng X v(ng) = (a:b)H = T(ma'y)’
gEG, :
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(U e xr@y)
(U ({@rx U o x fmantem))
(

w
g
m
be
x

=

(zp)EX XY 9€Gs
= A U )} x gH: % f(mgy)v(gﬂl))' .
(2, y)EX %Y
yEG:

Proof of Theorem 2. By Lemma 6.6 we can define an isomorphism
U: (X xY xG/Hy x GofHay X (T % 8o o HyxHy) =
(X XY xG1/H1) x (X xY x G3/Hy), Axv1) 5, (T %)y 1y X (T X o, 115)
by
Uz, v, 98y, f(@,y)v(gHh)) = (z,y, gHy, 2y, flz,y)o(gH1)).
Then I/ sends the measure A to (A X v1); and we have the formula

MAxBxC)= [ xaxs@y gH1)
XxYxGi/Hy
XXAXC(;an:f(mu y)'l)(ng)) d(A X Ul)(m,y,gﬂl)

for ACX xY, B¢ G /H and C C Gy/Hs.
Thereforefor Ax Ciy CX x Grand BxCy CY x G,

X(A X Ol X B x Og) = f E(XAXYXC’;L I Hl)(mryagﬂl)
XXYXG;[/HJ,

XE(XXXBXCa | 1112)('7;1 y)f($7 y)v(ng)) axr dyl:
which finishes the proof of Theorem 2. m
COROLLARY 6.1. Assume T : (X,B,u) — (X, B, ) s an ergodic semi-

simple outomorphism. Let G be a compact metric group equipped with the
normalized Haar measure v, let o : X — G be such that T, is ergodic, and
BUPPOSE PN= Jo (T, Ty) 8 an catension of some A € JE(T,T). Then there
are normal cloged subgroups Hy, He C G, a continuous group isomorphism
v:G/H — G/Hy and o Borel map f: X x X — G/Hs such that for any
Borel sets A, B ¢ X ond C1,Cy C G we have

MAXCyx BxC)

= f B(xaxxxc, | H1)(#,y, gH1)
XxXxG/Hy

X E(xxxBxcy Ho) (@ y, fz, v)v(gH1)) d(A x v){z, y, gH1).
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Assume that T': (X, B, u) — (X, B, u) is an ergodic automorphism and
@ : X — G a cocycle such that T,, is ergodic. Suppose that § € C(T) has
an extension to § € C(T,). If we assume that additionally S is invertible
then it is rather well known that

(8) g(mag) = Sf,ﬂ(wig) = (Sm1f(w)v(g))s

where f : X — ( is measurable and V : G — G is a continuous group epi-
morphism (this result can be directly deduced from Theorem 2). In general
we obtain the following

PROPOSITION 6.1. § is of the form (8), where v : G — G is a continuvous
group homomorphism (not necessarily onto).

Proof. Write §(z, g) = (8z,%(z, g)). Since §Tcp = ng we get
b(Te(2, 9)) = w(Sz)¥(z, g).
Writing og{z, h) = (z, hg) we have o, € C(T),). Set
FQ (-7"1 h) = '(/}(.'L‘, h)_1¢0g (55: h‘) = w(iﬂ, h)*l"p(xa h‘g)'

We have

FoTy(m, ) = (T (2, 1)) "Hboy Tp{z, b) = ($Tp(2, b)) "' T, (2, hy)

= (p(Sz)¥(z, 1)) " p(S2) (2, hg) = Fylw, h).
Thus Fy is a constant function. Set
'U(g) = Fg('a )

Clearly v : G — G is measurable. We now show that v is a group homomor-
phism. We have v(e) = e and

v(g192) = (=, h) " "1i(z, hg1gs)
= (2, h) " (x, hg b (2, hgl) " o (z, (hgi)ga) = v(g)v(ga).

In particular, © is continuous.
Put

fla,h) =gz, h)u(h)™"  as.
Take any g € G. Then for a.e. (z,h) we have
fog(z,h) = f(z, hg) = (=, hg)v(hg) ™
= 9(z, W)z, h) "M (, hg)u(g) Hu(h) T = g, Bu(h) = £ (=, R).

Therefore f depends only on z. =

Assume that A C B is a factor of 7. We call it a canonical (resp. weakly
canonical) factor of T if for each isomorphic copy A’ of A we have A’ = A
(resp. A’ C A).

Suppose now that 7' : (X, B, u) — (X, B, i) 1s semisimple.
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PROPOSITION 6.2. Let T (X8, i) — (X, B, i) be an arbitrary ergodic
distal extension of T. Then T is a weokly canonical factor of T.

Suppose that B’ is a factor of B isomorphic to B. Let A be the smallest
factor containing B and B'. Since T is semisimple, A -+ B rel.w.m. However,
B— A— B,and B — B is a distal extension. Hence A and B are relatively
(over B) disjoint, and consequently B = A. m

Remark. Notice that the centralizer of a semisimple automorphism
need not be a group; for instance, take T'= Ty x T} X.. .. , where 17 has MSJ.

Remark. D. Newton [Ne] asked about canonicality of automorphisms,
i.e. whether there are automorphisms which are canonical factors in an arbi-
trary ergodic extension. As shown in [Le], the only ones with this property
are those with discrete spectrum. Let us ask what is the class af automor-
phisms which are canonical factors in an arbitrary ergodic distal extension.
The above proposition says that semisimple coalescent automorphisms enjoy
this property. The question arises whether they are the only ones.

It follows from Proposition 6.2 that a semisimple automorphism sits
weakly canonically in any of its ergodic group extensions. In particular, if
S e C(T,), then S~1(B) C B and we can apply Proposition 6.1. Hence we
obtain the following generalization of the results from [An], [Ne], [Me]:

COROLLARY 6.2. If Ty, : (X x G\ i) — (X x G,]i) is an ergodic group
extension of a semisimple automorphism and § € C(T,) then there are
S e C(T), a Borel map f: X — G and a continuous group homomorphism
v G - G such that

5(z, g) = (5=, f{z)v(g)).
If, additionally, T' is coolescent, then v is onto. w

7. A natural family of factors for group extensions of simple
maps. Throughout this section we assume that T : (X, B, u) — (X, B, ) is
2-fold simple weakly mixing. Let ¢ : X — G be a cocycle such that T, is
weakly mixing.

LemMa T.0. Let A € Jo (T, T¢)' with X|3®13 an isomorphism. Then
Bi(X) = By, and By(N) = By, for some Hy and Hy which are normal.

Proof. Let H C G'x @ be the stabilizer of X. By Lemma 6.1, m;(H) = G,
i = 1,2. Since By(}) and Ba(}) are two factors between B and B (A is an

jsomorphism on the base), it follows that BZ(X) = EHl and Bg(i) = By,
where Hy and Hy are closed subgroups of G (this easily follows from the
relativized version of Veech’s Theorem). We now prove that for each g € G,

(9) gq“lﬂw < Bl(x)‘
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Fix g € G. Since m(H) = G, i = 1,2, there exists g» € & such that
(9, 92) € H. We have

Ug(gfh) = Egml.ngn Uga(EHz) = Egglyggg’
so (by the definition of 81(3)) it is enough to show that
O'ggﬂl = UWEHQ mod .
This, however, is obvious, because if 4 € gﬂl, Be 5}12 and
MAX (X xAA(XXG)xB)=0
then
MogA x (X x Q) A (X x G) X 04y B)
=MAX (X xOA(X xG)x B)=0.
Therefore (9) follows. The proof is complete by symmetry. m
PROPOSITION 7.1. If T, : (X x G, ) — (X % G, 1) is a weakly mizing
group extension of o weakly mizing 2-fold simple map T then the fomily
n= {EH : H is a normal closed subgroup of G}U {N}
is a natural family of factors.

Proof. Since obviously 7 is closed under taking intersections (the small-
est closed subgroup generated by a family of closed normal subgroups is nor-
mal) and Lemma 7.1 holds true, it remalins to show that if 8 : By, — By, is
an isomorphism of two natural factors then g sends natural factors con-
tained in By, to natural factors contained in Bp,. By Proposition 6.1,
S(z,gH,) = (Sz, f(z)v(gH1)), where v : G/Hy ~» G/Hj is a continuous
group isomorphism, § € C(T) and f : X — G/H is measurable, If H' is
a closed normal subgroup containing H; then by the form of & we have
SBy = Bygym,) and it is clear that v(H'/H}) is a normal subgroup of
G/ Hy; =

Remark, From Proposition 7.1 and the Structure Theorem we tmme-
diately get the result on the structure of factors for group extensions of
rotations proved in [Me].

Remark If we assume that a 2-fold simple map is not weakly mixing,
then in fact it has discrete spectrum (see [Ju-Ru]) and then both Lemina 7.1
and Proposition 7.1 are valid for each ergodic cocycle ¢ : X — G.

8. Coalescence of factors of group extensions of automorphisms
with discrete spectrum. Since a semisimple map need not be coales-
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cent and it is not known whether or not factors of simple maps are coa-
lescent, we will concentrate on group extensions of discrete spectrum au-
tomorphisms. The question whether or not each factor of a coalescent au-
tomorphism i again coalescent was stated by D. Newton in 1970 ([Nel])
and the negative answer is contained in [Le] (see also a recent paper by
A. Fieldsteel and ID. Rudolph {Fi-Ru]). An ergodic group extension of a ro-
tation need not be coalescent, but we will assume that this is the case and
ask about the coalescence of all factors. Our goal is to prove the follow-
ing theorem (which is a generalization of a result from [Le| for the abelian
case).

TusorsM 3. 4f Ty 1 (X % G ) — (X x G, [i) is an ergodic group ex-
tension of an euternorphism T with discrete spectrum ond n denotes the
natural family of factors (from Section 7), then all factors of T, are coales-
cent whenever all natural factors are.

Proof. Let £ be a factor of T, which is isomorphic to a proper factor
£ g &. To simplify notation we assume that £ = B. Now, & C £ and they
are isomorphic, 50 by the coalescence of natural factors we have & = £ = B.

Let H(€) be the compact subgroup contained in C(T,,) that determines
£. Let S he the (noninvertible) clement of the centralizer of £ which gives

rise to an isomorphism of £ and £'. Denote by g an_extension of g to
C(I,). Now § is invertible. Moreover, the factor £’ = §7€ is determined
by ST1H(£)S. Consequently,
(+) 51 ()5 c H(E)
and the nclusion iy strict.

Het

H={geG 0, H(E)},

where o,(z,h) = (2, hg). Note that o, € C(Z},) and can be written as
Idy v, , where 7,(h) = g~ hg. Now, each U7 € H(E) is of the form U = Uy,

(Proposition 6.1) and if two clements 7, 7 € H(&) have the same projections

on the first coordinate (Le. they are Lftings of the same U € C(T7)) then

U=l oa, for some g € I, Suppose that § = 8y, where w : & — G is an
antomorphism. Then

a1 |
L‘J' = (S ).mm-l.[(f_:;ml)wll',u,wl
(w=* denotes the inverse in the sense of composition of maps) and

(Sf,'(ll)wl oayQ Sj',w = Oap=1{g)-
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Take the factor By which is determined by the group H(E}N{o, : g € G} C
C(T,) and consider S-1Bj. The latter factor is determined by

S 1H(By)S = {1y 1 g € H}.
Set H = {g &€ G : oy-1¢g) € §-17(£)8}. Then H is a proper subgroup
of H' because 5~ H(£)S determines S~ = £’ and &' is a proper factor

of £ Thus By is a proper factor of By, Moreover, g-1 (By) = By and
therefore

{ow-i1) 1 9 € HY = 57 H(Bx)8 = W8~ (B)) = H(Bar).

This implies that BH has a proper factor Bw—q(m isomorphic to it. The
result follows from Lemma 8.1 below.

LeMMA B8.1. Let T be semisimple and coalescent, ¢ : X — G ergodic,
H C G a closed subgroup and § € C’(T ). Assumne that By is §-invariant.

If § is invertible on B then it is so on By.

Proof. We have §(z, g) = §5,,(z, g) = (Se, f(x)v( ), where v: G — G
is a group automorphism. We have assumed that §-1By CB 1, which means
that

Ve, g) € X x G Syu(z,gH) e X X G/H.
But Sy, (z, gH) = (Sz, f(z)v(gH)) so
V(z,9) € X x G flz)(g)v(H) € G/H,

hence v(H) = (f(z)v(g))™" Gy H and v(H) = goH. But v(H) is a sub-
group, so gy = e and hence v(H) = H. Thus, on X x G/H,

‘§($:9H) = Sf,v,H(a::gH) = (Smnf(m)v(G)H-)?

and one directly checks that Sy, g is invertible. =

i

COROLLARY 8.1. If T is an isometric ergodic extension of a semisimple
automorphism T' and the group cover of T is coalescent then so is T,
9. Questions

QUESTION 1. What can we say about ergodic joinings of a semisimple
automorphism with an arbitrary one?

QUESTION 2. Is semisimplicity a generic property in the group of auto-
morphisms of a fixed Lebesgue space?

QUESTION 3. Is it true in general that if T has a natural family of factors
and each natural factor is coalescent then all factors are coalescent?

icm
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Warning. It is perfectly possible to have a topclogical group (7 and its
compact subgroup H with

goH gyt G H.
An example where G = C(T), for a special T, is contained in Lel.
QUESTION 4. Are Interval Exchange Transformations semisimple?

QuUESTION 5. How to define semisimplicity of higher orders?
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Derivability, variation and range of a vector measure

by

L. RODRIGURZ-PTAZZA (Sevilla)

Abstract. We prove that the range of a vector measure determines the o-finiteness of
its variation and the derivability of the measure. Let F and G be two countably additive
measures with values in a Banach gpace such that the closed convex hull of the range of
F ig a translate of the closed convex hull of the range of &; then F has a o-finite variation
if and only if & does, and I has s Bochner derivative with respect to its variation if and
only if & dues. This complements a result of [Ro] where we proved that the range of a
measure determines its total variation. We alse give a new proof of this fact.

Answering a question of Anantharaman and Diestel [AD], we proved in
[Ro] that if the ranges of two measures with values in & Banach space have
the same closed convex hull, then they have the same total variation. So we
can say that the range of a vector measure determines its total variation.
The purpoese of this paper is to show two other properties of a. vector measure
which are determined by its range: the o-finiteness of its variation, and the
Bochner derivability.

In Section 1 we introduce the notation and collect some known results
we will use throughout the paper. We first establish some properties of the
Bartle integral and vector measures with scalar density with respect to an-
other vector measure; and we finish with a result about the determination of
real-vaiued symmetric measures defined on the euclidean unit sphere (The-
orem 1.4).

The fact that the range determines the total variation does not imply
divectly that the range determines the o-finiteness of the variation. If we
koow that 2, the ¢losed eonvex hull of the range of a vector measure F, is
also the closed convex hnll of the range of another vector measure of o-finite
variation, what we know i that Z can be decomposed as Z = 3, -y Zn,
where each Z,, is the closed convex hnll of the range of a measure of finite
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