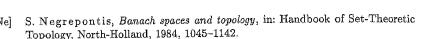


### 194



[Ny1] P. Nyikos, Classes of compact sequential spaces, in: Set Theory and its Applications, Lecture Notes in Math. 1401, Springer, 1989, 135-159.

-, Properties of Eberlein compacta, Abstracts of Eighth Summer Conference [Ny2]on General Topology and Applications, 1992, 28.

[Po] R. Pol, Note on pointwise convergence of sequences of analytic sets, Mathematika 36 (1989), 290-300.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 02-097 WARSZAWA, POLAND E-mail: WMARCISZ@MIMUW.EDU.PL

Received April 13, 1994

(3264)

## STUDIA MATHEMATICA 112 (2) (1995)

# On vector spaces and algebras with maximal locally pseudoconvex topologies

A. KOKK (Tartu) and W. ZELAZKO (Warszawa)

Abstract. Let X be a real or complex vector space. We show that the maximal p-convex topology makes X a complete Hausdorff topological vector space. If X has an uncountable dimension, then different p give different topologies. However, if the dimension of X is at most countable, then all these topologies coincide. This leads to an example of a complete locally pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex. We apply these results to topological algebras, considering the problem of uniqueness of a complete topology for semitopological algebras and giving an example of a complete locally convex commutative semitopological algebra without multiplicative linear functionals, but with every separable subalgebra having a total family of such functionals.

Let X be a real or complex vector space. A p-homogeneous seminorm on X  $(0 is a non-negative function <math>x \to ||x||, x \in X$ , such that

- (i) ||0|| = 0,
- (ii)  $||x+y|| \le ||x|| + ||y||$  for all  $x, y \in X$ , and
- (iii)  $\|\lambda x\| = |\lambda|^p \|x\|$  for all x in X and all scalars  $\lambda$ .

The inequality  $(u+v)^p \leq u^p + v^p$ ,  $0 , <math>u,v \geq 0$ , implies that if ||x|| is a p-homogeneous seminorm on X, and  $0 < r \le 1$ , then  $||x||^r$  is a pr-homogeneous seminorm on X.

A topological vector space X is said to be locally pseudoconvex if its topology is given by means of a family  $(\|\cdot\|_{\alpha})$  of  $p(\alpha)$ -homogeneous seminorms,  $0 < p(\alpha) \le 1$ . For more details on locally pseudoconvex spaces the reader is referred to [2] and [4].

Let X be a vector space and 0 . The maximal locally p-convextopology  $\tau_{\max}^p$  on X is the topology given by means of all p-homogeneous seminorms. It is a Hausdorff vector space topology. For p = 1 it is the maximal locally convex topology on X. In this case we denote it by  $au_{\max}^{\text{LC}}$ 

<sup>1991</sup> Mathematics Subject Classification: Primary 46H05.

The second author is partially supported by KBN grant No 2 2007 92 03 and NSF grant No 902395.

instead of  $\tau_{\max}^1$ . Note that if  $p < q \le 1$ , then all q-homogeneous seminorms on X are continuous in the topology  $\tau_{\max}^p$ . This follows from the fact that if  $\|\cdot\|$  is a q-homogeneous seminorm on X, then  $x \to \|x\|^{p/q}$  is a p-homogeneous seminorm on X, since p/q < 1. Another type of maximal topology is the topology  $\tau_{\max}^{q+}$ , where  $0 \le q < 1$ , given by means of all p-homogeneous seminorms on with  $q . Thus for <math>0 \le q the topology <math>\tau_{\max}^{q+}$  is stronger than  $\tau_{\max}^p$ , and  $\tau_{\max}^p$  is stronger than  $\tau_{\max}^p$ . It is easy to verify that if a vector space X is provided with one of the above maximal topologies, then all of its linear functionals and endomorphisms are continuous, and all of its linear subspaces are closed.

Extending a result in ([3], example on p. 59) we prove the following

THEOREM 1. Let X be a real or complex vector space and let  $0 (resp. <math>0 \le q < 1$ ). Then  $(X, \tau_{\max}^p)$  (resp.  $(X, \tau_{\max}^{q+})$ ) is a complete Hausdorff topological vector space.

Proof. If  $0 \neq x^0 \in X$ , then there is a linear functional f on X with  $f(x^0) \neq 0$ . Then for any r with  $0 < r \leq 1$  the formula  $x \to |f(x)|^r$  gives an r-homogeneous seminorm  $\|\cdot\|$  on X with  $\|x^0\| \neq 0$ . Thus both  $\tau_{\max}^p$  and  $\tau_{\max}^{q+}$  are Hausdorff. It remains to show that X is complete in both topologies. Fix a Hamel basis  $(h_{\alpha})_{\alpha \in \mathfrak{a}}$  for X, so that every x in X has a unique representation of the form

$$(1) x = \sum_{\alpha} g_{\alpha}(x) h_{\alpha},$$

where all but a finite number of the coefficients  $g_{\alpha}(x)$ , which are linear functionals in x, are zero. Let  $(x_{\gamma})$  be a Cauchy net in  $(X, \tau_{\max}^p)$  (resp.  $(X, \tau_{\max}^{q+})$ ). By the continuity of  $g_{\alpha}$  the limits

$$C_{\alpha} = \lim_{\gamma} g_{\alpha}(x_{\gamma})$$

exist for all  $\alpha$  in  $\mathfrak{a}$ .

First we show that all but finitely many  $C_{\alpha}$  are zero. If not, choose  $C_{\alpha_1}, C_{\alpha_2}, \ldots$  so that  $C_{\alpha_i} \neq 0$  for all i, and put

$$|x| = \left(\sum_{k=1}^{\infty} \frac{k|g_{\alpha_k}(x)|}{C_{\alpha_k}}\right)^p$$

with  $q in the case of the topology <math>\tau_{\max}^{q+}$ . This is a continuous p-homogeneous seminorm on the considered space. For any fixed k we have  $|x_{\gamma}| > k$  for sufficiently large  $\gamma$ . But this is impossible, since for every continuous seminorm |x| on X, the finite limit  $\lim_{\gamma} |x_{\gamma}|$  exists. Thus only finitely many of the considered numbers, say  $C_{\alpha_1}, \ldots, C_{\alpha_k}$ , are different from zero.

Put  $x_0 = C_{\alpha_1}h_{\alpha_1} + \ldots + C_{\alpha_k}h_{\alpha_k}$ . We have to show that  $y_{\gamma} = x_{\gamma} - x_0$  tends to zero. If not, then there is a *p*-homogeneous seminorm  $|\cdot|$  on X

 $(p>q \text{ in the case of } \tau_{\max}^{q+}) \text{ with } \lim_{\gamma}|y_{\gamma}|>0. \text{ Put } r_{\alpha}=|h_{\alpha}|, \ \alpha\in\mathfrak{a}, \text{ and }$ 

(2) 
$$||x|| = \sum_{\alpha} |g_{\alpha}(x)|^p r_{\alpha}.$$

This is again a well defined p-homogeneous seminorm on X. Since

$$|x| = \Big|\sum_{\alpha} g_{\alpha}(x)h_{\alpha}\Big| \le \sum_{\alpha} |g_{\alpha}(x)|^p |h_{\alpha}| = ||x||,$$

we also have  $M = \lim_{\gamma} ||x_{\gamma}|| > 0$ .

Define the support of a non-zero element x of X setting

$$\operatorname{supp} x = \{ \alpha \in \mathfrak{a} : g_{\alpha}(x) \neq 0 \};$$

it is a finite subset of  $\mathfrak{a}$ . We put supp  $0 = \emptyset$ . It is clear that supp  $x \cap \text{supp } y = \emptyset$  implies ||x+y|| = ||x|| + ||y|| for the seminorm given by (2). Since  $(y_{\gamma})$  is a Cauchy net, there is an index  $\gamma_0$  such that  $||y_{\gamma} - y_{\gamma_0}|| < M/2$  for all  $\gamma > \gamma_0$ . Let P be the projection on X given by the formula

$$Px = \sum_{\alpha \in \text{supp } y_{\gamma_0}} g_{\alpha}(x) h_{\alpha}.$$

Clearly, supp  $Px \cap \text{supp}(I - P)x = \emptyset$  and supp  $y_{\gamma_0} \cap \text{supp}(I - P)x = \emptyset$  for all x in X, where I is the identity operator. Thus

$$||y_{\gamma} - y_{\gamma_0}|| = ||Py_{\gamma} - y_{\gamma_0} + (I - P)y_{\gamma}|| = ||Py_{\gamma} - y_{\gamma_0}|| + ||(I - P)y_{\gamma}||,$$

which implies  $||(I-P)y_{\gamma}|| < M/2$  for all  $\gamma > \gamma_0$ . Since  $\lim_{\gamma} g_{\alpha}(y_{\gamma}) = 0$  for all  $\alpha$  and supp  $y_{\gamma_0}$  is finite, we have  $\lim_{\gamma} Py_{\gamma} = 0$ . Thus

$$M = \lim_{\gamma} \|y_{\gamma}\| = \lim_{\gamma} \|Py_{\gamma}\| + \lim_{\gamma} \|(I - P)y_{\gamma}\| < M/2,$$

a contradiction proving  $\lim_{\gamma} y_{\gamma} = 0$ . The conclusion follows.

We shall need the following notation. Let X be as above. Let  $a(\alpha)$  be a non-negative function on the index set a for a fixed Hamel basis for X. Writing an element x in the form (1) we put

$$||x||_{(p,a)} = \sum_{\alpha} |g_{\alpha}(x)|^p a(\alpha), \quad 0$$

For  $a(\alpha) \equiv 1$  we simply write  $||x||_p$  instead of  $||x||_{(p,a)}$ , and if p = 1 and  $a \not\equiv 1$  we write  $||x||_a$  for  $||x||_{(p,a)}$ .

We say that X is at most countably dimensional (resp. uncountably dimensional) if it has an at most countable (resp. uncountable) Hamel basis.

PROPOSITION 2. Let X be a real or complex uncountably dimensional vector space. Then all topologies  $\tau_{\max}^p$   $(0 and <math>\tau_{\max}^{q+}$  are pairwise different on X.

Proof. It is sufficient to show that if 0 , then there is a p-homogeneous seminorm on X which is not continuous in the topology

 $au_{\max}^q$  (this proves both  $au_{\max}^p \neq au_{\max}^q$  and  $au_{\max}^p \neq au_{\max}^{q+}$  as well as  $au_{\max}^{r+} \neq au_{\max}^p$  for any 0 < r < p). Indeed, we simply take  $\|\cdot\|_p$ . Suppose, to the contrary, that it is continuous in the topology  $au_{\max}^q$ , i.e. that there is a q-homogeneous seminorm  $\|\cdot\|$  on X and a C > 0 such that for all x in X we have

$$||x||_p \le C||x||^{p/q}.$$

We have

$$||x|| = \left\| \sum_{\alpha} g_{\alpha}(x) h_{\alpha} \right\| \le \sum_{\alpha} |g_{\alpha}(x)|^{q} ||h_{\alpha}||$$

and setting  $a(\alpha) = ||h_{\alpha}||$  we obtain

$$||x|| \le ||x||_{(q,a)}.$$

Now, (3) and (4) imply

(5) 
$$||x||_p \le C||x||_{(q,a)}^{p/q}$$

for all x in X. Since the dimension of X is uncountable, we find an integer n > 0 such that the set  $\mathfrak{a}_n = \{\alpha \in \mathfrak{a} : a(\alpha) \leq n\}$  is infinite. Take an element  $x_0$  so that  $g_{\alpha}(x_0) = 1/k$  for  $\alpha$  in a subset of  $\mathfrak{a}_n$  of cardinality k and  $g_{\alpha}(x_0) = 0$  for all remaining  $\alpha$ . Setting this element in (5) we obtain

$$\frac{k}{k^p} = k^{1-p} \le C n^{p/q} (k^{1-q})^{p/q},$$

giving

$$k^{1-p/q} < Cn^{p/q}$$

for all natural k, which is the desired contradiction. The conclusion follows.

We now prove a somewhat surprising fact that the above fails to be true if the dimension of X is at most countable.

PROPOSITION 3. Let X be a real or complex at most countably dimensional vector space. Then all topologies  $\tau_{\max}^p$   $(0 and <math>\tau_{\max}^{q+}$   $(0 \le q < 1)$  coincide. In particular,  $(X, \tau_{\max}^p)$  or  $(X, \tau_{\max}^{q+})$  is a locally convex space.

Proof. It is sufficient to prove the proposition assuming that X has a countable Hamel basis  $(h_i)_{i=1}^{\infty}$ . We shall be done if we show that for a given p-homogeneous seminorm  $\|\cdot\|$  on X,  $0 , there is a sequence <math>a = (a_i)_{i=1}^{\infty}$  of positive numbers such that

$$||x|| \le ||x||_a^p$$

for all x in X. We have

$$||x|| = \left\| \sum_{i} g_i(x) h_i \right\| \le \sum_{i} |g_i(x)|^p ||h_i||.$$

Thus it is sufficient to prove (6) for  $||x|| = ||x||_{(p,b)}$ , where  $b = (b_i)_{i=1}^{\infty}$  with  $b_i = \max(1, ||h_i||)$ , so that all  $b_i$  are positive. Therefore in order to prove

(6) we have to show that there is a sequence  $a = (a_i)_{i=1}^{\infty}$  of non-negative numbers such that

(7) 
$$\sum_{i=1}^{n} b_i t_i^p \le \left(\sum_{i=1}^{n} a_i t_i\right)^p$$

for all finite sequences  $(t_1, \ldots, t_n)$  of non-negative numbers.

To this end we use the following Hölder inequality (it follows immediately from the inequality D1 in Chapter 16 of [1]). Let  $\mu$  be a probability measure on a space  $\Omega$ . Let 0 . Then

(8) 
$$\int_{\Omega} f^{p} d\mu \leq \left(\int_{\Omega} f d\mu\right)^{p}$$

for any non-negative measurable function f. Setting here  $\Omega = \mathbb{N}$ , and  $\mu(k) = C_k$ , where  $C_k > 0$  and  $\sum_{k=1}^{\infty} C_k = 1$ , we can rewrite (8) as

(9) 
$$\sum_{i=1}^{\infty} C_i r_i^p \le \left(\sum_{i=1}^{\infty} C_i r_i\right)^p$$

for all sequences  $(r_i)_{i=1}^{\infty}$  with non-negative entries. Setting  $r_i = b_i^{1/p} C_i^{-1/p} t_i$  in (9), we rewrite it as

$$\sum_{i} b_i t_i^p \le \left(\sum_{i} C_i^{1-1/p} b_i^{1/p} t_i\right)^p$$

and this is exactly (7) with  $a_i = C_i^{1-1/p} b_i^{1/p}$ . The conclusion follows.

We can now prove the existence of an example announced in the abstract.

Theorem 4. There exists a complete pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex.

Proof. Let X be any uncountably dimensional space equipped with the topology  $\tau_{\max}^p$  with  $0 . By Theorem 1 it is a complete locally pseudoconvex space, which by Proposition 2 is not locally convex. Let <math>X_0$  be a separable subspace of X. One can easily verify that the topology of X restricted to  $X_0$  coincides again with the topology  $\tau_{\max}^p$ . Let S be a countable dense subset of  $X_0$  and put  $Y = \operatorname{span}(S)$ . Since all subspaces of X are closed, we have  $X_0 = Y$ . Thus Y is at most countably dimensional, and so, by Proposition 3, it is a locally convex space. The conclusion follows.

The results of Propositions 2 and 3 can be formulated as follows.

THEOREM 5. Let X be a real or complex vector space. Then either

(i) all topologies  $\tau_{\max}^p$ ,  $0 , and <math>\tau_{\max}^{q+}$ ,  $0 \le q < 1$ , are pairwise different and this happens exactly when X is uncountably dimensional, or

(ii) all topologies  $\tau_{\max}^p$ ,  $0 , and <math>\tau_{\max}^{q+}$ ,  $0 \le q < 1$ , coincide, and this happens exactly when the dimension of X is at most countable.

We now apply the maximal pseudoconvex topologies to topological algebras. A real or complex algebra A provided with a topological vector space topology is said to be a semitopological algebra if multiplication is separately continuous, i.e. for fixed y both maps  $x \to xy$  and  $x \to yx$  are continuous. Since under the considered maximal topologies all endomorphisms are continuous, we obtain

PROPOSITION 6. Let A be a real or complex algebra. Then for  $0 and <math>0 \le q < 1$ , the algebras  $(A, \tau_{\max}^p)$  and  $(A, \tau_{\max}^{q+})$  are complete semitopological algebras.

We say that an algebra A is at most countably generated if there is an at most countable subset S such that A coincides with the smallest subalgebra of A containing S. Otherwise we say that A is uncountably generated. It is easy to see that an uncountably generated algebra has an uncountable Hamel basis. Propositions 2 and 6 immediately imply the following result about non-uniqueness of a complete topology for uncountably generated semitopological algebras.

Proposition 7. Let A be an uncountably generated algebra. Then there are at least a continuum of different topologies making A a complete semitopological algebra.

In [6] it was shown that if a real or complex algebra A is at most countably generated, then  $(A, \tau_{\max}^{\text{LC}})$  is a topological algebra, i.e. multiplication is jointly continuous. This result, together with Proposition 7, implies

COROLLARY 8. Suppose that an algebra A has a unique topology making it a complete semitopological algebra. Then this topology makes A a topological algebra.

We see that the question of uniqueness of a complete topology making an algebra A a complete semitopological algebra makes sense only for at most countably generated algebras. We now ask a particular version of this question.

PROBLEM. Is  $au_{\rm max}^{\rm LC}$  the only topology making the algebra of all polynomials in one variable a complete topological (resp. locally convex) algebra? (Added in proof. This question has a negative answer.)

We close this paper with an example concerning multiplicative linear functionals in semitopological algebras. A family  $\mathcal{F}$  of linear functionals on a vector space X is said to be total if f(x) = 0 for all f in  $\mathcal{F}$  implies x = 0.

Theorem 9. There exists a complete locally convex commutative semi-topological algebra A without multiplicative linear functionals such that every separable subalgebra of A has a total family of such (continuous) functionals.

Proof. Denote by Q(t) the real or complex algebra of all rational functions in one variable t and put  $A = (Q(t), \tau_{\max}^{LC})$ . This is a complete semitopological algebra without multiplicative linear functionals. Let  $\mathcal{A}$  be a separable subalgebra of A with a countable dense subset  $(x_i)_{i=1}^{\infty}$ . Every  $x_i$  has a finite number of poles, so that the set P of all poles of the elements  $x_i$  is at most countable. The smallest subalgebra of A containing all the  $x_i$  must coincide with A, since all subalgebras of A are closed. It follows that the set of all poles of the elements of A coincides with P. Now every point t in  $\mathbb{C}\backslash P$  (resp.  $\mathbb{R}\backslash P$ ) gives the evaluation functional  $f_t(x) = x(t)$  on A, which is a continuous multiplicative linear functional. Clearly the set of all these functionals is total in A. The conclusion follows.

Remark. It is known that the algebra A in the above proof is not a topological algebra (see [7]), while, by a result of [6], all of its separable subalgebras, being at most countably generated algebras, are topological. Thus we also have an example of a commutative semitopological algebra that is not topological, but all of whose separable subalgebras are topological.

#### References

- [1] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
- [2] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- [3] H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
- L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
- W. Zelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano 59 (1989), 1992, 49-58.
- 6] —, On topologization of countably generated algebras, Studia Math. 112 (1994), 83-88.
- [7] W. Zelazko, Further examples of locally convex algebras, in: Topological Vector Spaces, Algebras and Related Areas, Pitman Res. Notes in Math., to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TARTU TARTU, ESTONIA E-mail: ARNE.K@VASK.UT.EE MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES
P.O. BOX 137
00-950 WARSZAWA, POLAND

E-mail: ZELAZKO@IMPAN.IMPAN.GOV.PL

Received July 13, 1994 Revised version July 22, 1994 (3314)