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On vector spaces and algebras
with maximal locally pseudoconvex topologies

by

A KOKK (Tartu) and W. ZELAZKO (Warszawa)

Abstract. Let X be a real or complex vector space. We show that the maximal
p-convex topology makes X a complete Hausdorff topological vector space. If X has an
uncountable dimension, then different p give different topologies. However, if the dimension
of X is ab most countable, then all these topologies coincide, This leads to an example
of a complete locally pseudoconvex space X that is not locally convex, but all of whose
separable subspaces are locally convex. We apply these results to topological algebras,
considering the problem of uniqueness of a complete topology for semitopological algebras
and giving an example of a complete locally convex comimutative semitopological algebra
without multiplicative linear functionals, but with every separable subalgebra having a
total family of such functionals.

Let X be a real or complex vector space. A p-homogeneous seminorm on
X (0 < p < 1) is a non-negative function z — [jz||, z & X, such that

(i) [Jof] = O,
(i) Jiz + il <zl + |y|| for all z,y € X, and
(iii) |Az|| = |A[P||z]| for all z in X and all scalars A.

The inequality (u+ ) < w? +v?, 0 <p <1, uv = 0, implies that
if ||%]| is a p-homogeneous seminorm on X, and 0 < r < 1, then lz]|” is &
pr-homogeneous seminorm on X. ‘

A topological vector space X is sald to be locally pseudoconver if its
topology is given by means of a family (|| - [} of p(a)-homogeneous semi-
norms, 0 < p(e) £ 1. For more details on locally pseudoconvex spaces the
reader is referred to [2] and [4]. :

Let X be a vector space and 0 < p < 1. The mazimal locally p-conver
topology T2,, on X is the topology given by means of all p-homogenecus
seminorms. It is a Hausdorff vector space topology. For p = 1 it is the

maximal locally convex topology on X. In this case we denote it by Tfl;gx
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instead of 7, . Note that if p < g < 1, then all g-homogeneous seminortas
on X are continuous in the topology 72,,. This follows from the fact that if
li-|| is & g-homogeneous seminorm on X, then z — |||/ is a p-homogeneous
seminorm on X, since p/g < 1. Another type of maximal topology is the
topology 74%,, where 0 < g < 1, given by means of all p-homogeneous
seminorms on with ¢ < p < 1. Thus for 0 < ¢ < p < r < 1 the topology
73+ s stronger than 72,., and 7,, is stronger than TEL and 7. It is
easy to verify that if a vector space X is provided with one of the above
maximal topologies, then all of its linear functionals and endomorphisms are
continuous, and all of its linear subspaces are closed.

Extending a result in ([3], example on p. 59) we prove the following

THEOREM 1. Let X be a real or complex vectar space and let 0 <p <1
(resp. 0 < g < 1). Then (X, 72, (resp. (X,785)) is o complete Hausdorff
topological vector space.

Proof. If 0 # 2% € X, then there is a linear functional f on X with
F(z%) # 0. Then for any » with 0 < » < 1 the formula = — |f(z)|" gives
an r-homogeneous seminorm || - || on X with ||z%] # 0. Thus both 75,
and 72%  are Hausdorfl. It remains to show that X is complete in both
topologies. Fix a Hamel basis (ha)aca for X, so that every z in X has a
unique representation of the form

(1) 2= ga(@)her |

where all but a finite number of the coefficients g, (z), which are linear
functionals in z, are zero. Let (z.,) be a Cauchy net in (X,75,,) (resp.
(X, 73%.)). By the continuity of g, the limits

o= li;n G (33'1)

exizgt for all o in a.
First we show that all but finitely many Cy are zero. If not, choose
CeqrCags - - - 50 that Cy; # 0 for all 4, and put

k=1

with ¢ < p < 1 in the case of the topology 7&%,. This is a continuous
p-homogeneous seminorm on the considered space. For any fixed k we have
\&| > k for sufficiently large -v. But this is impossible, since for every contin-
uous seminorm |z| on X, the finite limit lim |z, | exists. Thus only finitely
many of the considered numbers, say Cy,, ..., Cq,, are different from zero.

Put zg = Coyhoy + ... + Cap Pay,. We have to show that y, = 24 — @0
tends to zero. If not, then there is a p-homogeneous seminorm |- | on X
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(p > ¢ in the case of &t ) with lim, |y,| > 0. Put vy = |hal, @ € 4, and
(2) el = lga(@)Pre.

[+3
This is again a well defined p-homogeneous seminorm on X. Since

ol = |3 gal@da) € 3 lga@)7lhal = |2,
(93 24

we also have M = lim, ||z,]| > 0.
Define the support of a non-zero element z of X setting
suppz = {a € a: ga(x) # 0}
it is a finite subset of a. We put supp 0 = 0. It is clear that supp zNsuppy = 0
implies ||z - ¥|| = |iz|| + ||y|| for the seminorm giver by (2). Since (y,) is a
Cauchy net, there is an index ~y such that ||y, — y4, || < M/2 for all v > 4q.
Let P be the projection on X given by the formula

Pr = Z
CESUPD Yo
Clearly, supp Pz N supp(l — P)z = 0 and suppy,, Nsupp({ — P)z = @ for
all x in X, where I is the identity operator. Thus
vy = tyoll = [Pyy = yyo + (I = Pyl = | Pyy — pyo |l + 1T = Py,
which implies [|(I — P)y,{| < M/2 for all v > «y. Since lim, ga{y,) = 0 for
all @ and supp 4., is finite, we have lim, Py, = 0. Thus
M = lim | = Y | Py | + i (7 = Pl | < /2,

o (@) o

a contradiction proving lim, y, = 0. The conclusion follows.

‘We shall need the following notation. Let X be as above. Let a(a) be
a non-negative function on the index set a for a fixed Hamel basis for X.
Writing an element z in the form (1) we put

[2llpay = Y _ |galz)Pale), 0<p<L.

For a(a) = 1 we simply write ||z, instead of ||%{4), and if p = 1 and
a # 1 we write |z, for |||

We say that X is af most countably dimensional (resp. uncountably di-
menstonal) if it has an at most conntable (resp. uncountable) Hamel basis.

PROPOSITION 2. Let X be o real or complex uncountably dimensional
vector space. Then all topologies TE,. (0 < p < 1) and T4E, are pairwise
different on X. :

Proof It is sufficient to show that if 0 < p < g < 1, then there is
a p-homogeneous seminorm on X which is not continuous in the topology
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74 (this proves both 78, # e, and Th., # Ak, as well as 7L, # Tha
for any 0 < r < p). Indeed, we simply take || - ||,- Suppose, to the contrary,
that it is continuous in the topology 74,y .. that there is a g-homogeneous

seminorm || - || on X and a C > 0 such that for all z in X we have
(3) lellp < Cliall?’®.
‘We have

IO

ol = | > aula)he

and setting a(a) = ||ha|| we obtain

(4) 2]l < |2l g,
Now, (3) and (4) imply
(5) lzll, < CYz(22,

for all z in X. Since the dimension of X is uncountable, we find an integer
n > 0 such that the set 0, = {@ € a : a{e) £ n} is infinite. Take an
element xp so that go(zg) = 1/k for & in a subset of a, of cardinality k£ and
9o(w0) = O for all remaining ¢v. Setting this element in (5) we obtain

k 1-p pla(pl—q p/’q
w =k"7P < CnPl(kT)
giving

EiP/e < OpplY ‘

for all natural k, which is the desired contradiction. The conclusion follows.

We now prove a somewhat surprising fact that the above fails to be true
if the dimension of X is at most countable.

ProposITION 3. Let X be o real or complem at most countably dimen-
sional vector space. Then all topologies T8, (0 < p < 1) and T4E, (0 < ¢
< 1) coincide. In particular, (X, 78,.) or (X, 78%,) is a locally conver space.

Proof It is sufficient to prove the proposition assuming that X has
a countable Hamel basis {;)32,. We shall be done if we show that for a

given p-homogeneous seminorm || - || on X, 0 < p < 1, there is a sequence
a = (0;)2, of positive numbers such that
(6) ]| < =il

for all z in X. We have
Jall = || 3 ol < Yla@Plad.

Thus it is sufficient to prove (6) for ||z|| = ||z||(5p), where b = (b;)i2, with
b; = max(1, ||k]), so that all b; are positive. Therefore in order to prove
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(6) we have to show that there is a sequence a = (2;)2, of non-negative
numbers such that

(7) i b,,t,? < (i G;it¢'>p
PES j=1

for all finite sequences (¢y,...,%,) of non-negative numbers.

To this end we use the following Holder inequality (it follows immediately
from the inequality D1 in Chapter 16 of [1]). Let u be a probability measure
on a space {2. Let 0 < p < 1. Then

®) [ raus( [ fau)
2 4

for any non-negative measurable function f. Setting heve 2 = N, and u(k) =
Cp, where Cy > 0 and 3 5o, Ck, = 1, we can rewrite (8) as

(9) icﬂf < (i@'ﬁ)ﬁ)

for all sequences (r;)32, with non-negative entries. Setting r; = b}/?C; /1,
in (9), we rewrite it as

th:ﬂ < (ch Urpliny )

and this is exactly (7) with a; = C*"2/Pp}?_ The conclusion follows.
I3 K

We can now prove the existence of an example announced in the abstract.

THEOREM 4. There exists a complete pseudoconvex space X that is not
locally convex, but all of whose separable subspaces are locally conves.

Proof. Let X be any uncountably dimensional space equipped with
the topology 72, with 0 < p < 1. By Theorem 1 it is a complete locally
pseudoconvex space, which by Proposition 2 is not locally convex. Let Xp
be a separable subspace of X. One can easily verify that. the topology of
X restricted to Xy coincides again with the topology 7Z,.. Let § be a
countable dense subset of Xy and put Y = span(&). Since all subspaces of
X are closed, we have Xy = Y. Thus ¥ is at most countably dimensional,
and so, by Proposition 3, it is a locally convex space. The conclusion follows.

The results of Propositions 2 and 3 can be formulated as follows.

THEOREM 5. Let X be a real or compler vector space. Then either -

(i) all topologies 2., 0 < p < 1, and 74%,, 0 < ¢ < 1, are pairwise
different and this happens exactly when X is uncountably dimensional, or

(i} all topologies Th.,, 0 <p <1, and flﬁ'j;x, 0 < g < 1, coincide, and
this happens exactly when the dimension of X s at most countable.
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We now apply the maximal pseudoconvex topologies to topological alge-
bras. A real or complex algebra A provided with a topological vector space
topology is said to be a semitopological algebra if multiplication is separately
continuous, i.e. for fixed y both maps z — zy and = — ys are continuous.
Since under the considered maximal topologies all endomorphisms are con-
tinuous, we obtain

PROPOSITION 6. Let A be o real or complez algebra. Then for 0 < p < ¢
and 0 < g < 1, the algebras (4,7E,.) and (A,73E) are complete semitopo-
logieal algebras.

We say that an algebra A is af most countadbly generated if there is an at
most countable subset § such that A coincides with the smallest subalgebra
of A containing 5. Otherwise we say that A is uncountebly generated. It
is easy to see that an uncountably generated algebra has an uncountable
Hamel basis. Propositions 2 and 6 immediately imply the following result
about non-uniqueness of a complete topology for uncountably generated
semitopological algebras.

ProrosiTION 7. Let A be an uncountebly generated algebra. Then there
are at least a continuum of different topologies making A o complete semi-
topological algebra.

In [6] it was shown that if a real or complex algebra A is at most count-
ably generated, then (A4, 7LC ) is a topological algebra, i.e. multiplication is
jointly continuous. This result, together with Proposition 7, implies

COROLLARY 8. Suppose that an algebra A has o unigue topology making it
o complete semitopological algebra. Then this topology mokes A a topological
algebra.

We see that the question of uniqueness of a complete topology making
an algebra A a complete semitopological algebra makes sense only for at
most countably generated algebras. We now ask a particular version of this
question.

PrROBLEM. Ts 755, the only topology making the algebra of all polyno-
mials in one variable a complete topological (resp. locally convex) algebra?
(Added in proof. This question has a negative answer.)

We close this paper with an example concerning multiplicative linear
functionals in gemitopological algebras. A family F of linear functionals on
a vector space X is said to be total if f(z) = 0 for all f in F implies z = 0.

THEOREM 9. There exists o complete locolly conver commutative semi-
topological algebrn A without multiplicative linear functionals such that
every separable subalgebro of A has a total family of such (continuous)
functionals.
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Proof. Denote by Q(f) the real or complex algebra of all rational func-
tions in one variable ¢ and put A = (Q(t),7L%,). This is a complete semi-
topological algebra without multiplicative linear functionals. Let .4 be a
separable subalgebra of A with a countable dense subset (z;)$2,. Every z;
has a finite number of poles, so that the set P of all poles of the elements
z; is at most countable. The smallest subalgebra of A containing all the z,
must coincide with A, since all subalgebras of A are closed. It follows that
the set of all poles of the elements of A coincides with P. Now every point
t in C\P (resp. R\P) gives the evaluation functional fi(z) == z(t) on A,
which is a continuous multiplicative linear functional. Clearly the set of all
these functionals is total in A, The conclusion follows.

Remark. It is known that the algebra A in the above proof is not a
topological algebra (see [7]}, while, by a result of [6], all of its separable
subalgebras, being at most countably generated algebras, are topological.
Thus we also have an example of a commutative semitopological algebra that
is not topological, but all of whose separable subaigebras are topological.
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