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Ambiguous loci of the farthest distance mapping
from compact convex sets

by

F. 5. DE BLASI (Roma)and J. MYJAK (L'Aquila)

Abstract. Let E be a strictly convex separable Banach space of dimension at least 2.
Let K(E) be the space of all nonempty compact convex subsets of  endowed with the
Hausdorff distance. Denote by X¥ the set of all X € () such that the farthest distance
mapping & — Mx(a) is multivalued on a dense subset of F. Tt is proved that X° is a
residual dense subset of X(E).

1. Introduction and preliminaries. Throughout the present paper E
denotes a strictly convex separable Banach space of dimension at least 2,
and K(I) (resp. B(E)) the family of all nonempty compact convex (resp.
closed bounded) subsets of E. The spaces X(E) and B(E) are equipped with
the Hausdorff distance A under which, as is well known, both are complete.
For X ¢ B(E) and o € E we set

ex{a) =sup{|lz —a|| | z € X}
Given X' € B(E) and a € E, let us consider the mazimization problem,
denoted max{a, X'), which consists in finding some point z € X such that
|z—all = ex(a). Any such z is said a solution of max{a, X) and any sequence
{2} © X satisfying liMyece |2n ~ al| = ex(a) is called a mazimizing
sequence of max(a, X).

In a metric space Z, Bz(x,7) (resp. Bz(z,r)) is an open (resp. closed)
ball with center » € Z and radius » > 0 (resp. r > 0). For any X < Z,
X and diam X (X 5 ) stand for the closure of X and the diameter of X,
respectively.

A set X C 4 is called cverywhere uncountable in Z if for every z € Z
and > 0 the set X N By(z,r) is nonempty and uncountable,

For X € K(E) we denote by My : E — K(E) the forthest distonce
mapping, defined by

Mx(e)={z ¢ X ||z —al =ex(a)}
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100 F. 8. De Blasi and J. Myjak

We call Mx(a) the solution set of the maximization problem max(a,X).
Moreover, the set

A(Mx) = {a € E | Mx(a) contains at least 2 points}

is called the ambiguous locus of My.

In this note we consider approximation problems for the mapping ex
from sets X € X(I). It is known that, if E is also uniformly convex, then
the ambiguous locus of any set X € K{E) is o-porous, thus of the first
Baire category and of Lebesgue measure zero if E = R™ (see [4] and, for
similar results, Bartke and Berens [2] and Zaji¢ek [13]}. However, the set
A(Myx), though small from the category and the measure point of view,
can be unexpectedly rich in points scattered all over E. More precisely, we
show that in every strictly convex separable Banach space K of dimension
at least 2 thére exists a nonempty compact convex set X for which the
ambiguous locus A(Mx) is everywhere uncountable in . Actually we prove
more, namely that such a property of X is shared by most compact convex
sets in K{E), in the Baire category sense. :

For o € E and X € B(E) the set Mx(a) can be empty (see Miyajima
and Wada [11] for some examples). Under suitable assumptions on E and
X, Asplund [1] and Lau [9] (see also Edelstein [7], Panda and Dwivedi [12],
Deville and Zizler [5]) have proved that the set of all a € [E for which Mx (a)
is empty is of the Baire first category in E. The question whether this set
can be locally rich in points seems not vet settled.

Our approach is based on the Baire theorem. This has proven to be a
useful tool in order to get existence results in several problems of geometry,
starting with the classical work of Klee [10]. Developments of such ideas can
be found in Gruber [8] and Zamfirescu [14], [15].

2. Lemmas

LeMMA 2.1, Let diml,mz €K, 1 # x2, be such that ||z, —al| = ||z2 —a.
For8e A= [dl,dz], 0<dy £dp <1, set ai(a) =+ f{x; - a), i= 1,2,
Then there exists an gg > 0 such that, for every 8 € A,

(2.1) 2 = a1(0) ]| > |1 — ar (B)]} + €0,
(2.2) 21 — az(0)]] > [lz2 — a2(8)| + =0.

Proof. It suffices to prove (2.1) (the proof of (2.2) is analogous). If
the statement is not true, there exists a § € A such that ||ze ~ a1(8)| <
z1 — a1(8}]|. Furthermore,

21~ all = llas (6) — all + llz1 — a1 (8)|| = [lax(6) — a + Y22 — 21 (8)]]

2 |la1(8) — ol + llz2 — afi - [|a1(8) - o]| = ||z — all,
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which implies that

(@2 — a1(8)) + (61(6) — @) = |3 — @ (O] + llar () — all.

Since E is strictly convex, for some 3 > 0 we have 25 —a1(8) = B{a:1(8) — o).
Hence 52— a = (1+ B)(@(6) — a) = (1+ B8)0(z1 ~ a), which yields z2 = @,
a contradiction. This completes the proof.

LEMMA 2.2. In addition to the assumptions of Lemma 2.1, set bg(t) =
(1 —t)a1(#) + taz(8), t € [0,1]. Then there exisis an e > 0 such that, for
every 0 € A and every C1 C Bg(a1,¢), C2 C Br(ra,8) with C1,Cs # 9,

(23) ey (a'l (0)) > ey ((1.1 (6))1
(2.4) | e, (a2(0)) > ec, (a2(0)).
Moreover, there exists a t = t(6, Cl,Cg) €10, 1[ such that
(2.5) e, (bs(2)) = ec, (bo(t))-

Proof. By Lemma 2.1 there exists an £ > 0 such that for every 6 € A,
(2.1) and (2.2) are satisfied. Take ¢ = £0/3. Let 6 € A, and let 1 C
B (z1,8) and Cs C Bg(2g,2) with C1,C2 # 0. For ¢; € € and ¢z € Cz we
have

llea = ar(B)|| 2 llz2 — ar ()| - {le2 — 22|l > [lz — ar(B)]| +ea — &

2 ller — ax(8)|| — llex ~ zall + 60 —¢

> [lex ~ a1 (B)]| —e+eo — & = |ler — ax(B)]| + &,
which implies that ee,{a1(8)) > ec. (a1(8)). Hence (2.3) is proved. The proof
of (2.4) is analogous. Furthermore, the function ¢t — eg, (bg (1)) — ec, (be (%))
is continuous on [0,1] and, by (2.3) and (2.4), assumes values of opposite
sign at the end points of [0,1]. Thus there exists a t = (#,C1, Cs) € ]0,1[
for which (2.5) is satisfied. This completes the proof.

LEMMA 2.3. Let a € E and 0 < r < R ond 1,22 € B, 21 # z2, be
such that |21 — al| = ||z2 — a|| = R. Let X C Bg(a,r) with X € K(E). Set
A = [d/8,d/4], where d = (R ~r)/R. Define

Z =eo(X U{z1,22})
and let be(t) and a;(0) be defined as in the previous lemmas. Then:
(i) For@ € A and t € [0, 1], the maaimization problem max(by(t), Z) has
solution set Mz (bs(t)) satisfying
(2.6) Mz(b(t)) C {z1, 22}
Moreover, Mz(ba(0)) = z2 and Mz{be(1}) = =1.

(ii) For ¢ € A and t € [0,1], every magimizing sequence {zn} of
max(bg(t), Z) has a subsequence which converges to o point z € {z1,z2}.
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Proof. For § € A and t € [0,1], define g3,0) : Z — R by gy, ()
= ||l& — bp(t)||. As the function i,y is continuous on the compact set Z,
Phe(t) attains its supremum at some point, say Z € Z. Set

E={zeZ 0wz =wn,w@}
and observe that E # 0. We claim that F C {z,z2}.
Indeed, as @y, () is strictly convex on Z, a convex set, we have F C ext Z,
where ext Z denotes the set of the extreme points of Z. Moreover, by Krein—
Milmax’s theorem (6], ext Z C X U{wy,x2}, and thus E ¢ X U {z1,25}. To

prove the claim it suffices to show that £ N X = 0. Suppose otherwise, and
let we EN X. Then

Pooy (u) = flu~bs(D)|| < Ju— all + [l — bo(t)| < 7+

H

R-~r
4

since, by a simple calculation, |la — ba(t)|| < #R < {(d/4)R = (R — r)/4. On
the other hand, for i = 1,2, we have

Coo(ty (@) = |z ~bo()| > ||z — al| — la—bs(t)|| = R —

R—r
i

Hence iy, 1) (u) < v, 1) (2i), © = 1,2, which implies that u € ¥, a contradic-
tion. Thus B C {z1,22}. Since & = Mz (bg(t}), (2.6) is proved. Moreover,
by Lemma 2.1, we have

Pu(0)(@2) = llwa — @ ()] > llzr —~ a1 (8)]| = wn,(0y (1),
which implies that Mz (bg(0)) = 2. Similarly one can show that Mz (bg(1))
= =y, and so (i) is proved.
To prove (1i),.for given § € Aand t € [0,1], let {2} € Z be a maximizing
sequence of max(bg(t), Z). As Z is compact, passing to a subsequence we can

assume that limn o0 2, = 2z for some 2 € Z. This implies that z € Mz (bg(t))
and so, by (i), z € {1, 22}. This completes the proof.

LEMMA 2.4. Under the assumptions of Lemma 2.3, for every € > 0 there
exists.a o > 0 such that for every ¥ ¢ Bygy(Z,0) and every b€ A4,

(1) My (bo(0)) C Bg(za,e), My (bp(1)) C Bg(z1,2),
(ii) My (bg(t)) C Bg(®1,€) U Bg(m2,8) for every t € [0,1].

Proof. For (i) it suffices to prove the first inclusion (the proof of the
second being analogous). Suppose that, on the contrary, there exist an & > 0,
a sequence {Y,} C K(E) converging to Z, and a sequence {6} C A such
that

_ My, (01(6,)) @ Bg(z2,e), neN.

Passing to a subsequence, we assume that {0} converges to a 6 € A. Let
{3} C E be a sequence such that

(2.7) . Yn € My (a1{6n))\Bg(22,8), neNl
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Thus yn € Yo, and [jyn ~ a1(fn)|| = ey, (a1(0,)), n € K. Since {0,} con-
verges to 0 and {¥Y,} converges to Z, there exists a sequence {oy,}, o, > 0,
converging to zero such that

ltn = 02(0)] 2 ez(ar(8) — 0y mEN.
As y, € Y, and {¥,} converges to Z, there exists a sequence {z,} C 2
satisfying
(2.8) nlﬂgc 17 ~ yn| = 0.
Clearly,
Hzn—-a]‘(ﬂ)ﬂ Zez(a(D)) —on—zn —ynll, neEN

Hence {z,} is a maximizing sequence of max(a1(8), Z), and so, by Lemma
2.3(ii), there is a subsequence, say {2z,}, which converges to a point z €
{z1,x2}. Since z € Mz{a.()) and, by Lemma 2.3(i), Mz(a1(8)) = =2,
we have z = zo. Consequently, there exists an ng € N such that z, €
Bg (z2,2/2) for n 2 ng. Thus, by (2.8), there exists an n1 = ng such 1_;ha,t
Yn € Bg(ma,e) for n > ny, contrary to (2.7). We can conclude that, given
¢ > 0, there exists a op > 0 such that for every Y € Big)(Z,00) and 6 € 4,
(i) is satisfied. .

It remains to prove (ii). Suppose that it is not true. Then there exist

an &€ > 0, a sequence {Y,} C K() converging to Z, and two sequences
{8n} C A and {t,} C [0, 1] such that

‘Myn(b(gﬂ (tn)) ¢ BIE (.’121,6) U Bg (592, S), n € N,
Pasging to subsequences, we can assume that {8} converges to f € A, and
that {t,} converges to ¢t € [0,1]. Now let {yn} C E be a sequence such
that
(2.9) Y € My, (b, (ba))\(Be (z1,6) U Br(x2,8)), neN
As in the proof of (i), one can construct a sequence {z,} C Z whic.l.l satisfies
(2.8) and is maximizing for max(bs(¢), 7). Then, by Lemma 2.3(ii), 2 sub-
sequence, say {2}, converges to a point z € {z1,zz}. This and (2.8) imply
that there exists an ng € N such that y,, € Bg(z1,€) U Bg (2,¢) for n = ng,
contrary to (2.9). Hence, given € > 0, there exists a ( <o < a0 such tha}.t
for every V € Bym)(Z, o) and 0 € A, (i) as well as (i) are satisfied. This
completes the proof.

3. Main result '
THEOREM 3.1. Let E be a strictly convex separable Banach space of di-
mengion of least 2. Then
K = {X € K(E) | A(Mx) is everywhere uncountable in B}

is o residual dense subset of K(E}.
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Proof. We follow some ideas from Klee [10] and Zamfirescu [15]. For
a el and s > 0, set :

Nos ={X € K(E) | A(Mx) N Bg(a,s) is empty or at most countable},
CramM. N, , is nowhere dense in C(E).

For this it suffices to show that, given X € K(E) and 0 < ¢ < s, both
arbitrary, there exist Z € X(E} and ¢ > 0 such that

(3.1) Bre)(%,0) C Brm)y(X, ) N (KE)\Wa,)-

Case 1. Suppose X % {a}. Take zy € X such that ||zg —a|| = 7, where
r = ex(a), and set

21 =6+ (1+Z%)(mgma).

We have ||z — a|| = R, where R =7 + p/4. Next take 29 € E such that
ez ~ all = |lwa —all,  {lwa =21l = /4.

Define Z = ©6(X U{z1, 22}). Clearly Z € K(E). By construction, |1 —zof =
o/4 and |zy — zol| £ zo — 21| + [|z1 — zol] = 0/2, thus A(Z,X) < p/2.
Set A =[d/8,d/4], where d = (R —r)/R. Now define a;(#) = a -+ 6(z; — a),
1=1,2, and bg(t) = (1 — t)a1(#) + tas(8), t € [0,1].

By Lemma 2.2, there exists an ¢ > 0 with
(32) . B]E(:cl,s) N B]E (.’32,5) = 9

such that for every 0 € A, and every C; C Bg(z1,¢£), Ca C Br(zo,e) with
C1,Cy # 0, there exists a tg € 10,1[ (depending on C; and () such that

(3.3) ‘ ec, (bs(ta)) = ec, (ba(te)).

By Lemma 2.4, given £/2, there exists a o with

0 <o <min{e/2,0/2}

such that for every ¥ € Bi(g)(Z, o) and every 6 € A we have
(3.4) My (bg(1)) C B (21,6/2) U Bg(a2,6/2), 1€ [0,1).

Now, let ¥ € Byy)(Z, o} be arbitrary. Set C1 =Y N Bylz,e/2), Oy =
YN By (z2,e/2) and observe that C; and Cy are compact, and also nonempty
since z; € Z, i = 1,2, and ¢ < g/2. Let £5 € ]0,1[ be such that (3.3) is

satisfied, with C; and 5 defined above.
- We claim that

(35) My (bs(tg)) 1 By (2s,6/2) £ 0, i=1,2.
Indeed, let y; € €y, i = 1,2, be such that
o — balte)|l = ec,(balte)), ¢=1,2.
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Clearly, ec, (bg(ts)) < ey (bo(te)), i = 1,2. Suppose that for i =1l or¢ =2
the strict inequality holds. Then, by (3.3),
(3.6) ec,(bo(te)) < ev(bolte)), i=1,2.

Now let y € ¥ be such that ||y — bs{te)|| = ey (bs(te)), thus y € My (b (ts)).
From (3.4) it follows that for i € {1,2}, say ¢ = 1, we have y € Bg(%1,5/2).
Hence y € C and so eq, (bo(te)) > |ly — bs{tg)|l, which gives e, (Bo(te)) =
ey (ba(te)), contrary to (3.6). Hence,

eci(ba(le)) = ex (bolte)), =12
Since C; C Y, i = 1,2, it follows that

(3.7) MG,- (bg(ta)) C ﬂ(fy(bg(te)), i =1,2
Moreover,
(3.8) Mg, (bo(te)) € Be(zie/2), i=1,2.

Combining (3.7) and (3.8) gives (3.5).
From (3.2) and (3.5) it follows that bg(ts) € A(My). Furthermore,
be(te) € Br(a,s), for

d 0
— < < — - A
|be(te) — al] <8R < 4R__ 16 < g

Hence by(ts) € A(My) N Byla, s). As the set of such points bg(te) with
§ € A is uncountable, we see that ¥ € K(E)\WN,,. Since, in addition,
Y € Bim)(Z,0) is arbitrary, we have

(3.9) B?C(E)(Zﬂ D') C K(E)\Na’s.

On the other hand, each Y € Byg)(Z, o) satisfies A(V, X) < (Y, Z) +
h(Z,X) < o+ /2 < p for, by construction, o < ¢/2 and WZ,X) < /2.
Hence,

Bim)(Z,0) C Brr)(X, 0).
Combining this with (3.9) gives (3.1), and thus the claim that AN, is
nowhere dense in K(E) is proved, in Case 1.

Case 2. Suppose X = {a}. Take an zg € E with ||z — a|| = ¢/4, and
fix y, @y € I as in Case 1. Set Z = €0{wp,z1,22}. Clearly Z € K(E), and
hZ,X) = g/2. From this point the proof is as in Case 1 and so it is omitted.

Now we are ready to prove that the set K° is residual in K(E). To this

end, let D  E be a countable set everywhere dense in |, and let Q1 be the
set of all strictly positive rationals. Define

K= ) (KE)Wa)
acD
SEQ"'
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Clearly, K* is residual in X(E). Furthermore, X* C K°. Indeed, let X € K*,
z € B and r > 0. Take a € 4 and s € QF so that Bg(a,s) C Bg(=z,r). Since
X & Ny, the set A(Mx) 0 Bg(a,s) is nonempty and uncountable. This
shows that A(My) is everywhere uncountable in [E, and so X € K®, Hence
1C* ¢ K9 and K is residual in K(E), for K* is so. As K(E) is complete, K°
is dense in X(E). This completes the proof.

Remark 3.1. Let E = R™ be endowed with the Euclidean norm. From
Theorem 3.1 and the Mazur property it follows that most X € IC(R™), in the
Baire category sense, can be represented as the intersection of a family of
closed balls containing X, having on their boundary at least two points of X

Remark 3.2. If X is a nonempty closed convex bounded subset of E,
beside the ambiguous locus of uniqueness A®(Mx) given by A*(Mx) =
A(Mx), one can consider the ambiguous locus of existence A®*(Mx)
{a € BE| Mx(a) =0} and the ambiguous locus of well posedness AV (My) =
{a € E| max{a,X) is not well posed}. We recall that a maximization
problem max(e, X) is said to be well posed if it has one and only one
solution, say «, and every maximizing sequence converges to z. Clearly,
AY(Mx)U A®(Mx) C A¥(Mx). However, while the local cardinality of the
set A¥V(Mx) can be studied, under appropriate hypotheses, by adapting
the preceding approach, the investigation of the sets A"(Mx) and A%(Mx)
seems tc require a different approach.

Whenever X € K(E), we have A*(Mx) =0 and A% (Mx) = A*(Mx) =
A(Mx), where the latter set is the ambiguous locus considered in Theo-
rem 3.1,

Finally, we observe that the main result of this paper, proved for the
farthest distance mapping from sets X € X(E), has no analog for the nearest
distance mapping since, in this case, the corresponding ambiguous locus is
empty for each X € X(E). A comprehensive treatment of nearest distance
problems from closed sets can be found in Borwein and Fitzpatrick [3].

|
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