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On an extension of norms from a subspace to
the whole Banach space keeping their rotundity

by

M. FABIAN (Praha)

Abstract. Lot R denote some kind of rotundity, e.g., the uniform rotundity. Let X
admit an R-norm and let ¥ be a reflexive subspace of X with some R-norm | - ||. Then
we are able to extend || - || from ¥ to an R-norm on X.

Introduction. In [5] and [4, Section IL.8] it is shown that if ¥ is a
subspace of a separable Banach space X and if ¥ has a LUR norm | - ||,
then there exists on X an equivalent LUR mnorm such that its restriction
to Y coincides with || - ||. An extension of this result to X/Y separable can
be found in [6]. In this note we present a different method of extending a
norm from a reflexive subspace o the whole Banach space which conserves
rotundity properties of the norm on the subspace. In particular, we do so for
strict convexity, local uniform rotundity (LUR), uniform rotundity (UR) and
for UR with moduli of rotundity of power type. We thus answer affirmatively
a question raised in [4, p. 177].

Let (X, |- |I) be a real Banach space. We say that || || is strictly convex if
%1 == zg whenever x1, 2y &€ X, ||z1]l = ||z2]| = 1 and ||z1+=2]] = 2. The norm
|| - 1] is called LUR if |z, - 2| — 0 whenever z,,2 € X, ||z,]| = ||z| = 1,
and [, - x| < 2. Finally, || - || is said to be UR if ||z} — 2| — 0 whenever
fel}, a2} © X, el = Jled] = 3, andl |l + a2 — 2
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204 M. Fabian

A basic construction. Let ¥ be a reflexive subspace of a Banach space
(X,]-])- Let || - || be an equivalent norm on ¥ such that

AQull <yl forallyey.

Denote by B and A the closed unit balls of (X, |-|) and (¥, ||-1|) respectively.
Perhaps the most natural construction of an extension of || - || to the whole
space X is to consider Minkowski’s functional of the convex hull of A4 and
B [4, p. 82, that is, of the set

C={ta+(1-t)h:ac A, beB, te,1]}.

However, such a body has no rotundity at some points. Fortunately, by
inspecting C' carefully, we can see that if we start from A and B with a
certain rotundity, then the rotundity at each point of the boundary of (7 is
violated at most in one direction.

In what follows we will cultivate this basic idea of construction. Define
2 [01 1] - {071] by

pt)=+% telo,1]
We note that i is strictly concave, and p(0) = 0, (1) = 1. Define then

D={p(tla+(1-t)b:ac 4, beB, tc[0,1]}

LEMMA 1. D is symmetric, conves, closed, nt D # 0 and DNY = A.
Hence D s the unit ball of an equivalent norm ||| - || on X and moreover
fl-1Il ewtends | - ]I, that is, [lylll = |ly|| for aliy € ¥.

Proof. D is clearly symmetric and has nonempty interior as D O B.
Assume z, = p(t,)a, + (1 —t,)b, € D converges in norm to some z €
X. Since Y is reflexive, 4 is weakly sequentially compact. So, there are
subsequences {a,,} and {¢,,} converging to some a € A and ¢ € [0, 1].
Ift =1, then clearly zy, —» ¢ = p(lla =a € D. If t < 1, then b,, =
(Tn; — ©{tn,)an,)/ {1 — tn,) converges weakly to (z — p(t)a)/(1 —¢) = b,
which lies in B as B is closed. Hence z = o(t)a + {1 — t)b € D and the
closedness of D is verified. Clearly 4 = w(l)A € DNY. Conversely, take

ye€DNY. Thusy = p(t)a+ (1 — )b with some a € A, bc Band t € [0,1].
Then (1 —¢)b € Y and so

le(®a+ (1 -0l < w(t)lla] + (1 - )B]| € @t) + (1~ 1)/2
Smax{p(r)+ (I —-7)/2:7€[0,1]} = 1.
Hence y € A,

It remains to show that D is convex. Take 1,72 € Dand a; > 0, a0 > 0
with oy + ey = 1. Then z; = wti)a;+(1—t)b;, with a; € A, b;e Randt; €
[0,1], = 1,2. If t; = ¢, = 0, we have a1%1 + Ty = a1 by + aghg € B C D.
Similarly, if 4, = ¢5 = 1, then ®1%1 + ey = tag +azas € A C D. Finally,
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assume (t1,¢2) 7 (0,0, (1,1). Then aep(ts) + anpp(ts) > 0, aaty +- otz > 0,
and 1 — onti — aats > 0 and we can write

2] + s

ce(ty) + azp(ts) i apip(ts) l

.
= (.O(C\dltl + 32t2) \: (P(altl —+ a2t2) al(’o(tl) T+ ceg(p(fg) '

i=1
2

o — oyl _
+ (l - altl - a.?tz) [Z 1— C\fltl — Ozgtg b{l )

i=1
Hence, using the concavity of p and the convexity of A and B, we get
Q1 T1 + Gz & D.n
LEMMA 2. Fora€ A, be B and 0 <t <1 we have
1— lie()a+ (1 — £)] > 561 = llall) + 3(1 — 21 — b))
Proof Put

v = 31— t)]bl+ 5/ (1~ 2B + 4ellali®.
Tf 4 == 0, then (1 — t)b = 0, @(t)a = 0 and so the inequality is satisfied.
Further assume that v > 0. Put

T=1- 1—t—t|b[
Y
We can easily verify that (1 —#}jpj < v <1, 072 1 and that
a 1-—1
p(r) = "““——{P(tl” “) l—7= “'Y—hb“

Hence ) .

et 1 - 0pll = fotNalyey + - ol

a b
= ’TU ‘P(T)m +{1- T)L_ﬂm <.

Thus

1— 2
L le(0a+ (-l 2 1= 7 = T

= 3{1— (- 2P ,,
_ 11— bl TR F &ialE - 11— £ bl? - tlal?)

L(1 = tfall? — 5(1 — B2 — 51— )i/~ 70 + #Ellal)

2

L(1 — ta] - (1 —02p] — 31— DB +)

1

Li(1 - flaf)) + §(1 —){1 — lel).

1 7
Z(1 —
2 5! )

AV |



206 M. Fabian
For £ € [0,2], we define the following moduli of rotundity on (¥, - ||)
and (X, |- [):
81 (e) = inf{1 - Fllar + azl| : a1, 05 € 4, [flas — aall] > £},
5||(€) =z inf{l —_ %|b1 -+ bzl : bl,bg € B, 1”[)1 — bzl” > E}.

Clearly, it does not almost matter if || - ||| is replaced by | - || or |- |. So our
6. and & do not differ too much from the usual moduli of rotundity for
|- | and |- | respectively [4, p. 130].

LEMMA 3. Consider ay,02 € A, by,by € B and ty,te € [0,1]. Then, by
putting 0/0 = 1 if necessary, we have

1
1= gllle(tr)an 4 (1~ £1)bs + o(ta)ag + (1 — ta)bal|

o(t1) + p(ta) [1  le(ti)ar + ﬂP(tZ)azH]
e(tL) + o(t2)

tp(2t1 +2t2>
Lottt \ [ (L= 81)b + (L —23)by|
+2(1 2 )[1 2t ~

1%(\/"" Vi) + = mm (tl,tz)é?u H(|HCL] - azll])

+ s min (1~ 1,1 —ta)8,([l|61 — ball])-

[

Proof. Setz; = ¢(t;)a;
We have

+(1—t;)b;, 4 =1,2. Assume first 0 < t;+ty < 2.

_1_‘,31 2q) = t1+ 13 o(t1) + wlta) (wlti)ar + w(ts)ay
Fn ) (P( 2 >{2@((t1+t2)/2)( w(tL) + p(ta) )]

+ (1=~ t1+t2 (1*—ﬁ1)b1 4 (1—i2)bz
2 Q—tlmﬁg

Hence, from the convexity of A and B and from the concavity of @ we deduce
that the expressions in square brackets belong to A and B respectively. T'hus,
by Lemma 2,

Lty + 1ty e(t1) + p(ta) ' (ty a1+<.0(“faa2
1—— T+ 2| = = {1
gllmy +aall 2 5= 20((t+12)/2) || o(ty) + o(ta)
1~—i1 b1 —|~'(l "—wfg)bg

1 ty + i
+§(1— 12 [1 2=ty — 1t
@lt) + p(t2) ]
2((t1 + ¢2)/2)

|

.-Ihll—l

(ty -+ tz) {1
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)1 | lales el

|

w(t1) + p(ta)
2(p((t1+t2 /2)
«+:11-(2-t1_t2)[1—— I(
= U+V+W

1
+Z(t1+¢)

t]_)bl + ]. - tg)bz
21t —ig

Let us estimate the first term U:
Vi + \/tz]
oY |1 —
(it )[ Ty +

B+ 24/t ts + s
_AaTevare R 1
(fl"’r'fz){l %4, + 2 ]/[ +

t1 + 24/ t1tp 4t -
2t + 2ty

U=

i

Wl Bl 1'—\1&—*

\/E-l-\/t_z]
£ 2t + 2o

VR - VR

v

(13 -+ t3) [1 -

Thus
L bl + w2l > (V0 - VR +V +W,

which is the first inequality in our lemma.
Tn order to estimate V, consider ui,us € A, and a € [1/2,1]. Then

1~ |laay + (1 —-a)ag] = 1 — [|[(2a — Vag + (2 —20) 5{aa + az)|
2 1-[2a— 1+ (2~ 2a)(1 — &y ([llar — azll))]
= 2(1 — )8 {liler — azlf).
Using this estimate we have
plt)ar + plt

1 o) + plta) 2)az
V=gt “‘)”“——“1( Ry [1 oltr) + o(t2) ]
p(tn) + plta) 2min {plt) et s o
;i(“ +t) ((1t ftzz) p(t1) +wlts) il 2l
> 5-53\/“‘““ T min{ VT, vE 1, (lar — aall)

> ;2;:m,iu{'l;],,tg}éﬂ.“(ﬂia;l R

Finally, proc’eeding in & similar way, we have

2min{l - t1,1 — ?«‘2}5 G —a
ko) - . —ag
Loty —ty)- 2S5 (o - ool

w >

= %min{l —ty, 1 "52}5|.1(H|G»1_'— az||).

The cases when #; = t = 0 or ty =tz = 1 can be obtained as limit cases

of the above. Thus our inequalities also hold in these cases. »
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Extension statements

THEOREM 1. Assume o Banach space X has o strictly conver (LUR)
[UR] norm |- | and let Y be a reflexive subspace of X with an equivalent
strictly convex (LUR) [UR] norm |} -||. Then there exists on X an equivalent
strictly convex (LUR) [UR] norm ||| - ||| extending || - ||, that 4s, ||yl = |||
Jorallyey.

Proof. By multiplying |- | by a constant factor if necessary, we may
and do assume that 2||y|| < |y| for all y € Y. We will perform the hasic
consgtruction, that is, we put

A={yeV:|yf<1}, B={zecX:|z|<1}

() =+t and D={p(tla+(l-t)b:ae€ 4, be B, te0,1]}

Let ||| - ||| be Minkowski’s functional of D. According to Lemma 1, ||| ||| will

be an equivalent norm on X such that ||y{|| = |ly|. We will consider the
three rotundity notions separately.

Strict convezity. Consider x1,zy € X with [l = [lz2]| = &z: +
Zofl| = 1. Write z; = p(ti)a + (1 — )b, where ¢; € {0,1], a5 € A4, |Jay]| = 1,
bi € B, |bs] =1,i=1,2. From Lemma 3 we immediately get &y = g =
7. If 7 = 0, then Lemma 3 yields |by + bz] = 2 and hence, by the strict
convexity of | - |, we conclude zy = by = by = 2. If 7 = 1, Lenima 3 gives
le(Dar + p(L)az|l = p(1) + ¢{1) and the strict convexity of || - || yields
Z1 = a1 = a2 = . Finally, assume 0 < 7 < 1; then from Lemma 3 we have

lo(m)as + o(T)aal = 20(r), {1 —7)bs + (1 — 7)by) = 2 — 2r.

So, by the strict convexity of || - || and |- | we have a; = a3, b; = by and
therefore z; = x9.
LUR. Assume we have any  and 2, in X, with ||jz]|| = ||z, = 1, such

that ||| + 2n || — 2. We will be done when we show that a subsequence
of {zn} converges to = in norm. Write ¢ = @(t)a + (1 - )b and x, =
P(tn)an + (1 -1ty )by, with ¢, ¢, € [0,1], 4,4, € 4, la|| = |lan|| =1, b,y € B,
5| = lon| = 1. Lemma 3 immediately gives #, — t. Then, setting &, =
@(t)an + (1 — )by, we have n — T, — 0, [|Zn||| — 1 and e -+ By ||| = 2. T¢
now ¢ = 0, then from Lemma 3 we have [b+ b,| — 2; s0, by the LUR, of [,
b, — b and hence

Ty =Ty — T+ Ty =2y — Ty, + by, — b= .
Ift =1, then, again by Lemma 3, we have o+ ay|l -~ 2 and the LUR of
{| - || ensures a,, — a; thus

Tn = Ty, ~ Tn + Ty =z, =Ty tan — o=z
Finally, assume 0 < ¢ < 1. Then it is easy to check that leen, -+ all — 2 and
b -+ 5| — 2. Hence, by Lemma 3 and the LUR, of 1+ and |- |, we have
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an — @ and b, — b. Therefore
Ty = Ty — By F @) oy + (L — tn)by — otla+ (1 —t)b==.

UR. Assume we have any z,#2 in X, with |||z%||| = |#2]l] = 1, such
that |||z + 22| — 2; then by Lemma 3, tL — 2 — 0. Write 2!, = ©(t%)al, +
(1— 0%, with &}, € [0,1], o, € A4, |aill =1, by € B, b} =1; i=1,2.
Agsume, for simplicity, that t1 — 7, t2 ~— 7. If now 7 < 1, from Lemma 3
we have |t + b2| — 2, while, when 7 > 0, we get [jal + a2} — 2. Hence,
as in the case of LUR, we can conclude from the UR of |-| and | - || that
ol —z2 —0. m

The case of power type moduli of rotundity deserves a separate state-
ment. Here &.,(g) and §),/(¢) are defined as before.

THEOREM 2. Let (X,|-|) be o superreflerive Banach space and Y be a
subspace of X with an equivalent norm || - ||. Assume there exist ¢ > 0 and
q € [2,00) such that

5”.1! (E) >ce? and 5H(E) >l cE [O, 21.
Then there ezists an equivalent norm || - ||| on X and ¢ > 0 such that
gl = [lyl| for ally € ¥ and

5H|.|”(E) == inf{l -— %il!ml +ng| vy, 2 € X,

Ned <1, lizall € 1 e — 22l 2 }
> ce?  forall € €0,2].

Proof. Let ||| - ||| be the norm constructed above. Fix an arbitrary € €
[0,2] and arbitrary z1,22 € X, with [[o1f] <1, [fjz2!]| < 1 and lHzy — z2]l|
> ¢. Then we can write 75 = @(t;)a; + (1 — i;)b;, where a; € A, b; € B and
e 0,1, 1= 1,2. I (Jp(ts) — elt2)] =) Wi — Viz| = €/8, then Lemma 3
gives

1= ey + 22| = /64 > £7/64.
Further assume |/ = v/#2| < £/8. Then
[ty = ta] = |V = V| (VI + Vi2) < (e/8) - 2=¢/4.
Assume moreover that, say, t1 < tz. Then by Lemma 3 we have
L= Hos + wall 2 Sesp(llos — all) + 5 — t2)811(lfex — Ball)
> Zotillo — aalle + 3e(1 — 2} b1 — boll®
cp(t1)]llax — asll|? + 5e(l — 2)lby = balll¥ -
ceqlllp(ts) (e — az) + (1= t2) (01 — ba) 9
(where ¢, is a constant such that a9 + 8¢ > ¢ {a+ B) for all o, 8 = 0)

VAR AV

2
1
2
L
2

j=r



210 M. Fabian

z geeg(llzy — @l = (plta) ~ wlt)) — (T2 — #1))¢
> Lec (e — /8 —g/4)7 > 271 eeyet.
It follows that 8. (¢) = min{27%,271"9ec, }e”. u

Rermarks. 1. The above theorems can be restated as: If X admits an
equivalent R-norm and Y is o reflexive subspace of X, then all equivalent
R-norms on'Y can be obtained as restrictions of R-norms on X,

2. We are convinced that our construction is also sultable for other kinds
of rotundity.

3. In what follows we translate our geometric congtructions into analytic
forms. Let (X, |- ]), (¥,] - |); A, B be the same as above. Then it is an casy
excercise to check that the convex hull of A and B iy the set

O={zeX:int{lyl+lo—yl:ye ¥} <1},

that is, the unit ball of a norm defined as the inf-convolution of || || and |- |.
Similarly, we can check that our basic body

D= J{vtAu(l-t)B:te(0,1]}
can be rewritten as
{zeX inf{|ly*+|c-y:ye¥Y} <1}
It should be noted that this construction is not homogeneous aud so the

inf~-convolution involved here is no longer a norm. It would he guite natural
to consider the norm

z — mH{(il* + e ~y)? 1y € YD,

whose unit ball is [J{v%4 U /1 —1B : t € [0,1]}. This norm will have the
same rotundity as || - || and | - | do (and the same smoothness as |- | does).
However, its restriction to ¥ is different from || - ||.

4. It seems that the reflexivity of Y, that is, the weal compactnoss of its
unit ball is substantial in our construction. Thuy our result does not cover
that of [5], [4, Section IL.8], where X is separable and ¥ is any subspace
of X.

5. We set as an open problem the dual question: How lo extend srmoolh
norms keeping their smoothness? It seens that this question is more delicate.
Indeed, if we replace rotundity by Gateaux smoothness, then a correspoud-
ing extension may not exist. In fact, under some circumstances such an
extension implies the complementability of ¥ in X [7], [4, Scctien IL&]; or
2, Example] shows a Gateaux smooth norm |- || on ¢g and 0 # y € e
such that §i - || cannot be extended to ly, keeping its Gateaux smoothnoess
at y. And as regards our basic construction we are affraid that the norm so
constructed will not be smooth at the points of ¥'. Yet we do hope for a
positive result, at least for uniform smoothness.
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