icm

STUDIA MATHEMATICA 112 (3) (1895)

Compactness and countable compactness in weak topologies
by

W. A. KIRK {lowa City, la.)

Abstract. A bounded closed convex set K in a Banach space X is said to have quasi-
normal structure if each bounded closed convex subset H of K for which diam(H) > ¢
contains a point u for which ||u — || < diam(H) for each z € H. It is shown that if the
convex sets on the unit sphere in X satisfy this condition (which is much weaker than the
assumption that convex sets on the unit sphere are separable), then relative to various
weak topologies, the unit ball in X is compact whenever it is countably compact.

1. Introduction. This paper concerns topologies weaker than the norm
topology on a Banach space, and a concept, introduced independently by
Soardi [17] and Wong [19], called quasi-normal structure. A bounded convex
subset K of a Banach space X is said to have gquasi-normal structure (called
close-to-normal structure in [19]) if each bounded closed convex subset H of
K for which diam(H) > 0 contains a point v satisfying [lu — v|| < diam(H)
for every v € H. We show here that for various weak topologies in spaces
whose convex subsets of the unit sphere have quasi-normal structure, count-
able compactness implies compactness.

Quasi-normal structure is a very mild assumption which to date has re-
ceived little attention. It is known, however, that a bounded convex subset
K of a Banach space X has quasi-normal structure if either (a} X is separa-
ble {[17], [19]), (b) X is strictly convex ([19]), or (c) K is weakly sequentially
compact and X has Kadec—Klee norm ({19]). In fact, it is shown in [4] and
[20] (cf. also [6]) that if X is separable, then X has an equivalent norm
which hasg a much stronger property called normal structure. Recall that a
Banach space X is said to have normal structure if every bounded convex
subset H of X which contains more than one point contains a point zp such
that

sup{l|lzo —ul| : v € H} <sup{||lz—y||: 2,y € H}.
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It appears to be an open problem whether every reflexive space has an equiv-
alent norm with normal structure. However, Troyanski [18] has shown that
every weakly compactly generated Banach space admits a locally uniformly
rotund (hence Kadec—Klee) norm. Thus, in particular, every reflexive Ba-
nach space has an equivalent norm relative to which all bounded closed con-
vex sets have quasi-normal structure. (For more information on these topics
we refer the reader to Deville-Godefroy-Zizler [5]. Also see [9] and [14].)

We emphasize that our basic assumption here only requires that convex
subsets of the unif sphere (hence of any sphere) of the space Lave quasi-
normal structure. (The unit sphere of X is the set § = {2 ¢ X : lleff = 1}.)

For purposes of this paper we shall call a family & of conver subsets
of a Banach space X which contains @) and is closed under intersections a
convezity structure. {In a metric space setting the assumption of convexity
is dropped.) If S also contains the closed balls of X then & is a subbase
for a topology 7 on X for which the norm closed balls are Tclosed. In
this case the members of § are precisely the 7-closed convex subsets of
X. An example of such a topology is of course the weak topology itself,
where & is the family of all closed convex sets. On the other hand, the
coarsest such topology is the ball topology by introduced by Corson and
Lindenstrauss in 1966 ([3]) and recently studied extensively by Godefroy
and Kalton [8].

In the separable spaces any convexity structure S consisting of closed
sets is compact whenever it is countably compact, because such spaces are
Lindeldf (cf. also [13]). Our main result shows that this fact is true in a much
stronger sense when the convexity structures are appropriately restricted. In

fact, it is not clear that our underlying assumptions are in any way related
to separability. .

Throughout we suppose S is a given convexity structure on X, and for
convenience we restrict § (hence the topology 7 generated by &) to the unit
ball B of X. We shall assume that & contains the closed balls of B, and
we shall also need to assume that S containg its closed r-neighborhoods. By
this we mean that for each D € § and r > 0, the set oy B(zir)NB e 8.
(Here and throughout we use B(z; 1) to denote the closed ball centered at
with radins r.) While the assumption that S contains the closed halls of X is
quite mild, the significance of the r-neighborhood assumption is less obvions
(although a convexity structure which consists of all closed convex sety and
is countably compact obviously satisfies this condition). On the other hand,
the interplay between the weak topology and the underlying geometry of
the space is further highlighted by the abstract treatment of Section 3.

dFlinany, forz € B and D € 8, define dist(z, D) ='inf{||z — y| : y & D},
and let

Plz,Dy={2€D: |z —z| = dist(z, D)},
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The sets {P(z,D) : z € B, D € S} are called the progiminal sets of S. If
D € & is T-countably compact and D # @, note that
P(z,D)= ({z€ D: | ~ z|| < dist(z, D) + 1/n} # 0.
n==l
In particular, the proximinal sets in S are always convex subsets of spheres.
Comnsequently, the proximinal sets in & will have quasi-normal structure if
the convex subsets of the unit sphere have this property.

2. Main result. Our main result is the following,

THEoREM 1. Let X be o Banach space, let S be a convexity structure on
X which contains the closed balls of X as well as its closed r-neighborhoods,
and let T be the topology generated by S. Then if the prozimanal sets of
S have quasi-normal structure, an element K of S is T-compact iff it is
T-countably compact.

A very special case of the theorem ocecurs if X has strictly convex norm
or, more generally, if the convex subsets of the unit sphere are separable
(although in this instance the theorem has a simpler proof (see [2])). On
the other hand, if 7 is the weak topology on X then the above is a special
case of the Eberlein-Shmul’yan theorem. However, our result offers a new
approach and could be new for other topologies, in particular for r = by.

Recall that a Banach space X is said to have the finite-infinite inter-
section property (IPj o) if for every collection {B, : o € I} of closed
balls in X such that By # 0 there is a finite subset € 7 such that
M{Ba : @ € F} 5 {. If the index set Z is assumed always to be count-
able, we say that X has the finite-countably infinite intersection pmpem_ﬁy
(eIPf o). It is observed in [8, Theorem 2.8] that the unit ball B of X is
bx-compact iff X has the I Py . Compactness of B in the ball topology is
interesting because if by is Hausdorf, this is equivalent to saying that X is
isometric to a dual space {[7]).

The following i an immedjate corollary to Theorem 1. _

JoronLARY 2. Let X be o Banach space for which the conver subsets of
the wnit sphere have quasi-normal structure, Suppose that r—nez’ghborhood.s
of ball interscetions in X are themselves ball intersections. Then the unit
ball B of X is by -compaet 4ff X has cIPs .

Proof If 8 is the convexity structure generated by intersec.tionls of the
closed balls in X, then the assumption on the unit sphere of X implies that
all the proximinal sets in § have quasi-normal structure.

Proof of Theorem 1. Assume K is 7-countably compact, and let
Y={D:D=Kn§, Se&}.
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Note that X is itself a convexity structure. It suffices to show that (1), Da 5 0
for an arbitrary descending chain {D, : @ € A} of nonempty sets in X, The
conclusion will then follow from Alexander’s subbase theorem (Kelley [10],
p- 139).

Assume the theorem is false, let I" be the smallest ordinal (obviously
uncountable) for which there exists a chain {Dq : @ € I'} of sety in X' such
that (N ey Do = 0, and consider the family A of all Z-subchaing of {Dq};
specifically, {Ba} € A if {B,} is a descending chain of nonempty sety in X
with By C Dy, o € I'. We order A as follows. For {Bu}, {Cu} € 4, we say
{Cu} 2 {Ba}f Coy &S By, aec I

Now let {B,} € A and f e I', define

ra({Ba}) = ien; {lim dist(z, B,)},
@ A o
and {using the fact that {rg({Bs})} is increasing with 3) let
r({Ba}) = linrs({Ba})
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Also, let

T({Da}) =sup{r({Ba}) : {Ba} 3 {Da}}-
Now let {D}} = {Da}, and having defined {D%} € 4, choose {DI*+} <
{D?} so that

1
n+1l’

r({D5)) = T D)) -
By countable compactness,

0+ D= DL
n=1

We assert that the chain {DZ°} has the property that r{{B,}) = r{{D%})
for every {Ba} = {D2}. Indeed, let {B,} = {C,} and fix § € I'. Then,
since B, © Cq, if z € B, then
dist(z, Ba) 2 dist(z, Cy),
50
lién dist(z, By} > liin digt{x, Ca),

from which
miengﬁ{lig‘n dist(z, B.)} = mi&xl‘;?fﬂ{111613&1 dist(z, Cy)} > miencgﬂ{].iflgn cist{z, Cn)}.

Therefore r({Bs}) > r({Cy}) whenever {B,} =< {C,}. It follows that if
{Ba} 2 {D%}, then

r{DZHY) < r({DF) < r({Ba}) <FUDLY) < r({DEF1Y) + —-1,-5

from which the conclusion follows.
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(1) Therefore (replacing { Do} with { DY), without loss of generality we
may assume that whenever {B,} < {D,},
r=r({Da}) = r({Ba}).

Now observe that since r{{D,}) = limgrs({D,}), for each positive
integer n there exists B, € I' such that if § > f,, then rg({Dy}) >
r({Da}) —1/n. Consequently (since I" is uncountable), there exists a small-
est A € I' such that r,({Da}) = r({D.}) for v > §. By replacing {D,}
with {Do N Dgluer we may take § = 1 and consequently we may assume

that for each v € I,
ry({Da}) = r({Da}) =
Now suppose {8} = {D,}. Then
T S wiéfligl{liin dist(ﬂ"', Ba)} = Tl({Ba}) § miengﬁ{dis‘t(m,Ba)}

< li( inf {lim di =
< llén(waenjgﬂ{héndmt(m,BQ)}) r

(2) By (1) and the above we May assume that whenever {Ba} < {Da},
r = inf {limdist(z,Bs)} = r{{Ba}).
z€B), "

Now let {B,} = {D,} and, for each = € By, let dp = Hm, dist(z, B,).
Then r,({By}) = inf{dy : 2 € B1} =r. Let

Cp={z€B:dy <r+1/n}.
Then for & € By, dy < r+ 1/n iff dist(z,B,) < r+1/nforall o € I’

iff for all & € I' there exists u € B, such that ||z — | < r + 1/n iff
z € Blu;r +1/n) € U, ep, Blu;r +1/n). Therefore

Cp = ( ﬂ ( U B(u;r + l/n))) N Bi.
_ aEl’ uEB,
Consequently (since I contains its closed r-neighborhoods), €, € 2. Since
O, # @ tor each n, C({Ba}) := hey Cn is @ nonempty convez subset of
By, Note in particular that
C{Bu}) = {z € By :de =1}

The fact just cstablished and observation (2) yield

(3) If {Ca} = {Ba} 2{Da }, then C{{Ca}) € C({Ba}) € C{Da})-

We are now ready to coroplete the proof. First note that if r = 0 and
© € O({B,}), then for each o € I', d: = 0 = limn,, dist(z, D) > dist(z, Da);
hence z € (), D, contradicting our initial assumption. So we assume r > 0
and show that this also leads to a contradiction.

Let 2 € C({Dy}) be fixed and define Hl = B(mg;r)ﬂDa.. Since dp, = T,
dist(zq, D,) < v for each «, so HL # 0. Also, since lim,, dist(zo, Do} = 7
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and I is uncountable, there exists @ € I, oy = 1, such that for oo > axy,
dist(zg, Do) = r. Consequently, if x € H! for & > e then ||z - gl = .
Next consider the chain {H1}a5a, . Notice that one may view this as a chain
in 4 by taking HL = HL for a < a;. Now choose z; € C({H.}) NI, .
Then ||z1 — zo|| = 7, and by repeating the argument Fjust given, replacing
2o with z; and {Ds} with {HL}, one may obtain {H?}, g 2 2, and 1y €
CHH2ZY)NH?, such that [zg ~ 21| == [[@2 —2ol| = r. The idea is to continue
this process by transfinite induction. Let v € I' and suppose that {or each
B < v elements z5, ag = B, and {H] } € A have heen chosen so that:

1) zp & BE, N O({HEY);

2) p<f<y=HECHE

3 u<ﬁanda:€ﬂ’£:;~ & — @) =

If v = E+1let HY = Blzg;r) N HE, and choose ay 2 7 s0 that if o 2> o,

('8

and x € HE, then ||z — z¢]| = r. Now set H, = H, for a < v and choose
zy € HY NC{{H}). M 7 is a limit ordinal let o’ be the smallest ordinal
larger than each of the ordinals . (Note that {as} cannot be cofinal in I'
because (\,ep Do = 0, but since v < I', Ny Doy # B.) For o 2 o define
HI = Npey HE. Since v < I', HY # 0. Set oy = o, let H, = U, for
a < 7y, and choose z, € C({H]}) N H]_ . Since ay 2 7, this completes the
induction,

The fact that {2, : v € I'} lies in C({D,}) follows from observation (3).
Moreover, ||z, — z|| = r if & % v. Now let H = €00v{i, : cx € I'}. Thoen if
x € H, clearly ||z — ®all € r. On the other hand, since =, € D,

im |z — 2ol 2 inf {lmdist(z, Do)} = .

Thus lim,, [z — 24| =7, so for some 8 € I', |z — zp|| = r = dlam(I). Since
{z,]} lies, for example, on the proximinal set {H rlrl}’ this contradicts the
quasi-normal structure hypothesis of the theorem and establishes the proof.

3. Abstract convexity structores. It iz possible to formulate an alw-
stract version of the theorem just proved. We begin by describing Penot’s
framework of [16]. '

Let (M, d) be a bounded metric space. A family of subsets 37 of M iy sald
to be a conuveity structure if I contains the closed balls of M and is closed
under intersections. Metric fixed point theory has heen studied extensively
in such a framework (e.g., [1], [11], [12], [L5]).

As in the Banach space case, such a convexity structure 37 i3 a subbase
for a topology T on M relative to which the closed balls of M are r-closed. If
7 is countably compact, then, as before, proximinal sets of (nonenpty) sets
in X are nonempty (and in £). We say that a set D in £ s quasi-normal
if H C D and H € X implies diam(H) = 0 or there exists u ¢ A such
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that d(u,v) < diam(H) for every v € H. By making modifications in the
argument just given {most of which are chvious) we are able to prove an
abstract version of Theorem 1. Of course, as before, we must assume here
that £’ contains its closed r-neighborhoods.

THEOREM 3. Let (M, d) be a bounded metric space, let X' be a countably
compact converity structure on M which contains its elosed r-neighborhoods,
and let T be the topology on M generated by £ as o subbase. Then if the
proziminal sels in X are either separable or quasi-normal, M is T-compact.

Proof. Aside from the reference to the fact that the sets ¢y, Cg,
and £ are convex, the linear structure of X plays no role in the proof
of Theorem 1. To prove Theorem 3 we ignore the fact that these sets
are convex and proceed as follows. As in the proof of Theorem 1 one can
prove observations (1), (2), and (3), and in particular prove that the sets
C({Bs}) = {®# € By : d; = r} are all nonempty and in X. (Recall that
C{Ba}) = (NaertUses, Blu;r)}) N By.) Therefore it is possible to follow
precisely the proof of Theorem 1 (replacing the norm || - || with the distance
d) to where the set H is introduced. Note that if the proximinal sets in X
are separable, then the mere existence of an uncountable set {2, : v € I'}
for which d{#e, ) = r > 0 if @ # v yields a contradiction. If the proximinal
sebs in £ are quasi-normal we define

H=(\{D:DeZ, DD {zy}}

Then, since {z,} C C({D,}) and C{{D,}) € £, H € C({Da.}). Also,
H C NyepBlza;r), so if ¢ € H, d{z,z,) £ r. At this point one only
need observe that diam({H) = r in order to reach the conclusion as in the
proof of Theorem 1. However, diam(H) = r follows easily from the fact that
diam{z, : v € I'} = v and the fact that X contains the closed balls of M
(ef., [11], Part I1T).

The following corollary of Theorem 3 also appears to be new. Recall
that a convexity structure X is said to be uniformly normal if there exists
¢ & (0,1) snch that for every D € X for which diam(D) > 0, there exists
w & D such that sup{d(u,v) : v € D} < cdiam(D).

COROLLARY 4. Let (M, d) be a bounded complete metric space and sup-
nose X is a converily structure on M which s uniformly normal and which
contains its closed r-neighborhoods. Then X (and the topology generated by
2 da compact.

Proof. Since X is uniformly normal, and thus every set in X' is ob-
viously quasi-normal, this corollary is immediate from Theorem 3 and the
known. fact that a uniformly normal convexity structure is countably com-
pact (Khamsi [12]).
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Mild integrated C-existence families
by

BHUENG WANG WANG (Nanjing)

Abstract. We study mild n times integrated C-existence families without the as-
sumption of exponential boundedness. We present several equivalent conditions for these
families. Hille-Yosida type necessary and sufficient conditions are given for the exponen-
tially bounded case.

1. Introduction. Motivated by the study of the abstract Cauchy prob-
lem, two generalizations of strongly continuous semigroups, integrated semi-
groups and C-semigroups, have recently been introduced and received ex-
tensive attention (see [1-3, 57, 11-14, 16]). However, there are limitations
to both integrated semigroups and C-semigroups. In order to cover more
cases, [8] delined a pair of families of operators, one of which yields unique-
ness, while the other yields existence of solutions of the abstract Cauchy
preblem, for all initial data in the image of C.

In this paper, we concentrate on mild C-existence families without as-
suming exponential boundedness. Section 2 offers a supplement for n times
integrated C-semigroups. Section 3 contains the general definition and eq-
uivalent conditions for mild n times integrated C-existence families. Sec-
tion 4 is devoted to the study of a Hille-Yosida type theorem, in which
some equivalent conditions are found for exponentially bounded mild once
integrated C-existence families. Finally, in Section 5, we provide some
examples.

All operators are linear on a complex Banach space X, For an operator
A, D(A) and Tm(A) will stand for the domain and image of A, respectively.
We shall write [D(A)] for the normed space D(A) equipped with the graph
norm: for € D(A), |2 = |je]|+ || Az|. The space [D{A)] is complete if and
only if 4 is closed in X. Finally, B(X} is the algebra of all bounded linear
operators T with D(T) = X, and €' € B(X) will be fixed throughout this
paper.
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