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Mild integrated C-existence families
by

BHUENG WANG WANG (Nanjing)

Abstract. We study mild n times integrated C-existence families without the as-
sumption of exponential boundedness. We present several equivalent conditions for these
families. Hille-Yosida type necessary and sufficient conditions are given for the exponen-
tially bounded case.

1. Introduction. Motivated by the study of the abstract Cauchy prob-
lem, two generalizations of strongly continuous semigroups, integrated semi-
groups and C-semigroups, have recently been introduced and received ex-
tensive attention (see [1-3, 57, 11-14, 16]). However, there are limitations
to both integrated semigroups and C-semigroups. In order to cover more
cases, [8] delined a pair of families of operators, one of which yields unique-
ness, while the other yields existence of solutions of the abstract Cauchy
preblem, for all initial data in the image of C.

In this paper, we concentrate on mild C-existence families without as-
suming exponential boundedness. Section 2 offers a supplement for n times
integrated C-semigroups. Section 3 contains the general definition and eq-
uivalent conditions for mild n times integrated C-existence families. Sec-
tion 4 is devoted to the study of a Hille-Yosida type theorem, in which
some equivalent conditions are found for exponentially bounded mild once
integrated C-existence families. Finally, in Section 5, we provide some
examples.

All operators are linear on a complex Banach space X, For an operator
A, D(A) and Tm(A) will stand for the domain and image of A, respectively.
We shall write [D(A)] for the normed space D(A) equipped with the graph
norm: for € D(A), |2 = |je]|+ || Az|. The space [D{A)] is complete if and
only if 4 is closed in X. Finally, B(X} is the algebra of all bounded linear
operators T with D(T) = X, and €' € B(X) will be fixed throughout this
paper.
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252 8. W. Wang

2. A supplement for integrated C-semigroups. By definition, a
strongly continuous family {S(£)}s»0 of bounded operators is a C'-semigroup
if

(i) 5(0) = C,

(ii) §(z)S(s) = C8{t+s) for all 5, > C.

The following definition is an obvious generalization of the definition of
a once integrated C-semigroup in [11].

DEFINITION 2.1. Suppose n € N. A strongly continuous family {9(£)} >0
of bounded operators, with §(0) = 0, is an n times integrated C-semigroup
if §(t) commutes with C for ¢ > 0 and

tr-8
(2.1) S(t)S(s)mzm—%ﬂ—![ [ 45— 8 Cadr

— f (t+s—r)""18(r)Cx dr} for z € X.
0

{S(t}}+0 s said to be nondegenerate if $(t}z = 0 for all ¢ > 0 implies z = 0,
A C-semigroup is called a 0 times integrated C'-sernigroup.

LeMMA 2.2, Suppose n € NU{0}. If the n times integrated C-semigroup
{S8(1)}z0 ts nondegenerate, then C 1is injective.

Proof Assume the contrary. If n € N, from (2.1) there exists z € X
such that = # 0 and S(#)5(s)z = 0 for all ¢,s > 0. This implies S(s)z €
Nesaly : 8(t)y = 0} = {0} for all & > 0 by the nondegeneracy of {S(t)}s>q.
Hence 2 = 0 by the same reason. If n = 0, the lemma follows in the same
way. -

The family {S(2)}1>0 satisfying S(t) = 0 for all ¢ > 0 shows that the
converse of Lemma 2.2 is not true. Here we assume n > 1.
If the n times integrated C-semigroup {S(t)}:»0 it nondegenerate, then

£ i
Stz ~ —Ca = [ 8tryydr
0

has at most one solution y for each z € X. This enables us to define the
generator ag follows (cf. [17]).

DEFINITION 2.3. Suppose n € NU{0}. The generator A of the nondegen-

erate n times integrated C-semigroup {S(t)}i»0 is the following operator:

£ ;
ze D(A) and y=Az & Stz = ;ﬁ(lm ~+ f S(r)ydr for all ¢ > 0.
’ 0
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The implication (i)=>(ii) of the following theorem for exponentially
bounded n times integrated semigroups (that is, for ¢ = I) appeared in
[1, Prop. 3.3, p. 338], while the implication (ii)=- ( ) seems to be new.

THEOREM 2.4. Suposen € NU{0}, A is linear and {S(2) 150 5 a strongly
continuous farnily of bounded operators. Then the following are equivalent.
(i) {S(t) }ez0 is a nondegenerate n times integrated C-semigroup gener-
ated by A.
(ii) €' is injective and commutes with S{t) fort > 0, A is closed and

satisfies: CA G AC, S(£)A C AS(t) for each t > 0 and [, S(r)zdr € D(A)
for each © € X, moreover,

(2.2) Sty — %C’m =A j S(r)zdr.
0

A is mazimal with respect to (2.2) and the inclusion S(t)A C AS(t).

Proof. (i)=»(ii). We confine the proof to the case n € N, that of n = 0
can be found in [8]. From Lemma 2.2, C' is injective, from Definition 2.3, A
is closed, and from (2.1), S(¢) and S(s) commute. Then for every z € D(A),
the equality

i
t'ﬂ.
Sty - -ﬁ!—C’m = E,f S(r)Azdr
implies that

¢
t’n
S)S(s)e — =C8(s)e = 6[ 8(r)S(s) Az dr,
hence §(s)z € D(A) and AS(s)z = 5(s) Az by the definition of A. Moreover,
1 i t
S0z — 0% = O |5ty — =Cx| = [ §(r)CAdr,
nl n! ;
so that 'z € D{A) and ACz = CAz. Thus we have proved that CA C

AC and S(H)A € AS(t) for ¢t 2 0.
To show (2.2), let 8,6 > 0 and 2 € X. Then

S(t) f r)@dr = fS ™ dr

0

& L1 )
- n-1' of [tf t'*”"_“)ndls(u)amdu

(t+r—uw)""t8u)Ca du} dr

H
CL“:-—;
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1t
== f (t+ s —w)"Su)Cr du
Tt
nif(t+s— u)"S(u Owdu-l——f uw)C du.
e 5

Hence
s o 3 .
S(t) fS(u)mduw;l—!G f Su)z du
0

1 8

nl
13

Interchange the roles of s and ¢ to obtain
ot n 1
8
S(s) [ S(u)edu ~ —C [ S(u)z du
0 0

t-3 ' t
= ;&1_! [ f (t+s—u)"S(uv)Cr du ~ f (t+s—u)"Su)Cx du].
e ;
Therefore,

S(t) jS(u)xdu_gC’jS(u)mdu
0 B

= 5(s) fS(u)mdu»—-':TT:C f S(u)z du
0

0
¢
fS [ s)m~—0m]d
0 .
By the definition of A,

f S(u)rdu € D(A) and A f S(u)z du = S(s)m - fj-‘-Cm.
0

To show the maxirmality of A4, let 4; be another closed operator satisfying
(2.2) and S(t)A1 C A15(t). Then for z € D(4,),

5(t)z — n—,c.c = f S(r)Are dr.

By the definition of 4, z € D(A) and Aw = Az, so that A; C 4.

(ii)=-(i). Since C is injective, it follows easzly from (2.2) that {5(z)

}izo
is nondegenerate. For z € D(4), S(t)Az

= AS(t)x by hypotheses. This

~ [f (45— u)" .S’(u)c*rdu—f(t-i—s--u)“ (u )amdu}.

icm
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together with (2.2) implies that
¢ ﬁ
St)e -~ Cz = J S(r)Azdr,
0

hence

d ¢t
2.3 — 5t
(2:3) dt (e = (n=1)!

Now we assume « € X and ¢t 2 r > 0. Then (2.3) implies

g;-: [56:-7) Of S(u)a dul

———Cz + S(t) Az

§ o pyn—l " r
=~£[—’(};—)m—6’f3(u)xdu—3(t—r).4 f S{u)x du+ St —r)S(r)z
0 0 :
mw%{)—%—_}- Oj:S(u)Omdu—}— —5(t —r)Cuz.

Integrating with respect to r from 0 to s for s < ¢ yields
™
S(t - 8) f S(r)az dr = mf ﬂwl)l ( fSu)Oasdu)
o f (t r1Cx dr.

Applying integration by parts to the last integral and multiplying both sides
of the resulting equality by A, we find

(24) St~ 8)S(s)e = %S(t~s)am+5(t-s)A f Stz dr
8" o0 ; (t—r)" : r e
- HS(t—s)CmmJ ————[S( YOz o ]

!
— {S(t - 8)Cx —

(n -
g (t - 5)” 02$:|
n! n!
(t— "
+ f r) [ (rCa ~ HO%} dr
(ki

j -r)"
= f (¢ S(r)Cxdr — f (n— 10

i—3 0

S(r)Cux dr.
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Here we make use of the fact that the coefficient of C?x equals

n—1

; tw—r“’] (t—r)" »r 5" (t—s)™
of[ n!_u n! (n*l)Jd—'— nl

(t—r)" s (t—s)"
_f dr[ nl n!Jdr+m_——_0'

n!  nl
Replace ¢ by t + s in (2.4) to obtain (2.1). From the maximality of 4, it is
easy to verify that A is the generator of {S(t}}¢z0.

Remark. If is worth noticing that the proof of (i)=-(ii) in Theorem 2.4
is different from Arendt’ s proof of his Proposition 3.3 in [L, p. 338), based
on the equality (A — 4)~ f Amem S (¢ )dt (A > 0 is large enough) and
the resolvent equation ()\ A —(p-A = (p=NA= A p-A4)"L,

3. Mild n times integrated C-existence families. Theorem 2.4 sug-
gests to introduce the concept of mild n times integrated C-existence families
via (2.2).

DEeFmITION 3.1. Suppose that n & NU {0} and A is closed. A strongly
continuous family {5(t)}i»0 of bounded operators is a mild n times inte-

grated C-existence family for A if the following two conditions are satis-
fied.

(i) fy S(rizdr € D(4) andt— A [ 8
[0,00) into X for all z € X.

(it) S(t)z — (t*/n)Cz = Afo

Ifn =0, we simply call {S(t)},z0 a mild O-ezistence family (8.

For Theorems 3.3 and 4.1, we shall rely on the following form of Arendt’s
integrated version of Widder’s theorem.

(r)x dr is a continuous map from

rzdr for all z € X.

LEMMA 3.2 (Arendt [1, Corollary 1.2]). Suppose that G is a Banach
space, f:(0,00) = G and w > 0. Then the following are equivalent,

(i) f is infinitely differentiable with [|(r — w)™+ 1M ()| < Mn! for
some M >0, allr > w and n =0,1,2,.
(i) There emists F: [0,00) — @ satzsfymg F(0) =0,

1
(3.1) limsup || F(t + h) - F(#)]| < Me*
hl0

for all £ > 0 such that
o0
fry= [re™Fit)dt  for alir > w.

o]
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THEOREM 3.3. Suppose that A is closed, n € NU {0} and there exist
w >0 and 5 € C such that s — A and v - A are injective for all 7 > w, and
Im(C) C Im((s — A)"). Then the following are equivalent.

(i) There emists a mild n times integrated C-ezistence family {S(t)} >0
for A.

(i) There exists a mild (s — A)~"C-existence family {W (t)};»0 for A.

If W(t) in (il) is exponentially bounded with ||W(t)|| = O(e™*) then (ii)
and hence (i) are both equivalent to

(iii) for all v > w, Im{(r — A)(s ~ A)") 2 Im(C) and for z € X,
(3.2) (r—A4) s —A)"Ca= [ eT"W(t)zdt.

0

Proof. Following the notation of [8, Theorem 4.2], we shall use

(1) hy(t) = €%, Py(t) =" (k €N, 5,1 € R),

(2) # ig convolution

t

(Fxg)t) = [ Ft—y)gy) dy,
0
where F : [0,00) — B(X) is strongly continuous, and g : [0,00) — X is
continuous,
F, -
(3) H,,_Z “"’f Bk he(s — A)"FC.

)I
(1)=>(ii). Forx:EXandt>0 let

W(t)e = K( 1) né (:) !pk_l) *s} (t)z

+{=1)*S(t)z + Hn(t)x
Since
t " Skesuuk—-l
A f (f ) Sir u):ndu) dr

0
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and

[ tn‘
A | S(uys du = S(t)z - —Ca,
0

and, in view of the equality A(s — A)™' = 5(s — 4)~" —
4 7 t A
- (*1)71—!\.%77.“—16: su -k
A Df H (u)z du ;?:1: 5[ T Al - 4)70a

o \n—kpn—k sl
= Z—_—mm—( D(n “tk)! (s — A *Cz — (s — A)™"Cx

]
u'n]su.

+ ( "E)f e duOsc,

one has
t
A [ Wrzdr = W(t)e — (s — A)™"Cz + £()Ca
0
where
n i su, k—1
o iyn—1 ny g, o oeutT - u)
N (_1)n——1 4 1y L unmlesu P
H-i_(m ) -Of (n—1}! “
Since

t
f eguuk 1 U)n du = (hspkﬁl) * Pﬂ(t)7
1]

one obtains for r > max{Res, 0},

Ferswan GO G0
3]

r(r—s® " r(r—s)n

by several steps of calculation. Hence f{t) = 0. It follows that {W(t) bz is
amild (s — A)""C-existence family for A. -

(it}=>(1). Assume that {W({#)}tpc is a mild (s — A)~"C-existence family
for A. Set

St = (s —~ AYJ"W(t)z,

where Jf(t) fo f(r)dr for f:]0,00) — X a continuous function. Since

Mild integrated C-existence families 259

A [ Striedr = Afs — AT PW (s = (s~ APIA [ S0
0 0
= (s = A"V )z~ (5 - 4)"Ca] = S{t)e — L O,

{5(t)}1z0 1s a mild n times integrated C-existence family for A.
Now assume that [W(t})]] is O(e®*).
(li)=>(ili). Since for r > w and = € X,

(8 — A)""Cg == f re”"(s — A)T"Cz dt

oo t
re”""Wtizdt - [ re” ™A [ W(t)adrdt
0 ]

== i
re "Wtz dt — A f re” "t f W (t)z drdt
0 0

0;78 c:r._jg =

=(r—A) [ e"W(t)zdt,

it follows that Im({r — A}(s — 4))™) 2 Im(C) and (3.2) holds.

(iii)=>(ii), Without loss of generality, we may assume that w = 0, for if
B =A-—wand {W(t)}so is a mild (s — A)""C-existence family for B,
then {e“*W(£)}i>0 is the required ex1stence family for A. We shall simply

write €y = (s — A)~"C and W (t)x = fo r)z dr. Since w = 0, [[W(2)]| is
O(et) and W(t) is Lipschitz continuous. From (3.2),

(3.3) (r—A)" 10z =1r j‘oe_"iﬁ?(t):c dt.
0

This implies the existence of M > 0 such that

d\"™1 - Mml|z]
(3.4) (E;) ;(7""'“ 4) 1015”” S r—Lm+t
and

d\™ B Mml||z|l
(3.5) ” (&?) (r—A) ]‘Clzc{ < (r—Dymtt

for m > 0 and r > 1. To obtain (3.5), we make use of Lemma 3.2. From
(3.4), (3.5) and the identity

1
A}:}‘(T‘ - A)—lol.’ﬂ] = (7’ - A)—]'Cg_ﬂ? b ;C}_.’L‘,
r
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|(5) [

for all » > 1, with some M; > 0.

By Lemma 3.2 again, there exists a Lipschitz continuous function
W 1 [0,00) — [D{A)] such that W, (0) = 0 and for r > Q,

one has
. Mymlo]
oy~ (- mEt

(3.6) (r+1-A)"1Cxz

r+1

o0 1 o0
—rt _ ~(r+1)t
rbfe W, (t) dt = [L_Ml](rﬂ)ofe (r+Lt ety (1) di

=(r+1) [ e et W, (¢) dt
0

e"("'i'l)t( feSWT(s)ds) dt
0

—{r+1)

= (r+1) :Fe_(r‘*'l)t [eth(t) - f e*Wa(s) ds] dt.
0 0
Integrate in {3.3) by parts and compare the result with (3.6) to obtain
| f W(s)zds = e W,(t) ——f' e*Wa(s) ds € D(A).
Therefore 0 D

f rle MO dt = Che = (r — A) f re~"W (t)z di
0 0

r2emt [W(t)m .y f W (s)x dsJ dt.
By the uniqueness of Laplace transform, 0
(3.7) 101z = Wt — A f W(s)z ds.
0
A being closed, differentiating (3.7) with respect to ¢ yields
j W(s)zds =W (t)z € D(A) and W(tz— Ciz = A f W(s)z ds.
0 0

Thus {W(t)}i0 is a mild (s — A) "C-existence family for A.
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Remark. It is well known that W(#) is exponentially bounded if and
only if (%) is exponentially bounded (cf. [8, Theorem 4.2]). Thus if one of
W(¢), S(t) is exponentially bounded, then from the proof of (iii)=-(ii) of
Theorem 3.3 both

b i

f Wi(s)zds € D(4) and f S(s)zds € D(A)

0 0
are true for all € X. Hence condition (3) of [8, Definition 4.1] can be
removed. Similarly, the agsumption

b
f wi(s)zds€ D(A) forallze X
0

in [8, Theorem 2.8{c) and Definition 3.2(a)] can also be removed.

Moreover, when {S(t)}s>0 is exponentially bounded with ||S(¢)|] =
O(e¥), from the equality Af; S{s)zds = S(t)z ~ (t"/n!)Cxz, it is easy
to verify that

(3.8) (r—A)7'Co=r" [ eSMadt (r> w).
0
We need this equality later.

4. Hille—Yosida type theorem. This section is devoted to a Hille-
Yosida type theorem for mild once integrated C-existence families. What we
shall obtain are equivalent conditions. A sufficient condition was considered
in I8, Theorem 5.1].

THEOREM 4.1. Suppose A is closed ond there exists w > 0 such that
r — A is injective for all v > w. Then the following are egquivalent.

(i) Im((r — A)™) 2 Im(C) and for every w' > w, there exists M > 0
such that
l(r—A)~™Cll < M(r —w)™™"
form>1 andr >w.

{ii) For all 5 > w, there ewists a mild (s — A)"1C-existence family

{W(t) }izo for A such that

(41) limsup | W (4 K) ~ WO = O
hlO :

for every w' > w.

(iti) There exists a mild once integrated C-existence family {S(t)}i»0 for
A such that :

(4.2) Jim sup %ns@ +h)— S(t)]| = O™
RO

for every w' > w.
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Proof. (i)=(ii) follows from Lemma 3.2 and [8, Theorem 5.1].
(ii)=>(iif). The existence of W(t} implying that of S(¢) has been proved
in Theorem 3.3(ii)=-(i). It remains to show that (4.1) implies (4.2). Since

St = (s —A)JIW(t)z = (s — A) [ W(rzdr
0

t
=s [ W(r)zdr — Wtz + (s — A)"'Ca,
0
we have

t+h
Sit+ha-Stz=s f W(r)zdr — [W({t+ bz — W(t)z].
¢

Hence
1
(4.3) limsup -EHS(t-I- h) — S|}
h—0

I

< [slIW (1) + imsup ¢ Wt + ) - W(5)| = 0"

(iil)=>(i) is a consequence of Lemma 3.2 and (3.9) for n = 1.

Remark. If w > 0, we may put @' = w in Theorem 4.1(i), (ii) and
obtain more precise equivalent conditions, In fact, if (4.1) holds for w’ = w,
then [|[W(t)| = O(e™*). This implies (4.3) and hence (4.2) with w’ replaced
by w.

5. Examples. In this section, we give two examples to show the applica-
tions of the theorems in the previous sections. The following obvious lemma
is needed for Example 5.2.

LemMMA 5.1. Assume that A is closed, D(A) is dense in X, and C €
B(X) is injective. Then the following are equivalent.

(1) A generates a once integrated C-semigroup {8 }iz0 that is Lip-
schitz continuous on bounded intervals.
(ii) A generates o C-semigroup.
Proof. (i)=-(ii). Let
Z = {z: 8w € C*{[0,00), X)}.
Then Z is closed. Let {zn} C Z be such that {z,} — =z. Since, for ¢ in

every bounded interval I C [0,00), [|S'(t)(zyn — am)| < M|zn — 2| for
some M > 0, {§'(t)z,} uniformly converges on I to a continuous X-valued
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function ¥(t). Taking limits in
t
Sty = f S'(s)zn ds
0

vields

t

S(t)a::fy(s)ds.
0

Hence S()x is continuously differentiable and « € Z. Since D(A) (C Z) is
dense in X and Z is closed, we have Z = X. Differentiating both sides of
the equality

t
S(t)z -tCz = A f S(s)zds (foralx e X)
0
yields
t
(5.1) Stz—Ca=A [ §(s)xds.
0

From Theorem 2.4, {5'(¢)}:»0 is a C-semigroup generated by A.
(i1)=-(i). Obvious.

The following example is a version of [8, Example 7.1].
ExampLe 5.2. Let
X = {continuous f : R — C satisfying m]Lr%o f(m)e”:2 = 0}
Then X, endowed with the norm
2
| £l = sup {F(z)e” |,
cER
is a Banach space. Let
A= -&El-— {A has maximal domain in X),
b

(C1f)(e) = e f(a)
and let

S()fl(2) = [ & f(o+ s ds.
0

Then {S(t)}:>0 is a mild once integrated C-existence family for A. In fact,
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for every f € X,

P

AfS(r)fdr=EdE f [fe_(m“}gf(m%—s)ds} dr
g 0

0

t
ZIB—(w+S)2f(
0

Now, {S(t)}:>0 is not exponentially bounded. Let f(x) = e
f€ X, |fll =1 and for sufficiently large ¢ > 0,
L

15()71 = sup ™ (S(®) ) (@) 2 e [ e (s 1) ds

0

z-+s)ds—tCLf = S(t)f —tCif.

-2 Then

i3
e et f 3" ds > Ket
0
for some K > 0. On the other hand, for any C, A does not generate a once
integrated C-semigroup with Lipschitz continuity on bounded intervals. If it
did, then from the density of D(A) in X, A would generate a C-semigroup
by Lemma 5.1. This is impossible by [8, Example 7.1].

Furthermore, we cannot even say that, for any C and any s € C, there
is 2 mild (s ~ A)~!C-existence family for A. In fact, since f(z) = ke is
the solution of the equation sf — df /dz = 0, f is not in X for k # 0. Hence
s— A is injective. For g € X, f(z) = e**[[] e™**Cg(u) du + k] is the solution

of the equation
(s — A)f](z) = Cyg(=).
If f € X, then k should equal both
—f e Cylu)du and - f e " Cylu) du.
0
This might be impossible for some g. Thus the inclusion Im(s — A4) 2 Im{C)
may not be true in general.

The following example is a version of [8, Example 7.5].

ExXAMPLE 5.3. Suppose that X and X5 are Banach spaces, L is a closed
operator from a subspace of Xa into Xy, and G, is the generator of an
exponentially bounded once integrated nondegenerate semigroup on X; for
i = 1,2. We assume that ||S;(¢}|] = O(e*) for some w; > 0 and that
D(G2) C D(L). Then there exists an exponentially bounded mild once in-
tegrated C-existence family for A where

. [Gl (s — Gl)’lL} O {I L{s — Gy)™t ]
- 0 Gg ’ 0 (S - Gz) 1

for s > max{wy,ws}.
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Proof From Theorem 3.3, G; generates an exponentially bounded
(s — G;)~-semigroup W;(-) for i = 1,2. Set

(t) [ B 1 Wg((: (S ——22';2) 2)(t)
Using the equalities

(r—G) s ~Gy Te””W (B)zdt (z€X;, i=1,2),
0
oo %
J e [ [(WysL(s — Go) ™' Wa)(u)az du] de
0 0
f e "W (2) dt [L(s — Ga) ™Y j? e " Wa(t)z dt

0 0
=(r—G1) s~ G1) ' L(s = Ga) *(r — Ga) '
for » > max{w;,w.} and z € X3, and
-1 _ (’P—G1)ﬂ1 (?"-—Gl)—l(S—Gl)_lL(’!‘_Gg)ul
0 ('f‘ — Gz)_l ’

one obtains, after several steps of computation,

(r~A4)

(r—A)"Hs—-A)C = fe‘”W(t)m dt (zeXq, zeXo)

Then S(¢) = (s — A)JW (%} is the required mild once integrated C-existence
family for A by Theorem 3.3 again.
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Banach spaces which admit a norm with the uniform
Kadec—Klee praperty

by

5. 1 DILWORTH (Columbia, 5.C.), MARIA GIRARDI (Columbia, $.C.)
and DENKA KUTZAROVA (Sofia)

Abstract. Several results are established about Banach spaces ¥ which can be
renormed to have the uniform Kadec—Klee property. It is proved that all such spaces
have the complete continuity property. We show that the renorming property can be
lifted from X to the Lebesgue-Bochner space La{%) if and only if ¥ is super-reflexive. A
basis characterization of the renorming property for dual Banach spaces is given.

1. Introduction. A sequence {z,} in a Banach space X is separated
(respectively, e-separated) if inf{||lz, — zm| : n # m} > 0 (vespectively,
> ¢). Recall that X has the Kadec-Klee property if every separated weakly
convergens sequence {z, } in the closed unit ball of X converges to an element
of norm strictly less than one. We say that X has the uniform Kadec—-Klee
(UKK) property (or that ¥ has a UKK norm) if for each & > 0 there exists
& > 0 such that every e-separated weakly convergent sequence {z, } in the
closed unit ball of X converges to an element of norm less than I — &. This
notion was introduced by Huff in [15]. Clearly, if X has the Schur property
(that is, if weak and norm sequential convergence are the same) or if £ is
uniformly convex then X has the UKK property. While uniformly convex
spaces are necessarily reflexive, it turns out that many classical non-reflexive
spaces, e.g. the Hardy spaces Hy of analytic functions on the ball or on the
polydisk [1], the Lorentz spaces L, 1 () [5, 9], and the trace class C; [13, 25],
all have UKK norms.

The question of characterizing the Banach spaces which are isomorphic
to uniformiy convex spaces has been studied intensively. This paper takes
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