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Banach spaces which admit a norm with the uniform
Kadec—Klee praperty

by

5. 1 DILWORTH (Columbia, 5.C.), MARIA GIRARDI (Columbia, $.C.)
and DENKA KUTZAROVA (Sofia)

Abstract. Several results are established about Banach spaces ¥ which can be
renormed to have the uniform Kadec—Klee property. It is proved that all such spaces
have the complete continuity property. We show that the renorming property can be
lifted from X to the Lebesgue-Bochner space La{%) if and only if ¥ is super-reflexive. A
basis characterization of the renorming property for dual Banach spaces is given.

1. Introduction. A sequence {z,} in a Banach space X is separated
(respectively, e-separated) if inf{||lz, — zm| : n # m} > 0 (vespectively,
> ¢). Recall that X has the Kadec-Klee property if every separated weakly
convergens sequence {z, } in the closed unit ball of X converges to an element
of norm strictly less than one. We say that X has the uniform Kadec—-Klee
(UKK) property (or that ¥ has a UKK norm) if for each & > 0 there exists
& > 0 such that every e-separated weakly convergent sequence {z, } in the
closed unit ball of X converges to an element of norm less than I — &. This
notion was introduced by Huff in [15]. Clearly, if X has the Schur property
(that is, if weak and norm sequential convergence are the same) or if £ is
uniformly convex then X has the UKK property. While uniformly convex
spaces are necessarily reflexive, it turns out that many classical non-reflexive
spaces, e.g. the Hardy spaces Hy of analytic functions on the ball or on the
polydisk [1], the Lorentz spaces L, 1 () [5, 9], and the trace class C; [13, 25],
all have UKK norms.

The question of characterizing the Banach spaces which are isomorphic
to uniformiy convex spaces has been studied intensively. This paper takes
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up the related question raised in [15]: under what conditions does a Banach
space have an eguivalent norm with the UKK property? We call this property
UKK-ability, and a Banach space having this property is said to be UKK.
able.

Recall that a Banach space X has the complete continuity property (ccp)
if every bounded linear operator from L; into ¥ is completely continuous
(i-e., maps weakly convergent sequences to norm convergent sequences).
The CCP follows from the Radon~Nikodym property (RNP) because repre-
sentable operators from L; inte X are completely continuous. While there
are examples of spaces [8] with the Schur (and hence the UKK) property
but not the RNP, it is proved in Section 2 below that UKK-ability implies
the CCP. In Section 3 it is proved that the Lebesgue-Bochner spaces L,(X)
(p > 1) are UKK-able if and only if X is super-reflexive (this is the iso-
morphie version of a theorem of Partington [28]), from which the existence
of a B-convex space which fails to be UKK-able is deduced. In the fourth
section UKK-ability is discussed for Banach spaces with a basis (or a finite-
dimensional decomposition). Using ideas of Prus [31] a basis characterization
for the weak-star version of UKK-ability is given for dual Banach spaces.
It is also proved that the space constructed by Gowers [10] which does not
contain cg, £, or any infinite-dimensional reflexive subspace is UKK-able.

We wish to mention that UKK renormings were recently considered by
Lancien, who earlier and independently proved Theorem 4 of this paper in
his thesis [23].

Throughout the paper, X denotes an arbitrary Banach space, X* the
dual space, S(X) the unit sphere, and Ba(X) the closed unit ball of %. For
any unexplained terminology the reader is referred to 8] or [26).

Finally, we wish to thank Haskell Rosenthal for several enlightening con-
versations about this subject matter during the conference on Banach space
theory held in Ascona in September, 1093.

2. UKK implies CCP. First we establish some notation. Let L denote
the space of integrable functions on [0, 1] with respect to Lebesgue measure
w. Let :

I =[(k-1)/2"k/2"):n=0,1,2,... and k= 1,...,2"}
be the usual dyadic splitting of [0, 1]. The Haar functions {A;} 5>1 are defined
by
hy = 1o and  honay = 2”(11;’:;11 - 11;‘;;“)
for n = 0,1,2,... and k = 1,...,2" The Rademacher functions {rn}n>0
are defined by rp = h; and r,, = 217 Zi:ll han-1 . for n > 1.
THEOREM 1. A UKK-able Banach space enjoys the CCP.
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Proof. Let X be a Banach space failing the GCP. By the main result of
[11] there is a norm one operator T from L; into X along with an £ > 0 and
a sequence {z} }n>0 from S(X") such that the following conditions hold:

(a) 2}, (Thonyy) >cforeachn>0and k= 1,...,2%

(b) the natural blocking X, = span{Th; : 2™ < § < 2"} for n > 0 of
the images of the Haar functions forms a finite-dimensional decomposition
with constant at most 2.

Fix § > 0. Since
|7 = su {—ﬂ:}f—’: n=0,12,... and k=1,... 2”}
= sup Ii(f;?) . [t Rt H H H
there is a dyadic interval A = I}'* such that 1§ < ||T(14/u(4))[. We now
restrict attention to this interval A,
Consider the sequence {Zn}nsn, from X given by

=)

Clearly, {z,} is contained in Ba(X) and converges weakly to T'(14/u(A)).
Note that if n > ns then T'(rpla) is in X,. Thus condition (b) shows that

for m > n > ns,
(g =2 Gl

For n > ng, each r,14 has the form

'f‘nlA = Zl"ﬂ' Z hgn—1+j
jed

for an appropriate set J of cardinality 2" ' u(A). So condifion (a) gives

|T(rada)ll > 277> &= ep(A).
jed
Thus the sequence {T, }nsn, 18 £/2-separated. Since § > 0 is arbitrax.*y, it
follows that ¥ does not have the UKK property. But since the CCP is an
isomorphic property, in fact it follows that X is not UKK-able. w

Remark., Recall that a Banach space X has the point of continuity
property (PCP) if every bounded weakly closed set A C X ha-a.s non-empty
relatively weakly open subsets of arbitrarily smmall diameter. Since the PCP
is “separably determined” (see [2] or [32]), whenever X fails the PCP there
is a separable bounded weakly closed set A and an ¢ > 0 such' that every
a € A belongs to the weak closure of A\ {z : ||z — | < 2e}. If, in adchtlox},
% does not contain #;, then by [27] and {3] the weak topology on A is
sequentially determined, and so every a € A is the weak limit of & sequence

lZn = zm| =




icm

270 5. J. Dilworth et al,

{zn} C A\A{2: ||z ~ a| < 2¢}. Clearly, {z,} contains a subsequence {z,, }
which is e-separated. Arguing now as in Theorem 1, it follows that % is not
UKK-able. Thus we have proved the following result.

ProrosiTioN 2. If X 45 UKK-able and does not contain £ then ¥ hos
the PCP.

We thank Haskell Rosenthal for showing us this result and its proof, The
Bourgain-Rosenthal space [4] has the Schur property and fails the PCP (see
[33]), and so the requirement in Proposition 2 that X does not contain 4,
cannot be eliminated.

As a further application of the result from [L1], we give a characterization
of the CCP for subspaces of Banach spaces with an unconditional basis: in
this case the failure of the CCP is equivalent to isomorphic contaiument of
co- Since L1(0, 1) fails the CCP, this fact may be regarded as an extension
of the theorem of Pelczyfiski [29] saying that L;(0,1) does not embed into
a space with an unconditional basis. The result may also be obtained from
a theorem of Wessel [35], although his methods are somewhat different. In
fact, a stronger result is known: James [19, Theorem 4.5] has proved the
same result for the PCP. He has also proved that there is no corresponding
result for the RNP by constructing a Banach space X, which is a subspace
of a space with an unconditional basis, such that % fails the RNP and %
does not contain ey [20].

'THEOREM 3. Suppose that X embeds isomorphically into a Benach space
with an unconditional basis. Then either ¥ contains ¢g or X has the CCP.

Proof Suppose that X fails the CCP and embeds into a space Y with
an unconditional basis {y,} with basis constant K. As in the proof of The-
orem 1, there is a norm one operator 7' : L; — X along with an £ > 0 and
a sequence {z,} from S§(X*) satisfying conditions (a} and (b) above. Fix a
sequence {Yn}n>1 such that 0 < v, < e(4K27)L,

First we construct, by induction on n, two increasing sequences {ky, }nz1
and {pn}nz1 of positive integers such that for the sequence {fatnsy in Iy
defined by

f'n. A= (fO +...F f-nml)rf'iun
(where fo = 7) and for the blocking {Vn}n>1 of Y defined by
Vn = span{y; : pro1 < J < pn}
{where pg = 1) the following conditions hold:
() [T full > &
(@) [fo+-- +Fal <2
(3) d(Tfnayn) < Yn-
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Put ky =1 so that f; = ry. Note that condition (a) gives (1), while (2)
is clear. Select py such that d(Tf;, 1) < 1.

For m > 1, assume that {k,}7., and {p,}7_, have been chosen so that
{fn}iky satisty (1), (2), and (3). As k tends to infinity, we have the following:

@ o+ )+ o+ + Fndraln, = fo+ o+ Faullze
(i) (fo+ ...+ fu)re — 0 weakly in L.

So there exists ki1 > Ky, such that for fry, = (fot o+ )b
the following hold:

(111) ”.fO o f?'ﬂ. + .fm+1||L.1 < 2;

(iv) Tfmtr i8 within 4mm41/2 of some element from span{y; : p < §
< 00}

Now choose prm.1 such that d(T fms1, Ymep1) < Yona1-

To verify condition (1), note that fr, .1 has the form

frrr =t T {1+ 7)]rmer.

j<m+1

The support of J]; ., ;(1 + rs;) bas measure 27™ and is the unjon of

2-mthn dyadic intervals from {If"” 11 < i < 2%} of the kyth level. Thus,
for some subset J of integers with cardinality 2~™1+*m+1 we have

1-k
fm+1 ES 2m1AT’km+1 = om Z 2 ’"+1hj+2—1+km+1 .
jeJ
Condition (a) gives

|T frags| > 2m2 o Mhmeigl=hmii e o o

This completes the induction. Let z,, = T'f,. Condition (3) guarantees that
{#,} is equivalent to some (unconditional) block basic sequence of {yn}.
Condition (2) guarantees that |21 + ... + .|| < 3. Condition (1) just says
that |lz,|| > £. Thus, {2,} is equivalent to the standard unit vector basis
of Cp. |

3. UKK-ability of Lebesgue—Bochner spaces. In this section L, (%)
denotes the Lebesgue-Bochner space of strongly measurable X-valued func-
tions defined on a separable non-atomic probability space, equipped with the
Ly-norm. In [28] Partington proved that if Ly(X) is UKK (with its usual
norm) then ¥ is uniformly convex. The isomorphic version of this result
was recently proved by Lancien [23, 24]. In this section we shall give a dif-
ferent proof of Lancien’s result. In order to prove the theorem we require
the following necessary condition for X to be UKK-able, which is due to
Huif [15].
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Fact. For e > 0, let B,E“’ = Ba(X), and forn 2> 1 define B,E-”)(x)
inductively thus:

BM(X)={z € X:z=wlimzg, zx € BO™, |z, — 2l 2 e (5 # b))

Suppose that X admits an eguivalent UKK norm. Then, for each e > 0,
B (%) =0 for all sufficiently large n.

THEOREM 4. Let 1 < p < oo. Then Ly(X) admits an equivalent UKK
norm if end only if X is super-reflexive.

Proof. Suppose that X is not super-reflexive. Then, by a result of
James [16], there exists ¢ > 0 such that for every N > 1 there is a dyadic
martingale difference sequence {dj}_,, with do = 0, adapted to the stan-
dard filtration of {0,1}?, such that the corresponding martingale takes
its values in Ba(X) and such that |di{w)|| = € for all & > 1 and for all
w € {0,1}¥. For a fixed integer N > 1, let 'y = |n_, N*. We shall
consider random variables defined on the Cantor group {0,1}?% with its
agsociated Haar probability measure p. For each 1 < & < N and for each
(n1,-..,nk) € N¥, we define a random variable Dy, ., thus:

D(m,---,ﬂh)(w> = d?ﬂ((w(ﬂq)zw(n;,ng)a v )w(7L1,...,nk):01 sy O))

for each w € {0,1}Y¥. Observe that for each N-tuple (ni,...,ny), the
random variables D5y, Diny na)s - - +» Diny,... ny) have the same joint distri-
bution as dy,...,dy. Fix ny,...,ny-1. For k > 1, let

X :(D(nl)+"'+D(?’b1 SN 1) )+D(n1, OGN ~-1,k)"

It is easily seen that {Dn, . ny_s k) l5e; is weakly null in L,(X), and so
{X4} converges weakly to Dy, y+. . +D(m, .n-.)- Moreover, Hch =<1
for all w, and so X, € Ba(L,(X)). For j # k, we have

p{X; = Xp} = p{l|X; - Xul| 2 22} =1/2,

and so |X; — X;g||Lp(x} > £. Hence Bél)(Lp(x)) contains every random
variable of the form Dy, + Diny,....ny—y)- Repeating this argument a

total of N times we see that BE (L X)) contains the zero random variable.
Since this holds for every N > 1,1t foilows from the Fact that L,(X) does
not admit a VKK norm. Convemely, suppose that X is super-reflexive. Then
Lp(X) is also super-reflexive, and so L,(X) admits an equivalent uniformly
convex (and hence UKK) norm. m

COROLLARY 5. There exists a uniformly non-octahedral (in particular,
a B-convez) space which does not admit an equivalent UKK norm.

Proof. Let X be the non-reflexive uniformly non-octahedral space con-
structed by James [17]. It is well known that the property of being uniformly
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non-octahedral lifts from X to L3(%). On the other hand, since X is non-
reflexive, it follows from Theorem 4 that Ly(X) does not admit an equivalent
UKK norm. m

Remarks. 1. Similarly, if X is non-reflexive and of type two, [18], then
Lo (%) is of type two but not UKK-able.

2. In [14] it is proved that if Ly(X) has the CPCP (which is the PCP
for convex sets) then X has the RNP. Corollary 5 can also be proved by
combining this theorem with Proposition 2 above.

3. Since (3,2, D 4%,)2 has the UKK property [15] it follows that the
UKK property does not imply any non-trivial super-property. On the other
hand, every Banach gpace which is super-UKK-able is necessarily B-convex
(since L1(0,1) is not UKK-able), and by Corollary 5 there exist Banach
spaces which are B-convex but not super-UKK-able. Clearly, every super-
reflexive space is super-UKK-able, and so one is led to pose the following
question: is super~-UKK-ability equivalenit to super-reflexivity? A positive
answer to this question would follow from a positive answer to the corre-
sponding question for the super-CPCP, which was raised in [14].

4. UKK-ability for spaces with a basis. In [31] Prus characterizes
reflexive UKK-able Banach spaces in terms of their basic sequences. While
some results in [31] rely heavily on the weak compactness of the unit ball,
using methods from [31] some partial information is cbtained in this section
concerning UKK-ability of non-reflexive Banach spaces with a basis. In par-
ticular, we prove that the space constructed by Gowers which is hereditarily
non-reflexive and contains no copy of ¢y or £, does admit an equivalent UKK
norm.

First we recall some notation from [31]. Let {e,} be a basic sequence in a
Banach space ¥ with coefficient functional sequence {e}} in ¥*. An element
z € [en] = span{e,} is said to be a block if supp(z) = {n : e;(z) # 0} is
finite. A family {%,} of finite-dimensional subspaces of [e] is a blocking of
{e.} provided there exists an increasing sequence of integers {n}, with n1 =
1, such that % = [e];2fl™ L for each k. We say that the blocks ¥1,...,%n
are digjoint (with respect to the blocking {Xx}) and write y1 < ... < yn if

min{m LY € i}]} < ma.x{m 1Yt € Z &"j}_
j=1 Fe=m

for i = 1,...,n —~ 1. Finally, we say that, for 1 £ p,q < oo, the blocking
{%.} satisfies a (p, g)-estimate provided there exist positive constants ¢ and

C such that )
C(zn: Hyi]lp)lfﬁ < H ] < C(Z HyaIl") 1/a
i=1 —

im=1
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for all disjoint blocks y1,...,¥s- The following result is essentially due to
Prus. The reader is referred to [31, p. 517] for the proof.

THEOREM 6. Let X be a Banach space with a basis {e,}. If there exists a
blocking {Xn} of the basis which satisfies a (p, 1)-estimate for some p < oo
then X admits an equivalent UKK norm.

In fact, the equivalent norm constructed om X in Theorem 6 makes the
blocking {¥,} monotone and boundedly complete; and so, under this renorm-
ing X is isometric to the dual space of ¥ = [e}] C X", Moreaver, X has the
weak-star UKK property with respect to its predual . (The weak-star UKK
is in general stronger than the UKK property: it is defined in the obvious
way by considering all ¢-separated weak-star convergent sequences.} Thus,
in looking for a conwverse to Theorem 6, it is appropriate to consider dual
Banach spaces with the weak-star UKK property. To that end, say that a
basis {e, } of a Banach space X is weakly nearly uniformly smooth (WNUS)
if there exists ¢ > 0 such that for every normalized block basic sequence
{,} there exists k > 1 such that [|zg + @xll < 2 — c. We shall use the fol-
lowing result, which is again essentially due to Prus. The reader is referred
to [31, pp. 512-513] for the proof.

THEOREM 7. Let {e,} be o WNUS basis for o Banach space X. Then
{en} has a blocking {¥X,} which satisfies an (oo, q)-estimate for some g > 1.

We can now prove the converse of Theorerm. 8.

THEOREM 8. Suppose that £* has a basis and that X*, with its usual dual
norm, has the weak-star UKK property. Then X" has a basis which admits
a blocking satisfying a (p, 1)-estimate for some p < oo,

Proof. By [21] we may suppose that X has a shrinking basis, so that {e},}
is a basis for £*. We shall show that {e,} has a blocking which satisfies an
(00, g)-estimate for some g > 1, whence by a duality argument [30] the basis
{e*} of £* has a blocking which satisfies a (p, 1)-estimate, where 1/p+1/q =
1. By Theorem 7, it suffices to prove that {e,} is WNUS. Choose § > 0
corresponding to € = 1/4 in the definition of the weak-star UKK property;
clearly, we may assume that § < 1/4. Let {2} be a normalized block basis
with respect to {e,}. Select =} € Ba(X") such that z}(z1 +zx) = |21 +2x]-
By passing to a subsequence and using the weal-star sequential compactiness
of Ba(X*) we may assume that {z}} converges weak-star to z* € Ba(X").
Hence there exists kq such that |z*(zx)] < §/2 and |[{(z}, — z*)(w1}| < §/2 for
all k¥ > kp. The proof now divides into two cases.

Case 1: There exists k > kg such that ||z} — 2*|| < 1/2. Then
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oy + 2kl = zhlen + @p) = 2" (21 + z6) + (0f — 27) (@1 + 22)
< |2 (2)] + f2* (@)l + [(2h — 2"} (@0)] + [l — 27
& &6 1 7
1424202 <t
<1+ 5 + 5 + 557
Case 2 ||zt —2*| = 1/2 for all k > ko. It follows from the weak-star
lower semi-continuity of the norm and from the weak-star convergence of
{@:} to z* that {w}} has a subsequence which is 1/4-separated. Hence, by
the weak-star UKK property, ||z*|| < 1 — 8. So, provided k > ko, we have

oy + ol = 2z + zx) < 2t (@)] + (@} — ") (@)] + loklae)]
5 )

- b <9 Z,
SA-8)+5+1<2-3

So in both cases we have shown that X is WNUS.

Remark. With only straightforward modifications to the proofs, The-
orems 6-8 remain valid if “basis” is replaced by “Anite-dimensional decom-
position” throughout.

Next we show that the space discovered by Gowers [10], which contains
no copy of ¢g, £, or any infinite-dimensional reflexive Banach space, admits
a UKK norrm. To see this, we require the following criterion for & basis to
admit a (p, 1)-estimate (cf. [22]).

PROPOSITION 9. Let ¥ be o Banach space with a basis {en}. Suppo_se
that there exists 0 < ¢ < 2 such that c||lz + y| = |lz] + llyll for all disjoint
blocks z,y € X. Then {en} satisfies a (p,1)-estimate for some p < 00.

Proof. Consider the basic sequence {e%} in X*. First we show that if
x*, y* are disjoint blocks in Ba([e}]), then |lz* + v*li € ¢. Indeed, to derive
a contradiction, suppose that there exist such blocks with |z* + y*|| > e
We may suppose that supp(z*) £ 7 < supp(y*). Select z € Ba(X) with
(z* +y*)(z) > ¢. Write z =2+, where supp(z) < n < supp(y). Then

e < (2 +y7)(2) = 2" (z) + () < 2l + vl = clz+yl < e

which i a contradiction. By an argument of Guraril and Gurarii [12] (see
e.g. [7]) it now follows that {e}} satisfies an (o0, q)-estimate for some ¢ > 1,
and hence by duality that {e,} satisfiés a (p, 1)-estimate for some p < co. =

CoOROLLARY 10. The space constructed by Gowers (without ¢o, £1, or a
reflezive subspace) admits o UKK norm.

Proof. Let f(z} = /logy(z + 1). From the definition of the norm [10]
it is clear that for disjoint blocks &1,.. ., %Tn with respect to the basis {en}

of the space one has
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k43
1>
a1
In particular, if z1 < zg, then

ellzy Azl > [z + |z

for ¢ = /Togy 3 < 2. So by Proposition 9, {e,,} satisfies a (p, 1}-estimate for
some p < oo, whence by Theorem 6 the space admits a UKK norm. =

1 ™
I z mé”%’“-

Remarks. 1. It can be shown (see e.g. [6]) that without passing to a
blocking the basis of the Gowers space satisfies a (p, 1)-estimate for every
p>1.

2. The original Tsirelson space [34] is reflexive and has the property that
" is representable on blocks in every infinite-dimensional subspace. So, by
the results of [30], no infinite-dimensional subspace is UKK-able.
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