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A quasi-affine transform of an unbounded operator
by

SOHOICHI OTA (Fukucka)

Ahstract. Some results on quasi-affinity for hounded operators are extended to un-
bounded ones and normal extensions of an unbounded operator are discussed in connection
with quasi-affinity.

1. Introduction. 92.-Nagy and Foiag introduced quasi-affinity (quasi-
similarity) for bounded operators on Hilbert spaces ([13]). In [7], we in-
troduced the same notion for unbounded operators in Hilbert spaces and
gtudied which properties of unbounded operators are preserved under quasi-
similarity. In particular, we observed that, for a given (unbounded) subnor-
mal operator 7" in a Hilbert space H, if there is a self-adjoint operator in ‘H
which is a quasi-affine transform of T then T is also self-adjoint and they
are unitarily equivalent, On the other hand, it is known [9] that, if 7" is a
bounded subnormal operator on a Hilbert space H and there is a bounded
normal operator in H which is a quasi-affine transform of T, then T is normal
and they are unitarily equivalent.

We will generalize this result to unbounded subnormal operators and
show that, if A is a (possibly unbounded) subnormal operator in a Hilbert
space M and there is a normal operator in H which is a quasi-affine transform
of 4, then A has a unique normal extension B in the same Hilbert space
H and more precisely, for any normal extension N of A in a possibly larger
Hilbert space, its restriction to D{N)NH agrees with the normal operator B.

2. Quagi-affinity. In this paper, all operators (transformations) are as-
sumed to be lLinear. Let X be a bounded (everywhere defined) transforma-
tion from a Hilbert space H to a Hilbert space K. If X is injective and has
dense range, then X is said to be quasi-invertible. Let A and B be operators
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in H and K respectively and let X be a bounded transformation from H
to X. Then the relation X - A € B - X means that XD(A4) C D(B) and
X At = B X¢ for all £ € D(A). Here D(A) denotes the domain of A,

LEMMA 2.1. Let A and B be densely defined closed operators in Hilbert
spaces M and K respectively and let X be a bounded transformation from
H to K. Suppose there is @ constant A such thal both A — 4 and A — B are
injective and have dense range. If

X-ACB. X,
then
X A-AtcOh-B)1t X
In particular, if X belongs to the resolvent sets of both A and B, then
X A-At=0-B"1.X
Proof The lemma follows from a simple computation.
DerINITION 2.2. Let A and B be densely defined operators in Hilbert

spaces M and X respectively. If there is a quasi-invertible transformation X
from H to K such that '

X -ACB-X,

then we say that A is a quasi-affine transform of B with intertwining oper-
ator X, or A is quasi-affine to B with intertwining operator X.

A densely defined operator A is called formally hyponormal if it satisfies
D(A) CD{A") and [AL|| = ||A™E|| for all £ € D(4).

A formally hyponormal operator A is closable and its closure A is also

formally hyponormal ([3], [7]). Clearly, if DP(A) = H then A is bounded

hyponormal (see [5] for the theory of bounded hyponormal operators).

For a densely defined operator A, we denote by p(A) the resolvent set
of A.

LEMMA 2.3. Let A be a densely defined closed operator in a Hilbert space
H with o(A) # B, and let B be an extension of A in H. If B is formally
hyponormel, then A coincides with B.

Proof We first note that A is a quasi-affine transform of B with triv-
ial intertwining operator. Hence, o(4) C o(B), by [7, Theorem 3.3]. Since

A — A and A — B have bounded inverses, the proposition follows from
[7, Theorem 2.5].

3. Subnormal operators. Let A be a densely defined closed operator
A in-a Hilbert space M. If A satisfies 4*- A = 4. A*; namely, D(A*) = D(A)
and A"E|| = || A€|| for all £ € D(A), then A is said to be normal.
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DEFINITION 3.1. A densely defined operator A in H is said to be sub-
normal if there exist a Hilbert space K containing H as a closed subspace
and a normal operator N in X such that

D(NYNH 2 D(A) and Af = N¢ forall £ € D(A).

A subnormal operator is formally hyponormal ([7], [11]). We refer to [1],
6], [11], [12] and the references cited there for earlier works on unbounded
subnormal operators,

PROPOSITION 3.2, Let A be o subnormal operator in o Hilbert space H
and let B be a normal operator in H. Suppose B is quasi-affine to A with
positive intertwining operator. Then B is a unique normel extension of A
inH. Moreover, for any normal extension N of A in a possibly larger Hilbert
gpace, the restriction of N to H,

Nlpwyns,
is equal to B.

Proof. Let X be a positive quasi-invertible operator such that X . B C
A X. Suppose N ig a normal extension of A to a Hilbert space K with
K = H & H*. Define the extensions Xg and By of X and B respectively to
K as follows:

X0=()0{ g) wrt W& H"

and
D(By) =D(B)®H' and Bo(é®n)=BE{an.
Then, by our assumption, By is nermal and
Xo By TN - Xo.
We recall a decomposition of a normal operator into real and imaginary
parts by the spectral theory for normal operators ([14], Theorem 7.32).
Put .
, pE—— S—
N1m§N—|~N*, NQ:ENFN’
1 ey I e
B:Lﬁ'Q'BO”!‘BO: B2=-2—'L:BU—BO,

where i = \/=T. Then N, and Ny (resp. By and By) are str01.1g1y commuting
self-adjoint operators with N = Ny +iNa and N* = Ny —iNy (resp. By =
By +iB, and B! = B; — i5s). By the Fuglede-Putnam theorem ([8]), we
have Xy - By € N* - Xj, so that

2Ny - Xo 2 (N1 + iN2) Xo -+ (N1 — iN2)Xo
2 Xo(By +iB2) + Xo(By ~ iB2) 2 2Xo - Bi|p(B)nD(Ba)-
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Since D(By) = D{B1) ND(By) is a core for By, it follows that
N]_'XOQXD'BZL)
and analogously,
Ny Xp 2 X+ Ba.
Since N; and B; (5 = 1,2) are self-adjoint, it follows from Lemma 2.1 that
(i =N Xo=Xo-(i-By)™,
j = 1,2. Clearly, (i — N;)™% and (i — B;)™* (§ = 1,2) are all bounded
normal operators. Since X is positive, it is not difficult to see, by the same
argument as in the proof of [2, Lemma 4.1], that H @ {0} reduces (i~ B;)!
and (f — N;)~*, and
(i = Nj) Mrogoy = (0 = By) reroy (= 1,2).
Take § @ 0 in D(B;) (j = 1,2). Then there are §; in H and & in H*
such that (i — B, ){§ ® 0) = §; @ 63. Since

§@0=(i~B) (6@ =(i~B) 6 ®0)+ (G — B;) 0D 6a)
and
(i—B)'61@0) e Ha {0} and (i—B;)" (0@ &) e 0 HY,
we have (i — B;)" (0@ §) = 0, and s0 83 = 0. Thus
(i—-B(6@0) =& ©0 e Ha {0}

By using the equality (i — Ny) paioy = (0 — By} ngoy (G =1,2), we
have (i — N;)~'(i — B;)(§ & 0) = § ® 0, which means that

D(B;)n (Ko {0}) C D(N;) N (K& {0})

and
N;(6@0)=B;(680)
for all 6 € H with §@ 0in D(B;) (j =1,2).
Repeating the above argument with N; replacing B;, we have D{B;) N
(H @ {0}) = D(N,;} N (H & {0}). Thus,
Njlownmeton = Bilomonmaeny (G =12).
Therefore
D(Bo) N (H&{0}) = D(N1) ND(Na) N (H @ {0}) = D(N) N {H & {0})
and
NE@0)=By(§®0)=B§@0
for all § € D(B). Identifying H & {0} with H, we have obtained
Nlpwynn = B.
This completes the proof of the proposition.
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TuroreEM 3.3, Let A be a subnormal operator in o Hilbert space H.
Suppose there cxists a normal operator B in 'H which is quasi-offine to A.

"Then A has o unique normal extension C' in the same Hilbert space H, which

is unitarily equivalent to B. To be precise, for any normal extension N of A
in a possibly larger Hilbert space, the restriction of N to D(N)NH coincides
with €.

Proof. Let X be a quasi-invertible operator such that X - B C 4- X,
Let X = U - P be the polar decomposition of X. Then [J is unitary and P
is a positive, injective operator on M satisfying

(I*-A-U)-P2P-B.

Suppose N is a normal extension of A to a Hilbert space X containing
H as a closed subspace; K = H @ HL. Put

(U0 _ N
UO_(O I) wrt. He&H-,
where I is the identity operator on H*. Then it follows that Uj - N -Upis a
normal extension of a subnormal operator U* - A U to K. By Proposition
3.2 and identifying H ® {0} with H,

Us + N - Uslpwy y-veyrnmn = B.
It follows that
Nlpanw=U-B - U"

Thus N|p(vynn 18 unitarily equivalent to the normal operator B. This com-
pletes the proof of the theorem. '

COROLLARY 3.4. Under the same assumption as in Theorem 3.3, if
olA) # 0 then the closure of A is mormal and is uniterily equivalent
to B.

Proof. By Theorem 3.3, there is a normal extension C in H of A and
0, 4 C . Since C is normal, A = C, by Lemma 2.3.

Remark 8.5 Kyung Hee Jin showed in [4, Theorem 8 and Corollary 4],
by nsing the result of Stampfi and Wadbwa [10] for bounded hyponormal
operators, that subnormality in the corollary above can be replaced by the
weaker condlition of “formal hyponormality” (he also discussed some condi-
tions of quasi-affinity under which a given subnormal operator is normal);
that is, let A be a formally hyponormal operator with o(A) # # and sup-
pose there existy a normal operator B in H which is a quasi-affine transform
of A. Then the closure of A is normal and is unitarily equivalent to B.

In this result, in case the assumption that A4 has non-empty resolvent
set is dropped, what can we say about A7 That is, it seems to be of interest
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to know whether such an operator A has the property similar to the one
stated in Theorem 3.3.
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The dual of Besov spaces on fractals
by

ALF JONSSON snd HANS WALLIN (Umed)

Abstract, FPor certain classes of fractal subsets F of B™, the Besov spaces B%i(F)
have been studied for e > 0 and 1 € p, ¢ < oo, In this paper the Besov spaces By (F)

)
are introduced for e < 0, and it i shown that the dual of BRU(F) is BE ;! (F), a # 0,
1< p, g« o0, whero 1/p+1/p" = 1, /g -+ /g’ =1.

1. Introduction and notation. The Besov spaces B5?(F) consisting
of functions defined on a fractal subset F of R™ have been studied for o > 0
and 1 € p,q € oo by the present authors, e.g. in [5]. In this paper we
introduce Besov spaces BR4(F) for negative indices o, and show tl}at. the
dual of B2 (F), @ >0, 1 <p,g<ooora<0,1<pg<oo,is 'B?i 4 (F)n,
where ¢’ and ¢’ are the dual indices of p and ¢. This is v&fell known if of: R
(see e.g. 6, p. 178]). Duality theory involving the Lipschitz spaces B & (F,
@ > 0, where F is a fractal set (and in fact an arbitrary closed set if & < 1)
was given in [3]. . N

Our definition of BR(F),a < 0, is in terms of atomic decs)mposmox;s
and i5 inspired by the atomic decomposition of distributions in Bg’q(_R )
given in [1]. If F = R™ and o < 0, our decomposition reduces to one given
in [1], except that we use atoms normed in L ra,th.e; than smooth atoms
normed in L. Atomic decompositions of functions in BRI(F),a > 0, F a
fractal set, wore given in [4], _

For the definition of B4 (F) we refer to Section 2 (o > 0) an'd Section 3
(e < 0). The duality results are given in Sactiops‘él and 5. In Pmrtmular, The-
orems 4.3 and 5.1 glve precise statements describing the duai.my. Ihroug’hgut
the paper, the assumption on I is that Fis a fi—-set preserving Markov’s 1lr11h
equality, We now define these concepts, referring to 5, Chapter II] for the

eneral theory.

: Let F beﬁ; closed subset of R™ and 0 < d < n, and denote by B(z,7)
the closed ball with center z and radius r. A positive Borel measure with
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