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to know whether such an operator A has the property similar to the one
stated in Theorem 3.3.
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The dual of Besov spaces on fractals
by

ALF JONSSON snd HANS WALLIN (Umed)

Abstract, FPor certain classes of fractal subsets F of B™, the Besov spaces B%i(F)
have been studied for e > 0 and 1 € p, ¢ < oo, In this paper the Besov spaces By (F)

)
are introduced for e < 0, and it i shown that the dual of BRU(F) is BE ;! (F), a # 0,
1< p, g« o0, whero 1/p+1/p" = 1, /g -+ /g’ =1.

1. Introduction and notation. The Besov spaces B5?(F) consisting
of functions defined on a fractal subset F of R™ have been studied for o > 0
and 1 € p,q € oo by the present authors, e.g. in [5]. In this paper we
introduce Besov spaces BR4(F) for negative indices o, and show tl}at. the
dual of B2 (F), @ >0, 1 <p,g<ooora<0,1<pg<oo,is 'B?i 4 (F)n,
where ¢’ and ¢’ are the dual indices of p and ¢. This is v&fell known if of: R
(see e.g. 6, p. 178]). Duality theory involving the Lipschitz spaces B & (F,
@ > 0, where F is a fractal set (and in fact an arbitrary closed set if & < 1)
was given in [3]. . N

Our definition of BR(F),a < 0, is in terms of atomic decs)mposmox;s
and i5 inspired by the atomic decomposition of distributions in Bg’q(_R )
given in [1]. If F = R™ and o < 0, our decomposition reduces to one given
in [1], except that we use atoms normed in L ra,th.e; than smooth atoms
normed in L. Atomic decompositions of functions in BRI(F),a > 0, F a
fractal set, wore given in [4], _

For the definition of B4 (F) we refer to Section 2 (o > 0) an'd Section 3
(e < 0). The duality results are given in Sactiops‘él and 5. In Pmrtmular, The-
orems 4.3 and 5.1 glve precise statements describing the duai.my. Ihroug’hgut
the paper, the assumption on I is that Fis a fi—-set preserving Markov’s 1lr11h
equality, We now define these concepts, referring to 5, Chapter II] for the

eneral theory.

: Let F beﬁ; closed subset of R™ and 0 < d < n, and denote by B(z,7)
the closed ball with center z and radius r. A positive Borel measure with
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286 A. Jonsson and H. Wallin

support F is called a d-measure on F if, for some constants ¢y, ez > 0,
err? < p(Blz, 7)) < car?, zekF, 0<r<lL.

The set F is a d-set if there exists a d-measure on F. Any two d-measures
on F' are equivalent [5, p. 30). A closed set ' C R™ (not necessarily a d-set)
preserues Markov’s inequality if the following holds for all positive integers
k: For all pelynomials P in n variables of degree < &k and all balls B(z,r),
ze F,0<r <1, wehave

max [grad P| < cr ™ max | P|
FNB FNB

with a constant ¢ depending on F,n, and &k only. Any d-set with d > n — 1
preserves Markov’s inequality. Examples of d-sets preserving Markov's in-
equality are classes of self-similar fractals [7], the closure of Lipschitz do-
mains and, more generally, (¢, §)-domains,

In Theorems 4.3 and 5.1 as well as in the propositions and lemras we
get constants depending only on =, F, i, and . However, the d-measure p
can be chosen in a canonical way as the restriction to F of the d-dimensional
Hansdorff measure [5, p. 32], and the dimension n of R™ depends uniquely
on F' when F preserves Markov's inequality [7, Section 3]. Because of this
we can make the constants depend only on F' and o.

As already mentioned, we assume throughout the paper that F is a d-
set preserving Markov’s inequality. Whenever we deal with the Besov spaces
BEA(F) with |e| < 1, the results remain true, however, without the assuump-
tion that F' preserves Markov’s inequality.

NOTATION.

F a closed subset of R™ which is a d-set preserving Markov’s
inequality, 0 < d < n

I a fixed d-measure on F

[ex] the integer part of o

fq,... real-valued functions

[If]ls the LP(u)-norm of f

I filp, & the LP{u, E)-norm of f

A B,... real-valued sequences 4 = (A, )7, B = (B.)%%,...

1Al the {2-norm of A

supp f the support of f

Q hallopen cubes of the form {z = (21,...,2,) € R" : a;
T <ap+r, i=1,...,n}

2Q the cube obtained by expanding @ twice around its center

jf\i’f(:c, r) the closed ball with center z and radius r

a net with mesh r, i.e. a division of R into equally big
cubes () with edges of length r, obtained by intersecting
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R* with hyperplanes orthogonal to the axes
N, the net with mesh 27" such that the origin is a corner of
some ctthe in the net

N{F) {QeN,:QNF£0)

Py the set of polynomials of total degree at most &

Pi(N) the set of functions which on each cube @ in the net N
coincide with a polynomial of degree at most &

s(N) a non-smooth spline, element of Py (A)

B the topological dual of the Banach space B

?,q the dual indices of p and ¢, Le.
Lp+1/p =1,1/q-+1/¢ =1

F=(Fy ey dn) o multi-index with length |7 = jy + ... + jn

zd u;{j cooxdn, j a multi-index, ¢ = (z1,...,2,) € R®

c a nou-negative constant, not mnecessarily the same each

time it appears.

2. The space B2Y(F}, o > 0. There are different, equivalent definitions
of the Besov space BI(F) for o > 0. One of these is as follows (see [5, p.
135]).

DEFINITION 2.1 f & BY(F), o > 0,1 < p,g € o0, if f € LP(u) and
there is a sequence B s= (B,)2%, € £4 such that for every net A with mesh
2=¥, w=0,1,2,..., there exists a function s(N) € P (V) satisfying

(1) L~ sVl <277 Bu.
The BLI(F)-norm of fis
71l ~+ inf | Bllq,
where the infimutn i over all such sequences B.
Next we shall give an alternative definition of B®Y(F), a > 0, where

the functions in Pry(AN) are defined in a constructive way. Let N,{, v =
0,1,2,..., be the fixed net with mesh 27" introduced in the notation in
Soction 1. For O € N (F) = {Q € N, : QN F # 0}, let (w.i)ij‘s[a]'be'a,n
orthonorrmal basis in the subspace P of L? (14, 2Q) and define the projection
on Py for every f & L' (p, 2Q):

. . N ) Ty m;dp for v >0,
@ pg=ryl)={ Pasmihalnd B0

We shall need the following lemma. For its validity it is important that
the integration in (2) is over a cube which is an expansion of Q by a factor
larger than 1, for instance the factor 2 which we have chosen.
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LEMMA 2.2 2, p. 310]. For @ € No(F) with v > 0 we have

If = Po(flllp2q < cllf = Pllp2q
for 1 < p < 00, P € Py, and | € L'(1,2Q), where ¢ depends only on
n, F, 4, and o,

The alternative definition of B2?(F),« > 0, which we have in mind is
given by the following proposition.

ProposiTioN 2.3. Let @ > 0 and 1 < p,g < oo, and let [ be a p-
measurable function defined on F. Iniroduce the sequence A = (A,)%, by

1/p
(3) ( Z f [f—Pled/_L) =2.—U0‘A—IM yﬁo;l:"':
QEMAF) 2@
where Po = Pg(f) is given by (2). Then f € B24(F) if and only if A € ¢
and the norm of f in BRI(F) is equivalent to ||A||,. The constants in the

inequalities giving the equivalence of the norms depend on n, F, 1, and o
only.

Before we turn to the proof of the proposition we shall write (3) in a
different form. The fact that in (2) and (3) we work with polynomials in 20,
and in (1) with polynomials in @, causes some technical difficulties. One
‘way to overcome this is as follows. The cubes 2Q, @ € N, belong to 2"
different nets, Mu1,..., Mg, K = 27, with megh 2=#~1)_ Pyt

I:/k::{QENU:QQENuk}J lSkSKy

and define functions in 2Q by

mui(z) = Polz) fze2Q, Qely QNF#D,
and, for Q € I, with QN F =0,
_Jflz) Hze2nF,
muk(®) = {o if 7 € 23Q \ F.
Then m,, is defined in R™ and (3) may be written

X /e
(3) (3o0s = mualy) ™ = 27,
k=1

FProof of Proposition 23. 1) Assume that f € B29(F). Take a
sequence B = (B, )L, € £ such that for every net A" with mesh 2%, v > 0,
there exists s(N) & Py (V) satisfying (1) in Definition 2.1. By Lemma 2.2,
Qe le, QNF #B0, v > 1, and Py = Py(f) is given by (2) and
§(Nuk) € Proj (Noi) by (L), we obtain

If — Pollp2e < ellf — s(Mok)|lp.20-
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3y summing over ¢ € I with QN F 5 ), we obtain, for some constant ¢,
I~ mun]p € 27¥*B, 4,
wmd, consequently, by (37),
* 1/p
2 A, = (I = mall) T < KB,y vzl
Joas |
For v = 0 we get Ay < ef|flly The last two inequalities prove that A =
(A5, € 4 and Ghat the £%-norm of A is at most a constant times the
aorm. of [ in BIA{E),

2) Conversely, assume that A = (A4,)32, € £¢, where A, is defined by (3).
By taking » = 0 in (3) we see that f € LP(u). Let A be an arbitrary net with
mesh 2% and let @ € A with QN F % §. For v > 0, take Q" € N, _; such
shat @ N QN F # B and Py = Pg:(f) according to (2). Then @ C 2Q’ and
the function 8(N) € Py (V) defined by s(A)(z) = Pgi(z) on @ will do in
1), and taking s(N) identically zero if v = 0, we see that the BE?(F)-norm
of f is at most a constant times the £%norm of A.

3. The space B2Y(F),a < 0. The definition of BE4(F) for o < 0 will
be made by means of an atomic decomposition. We start by defining the
atoms,

DRMNITION 3.1, Let o« < 0,1 € p € oo, and let Q with @ N F # @.be
n cube with edge length 27, where v is a non-negative integer. A function
a=ag & LP(u) is an (o, p)-atom associated with @ if

(i) supp a C 2@, .

(il) [ a7a(x) du(z) =0 for |y| < [~af if v > 0,

(i) Jlaflp < 272, |

We shall work with the fixed dyadic net N, v = 0,1,. r ap.d cubes
Q € N, (F). The following lemma is basic; notice that c > 0 111.1;1115 lemma
and that p' and ¢ are the conjugate indices to p and g, respectively.

LEMMA 3.2, Assume that a > 0,1 < p,q < o0, and let f le B%Q(F)I.
For every Q & N (), let 3¢ be a number and aq o (~a,p')-atom. If
= (810, € 04 where

iy
(4) o= sal”) "
QENL(F)
and A = (A,)5, where A, is defined by (3), then
=)
Q Y Y |se Jeatdu| <18 NwlAl <co

w=0 QeN, (1)
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Proof. By using the moment condition in Definition 3.1(ii), we get, for
Q@ ENI/(F)i vz 0,

[aofdu= [ ag(f - Pq)dy,
2Q
where Py is the polynomial in (2} which has degree at most [o] = [—(—a)];
notice that Pp = 0if » = 0. By combining this with Holder’s inequality and
Definition 3.1(iii} we obtain

lfandp,‘p < f |f — PoPdu - 2¥°P,
26
Putting
M, = E ‘SQ fand,u],

QEN,(F)
by Hélder’s inequality, the previous estimate, and (3) we get

Myssee( S [ -ropa)” =54,
QEN,(F) 2Q

By Hélder’s inequality we finally get

0 M, <19 Al

()

which is (5). w

By means of Lemma 3.2 (with v, p, q changed to —a,p’, ¢') we shall now
define BEA(F) for o < 0 as a subspace of Schwartz's distributions D' (R™).
Se we now take o < 0. For @ € NV, (F), let ag be an {a, p)-atom associated
with () and let sg be numbers such that § = (5,)5%, € # where 3, is given

by
. ALe
(6) ‘Su = Z |$Q ET) .
QENL(F}
Then the function
Ow = Z 2ag
QEN.L(F)

is locally in L'(u) since the sum defining g,, is a finite sum on any compact
subset of R™. We identify g, with the distribution

()= > s [agedy, peCRE).
QEN.(F)
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Then fin 1= 5w v 18 the distribution given by

m

(Fomr 0} :::Z Z 5Q f“Q‘PdMa

vl QEN, (F)

p e O (R™).
We claim that by Lemma 3.2, f,, converges to f in the distribution sense,
e that

{Finrip) = (fr0)

where the distribution f is given by

(7) ey=S S s [ogeds  peCERM.

=l QEN,.(F)

as m — oo, for ¢ € C§°{R"),

In fact, since v € CF°(R™) the trace theorem for Besov spaces [5, p. 141]

gives | F' € JB’{':;:’J (F), where p|F denotes the restriction of ¢ to F'. Hence
our claim follows from Lemma 3.2.
When (7) holds we write

(8) F=Y, Y. sasq

v=0 Q&N (F)

and we refer to (8) as an atomic decomposition of f. Observe that the atomic
decomposition (8) is not necessarily unique, i.e. different (e, ;p)—atoms ag
and numbers 8¢, 5 = (S,)%% € £9, Sy given by (6), may give the same
distribution f in (7).

DEFINITION 3.3. We define BRY(F), e < 0,1 £ p,¢ £ o0, to consist
of those f € D'(R™) which are given by (7) where we assume that aq are
(o, p)-atoms and sg are numbers _‘such that § = (8,)%%, € £9 and S, is
defined by (6). We define the norm of f by

| F gy = inf [|S][q,
where the infmum s taken over all possible atomic decompositions (8)
of f.

With this definition B24(F) is a normed linear space.

4. The dual of BP4(F),a > 0. The object of this section is to prave
that

(9) (BRI(F)Y = BY S (F) fora>0, 1<p,g<co
One half of (9) essentially follows from the work already done In Sev‘:tio.n 3.
In fact, if f € BE(F), >0, 1<pg<oo, g€ BP0 (F), and g is given
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by the atomic decomposition

o0
9=, 2. sauo

v=0QeN, (F)
then the duality is given by

(10) g.h=3 > sq [aofdu

v=0QeN,{F)
We need to prove that the value of the double sum in (10) is independent
of the particular atomic decomposition used for g. This follows from

LEMMA 4.1. Let f € BRA(F) and g € BY (F),a > 0,1 < p, g < oo,
be given. Then the double sum in (10) has the same value for all atomic
decompositions of g,

Proof. By the trace theorem [5, p. 141], f = fo|F where f; € BRI (R™)
with § = a+ (n— d)/p. For every & > 0 there exists ¢ € C5°(R™) such that

Ifo — iP||Bg'“(Rﬂ) <é,

since Cg°(R™) is dense in BRY(R") if p,q¢ < oo. By using again the trace
theorem we get, for some constant c,
(11) f =l Bpagey < ce.
Let
oo
9=2. > saqsq
v=0 QeN, (F)

be an atomic decomposition of g, i.e. ag are (—a,p')-atoms and sq are

numbers such that §' = (S1)%2, € €9, where & is given by (4). From
Lemma 3.2, Propoesition 2.3 and (11) we conclude

Z Z }SQ fﬂQ(f—ﬂp) du| < eg]| 8,
v=0 QEN, (F)

This means that the value of the double sum in (10} is independent of the
atomic decomposition of 7. m

From (10), Lemma 3.2, Proposition 2.3, and Lemma 4.1 we get
(12) |<gaf>1 < C”Q“gg’c.wq'(F)“f”Bgi'“(F'):

where ¢ depends only on n, F, 4, and c. This means that every g € BY ¢ (F)

determines a hounded linear functional L on B24(F) by means c;fa(lO),

Besou spaces on fractals 293

L{f) = (g, ), and that

“L” < C“g“BE";"’(F)-
We also note that different functions g in B’i’j' (F) give different bounded
linear functionals L on BL4(F), since the restriction to F' of a function in
Cpe(R™) is in BRY(F).

J——"

In the proof of the second half of (9) we shall use the spaces £4(L;) of

gequences v = (1,}3%, of vectors v, = (vy1,...,vk), K = 27, of LP(u)
funetions on F' with norm ||vilg, equal to the £2-norm of the sequence

5 1/p
[ —— (Z f |wi|? d,u) , v=0,1,...
L k=1

We shall need the following lemma and since we have not found any reference
for it, it is proved in the Appendix.
LEMMA 4.2. (‘E‘f(f;))’ = L"«“(E;) forl<p<ooand 1< g < oo, and if

i d q,l foen 4 . )OO
ve (D), v= (1)L o = (Wuts .o, Vi), and g € 9 (L), g = (gv)320,

Gu = (ui, - Guk), then the duality is given by
oo K
(1) Lifw) =YY" [vagwdn,
: yea() fr=1,

. —_—
with | L]l = |gllq - Here |[L1] denotes the norm of the element in (9 L))
determined by (13).

We are now ready to prove the second half of (9) but first we state the
duality result (9) in more detail.

TueorEM 4.5, Assume that o > 0 and 1 < p,¢ < 00.
(1) If
(14) g=3. ¥, squg€BLI(F)
vl QGEN, (F)
and L is defined by
-]
(15) =3 3 so foafdu
v=l QEN, (F)
then L € (BRU(F)) and
(16) L] £ CHQHBE’JJ’(F)?

where ¢ i3 a constant depending only on n, F) i, and .
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(1) If L € (BRA(F)Y, then there ewists a unigue g as in (14) such that
(18) and (16) hold and

a7) 1557 () < elIZH,
where ¢ is a constant depending only on n, F, i, and o

Proof. We have already proved (i); observe that the value of L(f) given
by (15) depends on g but not on the particular atomic decomposition of g,

To prove (i) we first return to the functions m.y,1 €< k < K, K =
2", introduced before (3'). We define an operator T on B?4(F) by T'f =
(1,52, where T, f = (T, f,. - T f) and

Topf=2"*(f —mu), v=0,1,..., 1<k<K.
Since (3') is another way to write (3) we can use Proposition 2.3 to conclude
that f — Tf is an embedding of BE:4(F) in E‘T(ITP)) such that the BL:(F)-

norm of f is equivalent to the £‘1(I::)—norm of T'f; in particular, Tf = 0
implies f = 0.

Now, for a given L € (BE4(F)) we use the operator T to define a
functional L, on V := T(B24(F)) by

L]_ (’U) = L(f)

Then L; is a bounded linear functional on V ¢ BQ(L_}:) with ||Li|| < ¢||L]| and
by Hahn-Banach’s theorem we can extend Ly to a bounded linear functional

fu=TFf veV

—_—
on £9(Ly} without increasing its norm. By Lemma 4.2 this functional is

. [
given by g € €7 (Ly'), g = (9,50, 60 = (g1, -y gvx ) and (13). Hence, for
f € BR(F) we get

o K
Lify=LuTH =33 [ 2°(f - mu)gun dpi

o=l ==

By using the polynomials Py = Py(f) defined by (2) instead of m,.y, we
find

LA =3" 3 [ 2%(f - Po(f))gun du

v=0 QEN, (F) 20
(In this formula the index k in guk depends on Q and is determined by the
condition 2Q € N,g.) But by (2) and Fubini’s theorem,

[ Palflgudn= [ (30 m(@) [ fr;duty))oun(e) duo)

2Q 2@ il<[e] 2Q

f fPQ(gU}C) d,u,,
2Q
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and consequently,

LN =3 3. [ Fan— Polow)2* dula).

v=0QEN.(F) 2Q
We now introduce a¢ and ag for Q € N, (F):
50 1= [lgur = Polgur) [ 20
and, for w & (2Q)NF,
e 4 270wk — Polgu))fsq  if sq #0,
tg () = { 0 if 55 = 0;

for & ¢ (2Q) N F we put ag(x) =0,

Since Pg(guy) iv the projection of guy on P, it is easy to check that ag
are (=, p')-atoms. We also have the desired representation (15) for L(f).
Furthermore, by Lemma 2.2 used with P =0,

sq < cllguelp 20,

which gives, with different constants ¢ depending only on n, F, i, and &, ;cmd
Lp(F) = {Q € Ly : QN F # 0}, with I,), defined a few lines before (3'),

K
o9 E ’a
S bselseds 3 [lod® duged [ lowl dp=clolZ,
QENW (I kel Qe (1) 20) k=1 v
and, by the construction of Ly and Lemma 4.2,

{‘E ( Z ‘Sle’yf'/p’}l/q' < cHg“ea’(L_’,,,) < c||L].

v=0 " QENW(F)
It follows that (14)-(17) hold.

5. The dual of Bf’;f’(.lf"‘),a > 0. In the following theorem we prove
that the dual of B{’f’fl(F) is B2A(F) for @ > 0,1 < p,g < oo, proving the
reflexivity of B2 (F) for these Indices. The first part of the theorem follows
from the discussion at the begiuning of Section 4.

THEOREM 5.1, Agsume that o > 0 and 1 < p,q < co.

() I f &€ BRY(F) and L is defined by

(18)  L{g) :i 3 so faafdu

w=l QENL ()

0

forg=3 Y. squa€ BY (F),

v=0 QENV(F)
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then
Le (B (F) and |L] < elfllnzem
where ¢ is a constant depending only on n, F, i, and c.
(i) If L € (Bi’f’ (FYY, then there is a unique f € BRY(F) such that
{18) holds and

(19) [fllszamy < el L,
where the constent ¢ depends only on n, F, u, and c.

Proof. Asremarked above, (i) is already proved To prove (ii} we start
from a bounded linear functional L on BY ¥ {F) and proceed in several
steps.

Step 1. To find f we first consider atoms associated with cubes in
No(F), i.e. cubes with edge length 1. For Q@ € Ny(F), take any function hg €
L¥ (), hg # 0, such that supp hg C 2Q. Then hg/fjhoily is a (—a, p')-atom
associated with @, which gives

L/ lhallp )l < I, ie. [L(hQ)l < [ L][/hglp-

By Riesz’s representation theorem there exists a function fy € LF(u) with
supp fg C 2Q such that L{hg) = [,o hofadu for hg € L' (1,2Q). On
overlapping cubes 2Q and 2Q’ with @, Q" € Nog(F) we get fo = for p-ae.,
which determines a unique f which is locally in LP{u) and such that f = fg
on 2@, and

L(h) = f hfdy forhe L* (1), with compact support.

Step 2. Now that we have found f, we want to prove (19). This is
done by defining, step by step, a special g = 3.3 spog € BE"fff(F). First

we want to estimate f — Pg where Pg = Py (f) is defined by (2). We start
with the case v > 0. We fix @ € N, (F) and introduce

§ = inf - P
P IS = Pl
and assume that § > 0. By Haln-Banpach’s theorem there existy a ¥ €

(L7 (4, 2Q))" such that #(f) = 1, U(P) = 0 for P € Py and |[#]] = 1/6.

Hence, there exists a ¢ € L¥ (y,2Q) with suppy C 2Q satisfying 9] =
1/6 and

= f’tpgocl,u for ¢ & LP(u, 2Q).
Now we put

aq = 2"/l = 2769
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Since W(F) = 0 for P & Py we see that ag is a (—a,p/)-atom associated
with . Furthermore,

1=9(f)= [vidu=""" [aqfdu,

52 = [ agfdp.
By Lemmna 2.2 this gives

( f\f oy V’al,u) /p2”“5052mmcfagfd,u,
20 :

and we have provcscl the desired estimate for v > 0,8 > 0:

1
(20) ([15=PaPan) "2 s [ aardn
20 2¢

If 6 = 0 we let ag == 0 and note that (20) stiil holds, using Lemma 2.2 to
deduce that f = Py on 2Q.

For v = 0 we choose ag such that suppag C 2Q,agf 2 0 p-a.e. on 2Q,
and lag|? = ¢|f|", where c is chosen such that [lag|ly = 1. Then ag is a
(w=cv, p')-atom agsociated with € and

f agfdu=
which gives (20) for v = 0, since Pg = 0 for v =10.

”f”p.EQ’

Step 3. Let L, f, and ag for @ € N, (F) be as above and consider a
fixed v. Let ¢, be positive constants—which we shall choose in Step 4—and

choose non-negative numbers sq such that

[ anf cm]p for Q € N, (F).

sqlf = c,

For R > 0 put
I(R) = {Q € Ny(F): Q € B(0, B}}.
Then, by Step 1, Holder’s inequality with squality, and (20),

’L( L HQ(L(Q)'-W SQ fande*
Wel{) gel(R »
fd
Q§m'“‘"?) (5, (Jare)
) |3Q|p)1/p1( 3 [1f- PQ|Pd;L) 12 g

QEI(R) Qel(R) 2¢
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But
/e
2( 3 sqoa)| <izi( > fsa)
QEI(R) QEI(R)

By combining the last two estimates and letting R tend to infinity we obtain
1/

(21) A= > [l - Paldu) T2 <oz

QENL(F) 20

if 5¢ # 0 for some Q € N, (F). If sg = 0 for all @ € N,(F), then f = Py
on 26 by (20) and (21) is trivially true.

Step 4. Let L, f,aq and s¢g for @ € N,(F) be as in Step 3; note that
we are still free to choose the constants ¢, in the definition of sg in Step 3.

We put
8, = ( > |8QV°{)W
QENL(F}

and observe that by the definition of s¢, the fact that ag are (~c, p’)-atoms,
and (21} we obtain

S =e. 3 | [agtdy = i [ aa(f - Po)au/”
QENL(F) QEN.,.
<o Y Hangfflf"PQ|pdNSCV(C||L”)p<°°
QENL(F) 2Q

This gives, using the calculations in Step 3 and 4,, in (21),

L( Z -sQaQ)z Z 8 fa,QfduziiS,’,Ay.

QEN.(F) QENL(F)
Consequently, for any positive integer M,

00 > uLn(flsqu’)j”’ (Y Y saq)|

v=0 =0 QCM (F
—Z > sg fand,m Zs{,
v=0 QEN, (F) u-ut)

In order to estimate the above sum we now choose ¢, so that, for some
constant ¢, A = ¢(S’)?. This gives equality in Holder’s inequality and

we get
E3sa =) ()

v=0 v=0 p={
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By combining this with the previous chain of inequalities we obtain

M 1/q
(> 42) " <o,
v=0
and by letting M tend to infinity we see that (19) helds if S7, # 0 for some
v, If S}, = 0 for all , then f = 0 so {19) holds in this case also.
By Step 1, lmearlty, continuity and Lemma 3.2, we finally conclude that
(18) holds.

Appendix
Proof Lemma 4.2. If Ly is given by (13), then applying Holder’s
inequality twice one obtains

L <
L2 S o i Dol

so Iy defines an element in (Eq{f;))’ with |1 ]| < ||g]|

—
Eq’(Lpr)

Let now a non-trivial, bounded linear functional L, on £‘1(fp) be given.
By restricting L to the subspace Soy of Eq(f/;) consisting of elements of
the form v = (0,0,...,0,v,,0,...}, v, = (0,0,...,0,%,0,...,0), Ly can
be conbldered as a functxonal on LP(u), and thus there exists a unique g,z €
L¥ (11) such that Ly(v) = [vupgurdp for v € Sy Let g = (92)52, g =

(9v1y---» 9ui). We shall prove that g & Eq’(i—:,;) with norm at most ||L]|.
Then, since (13) holds for all v of the form (wg,v1,...,vy,0,0,...), the
desired representation (13) follows by continuity.

If s, € LP(u), and s = (sg,51,...,8x5,0,0,...),8, = (01, .50k ),
then
ELl ‘ = IZZ f-gukguk dl—"l < ZZ ||5kapngk”p
w=0 k=1 w0 k=1
2 X " 1/q B /¢’
< L AB, (VZ;A ) @ /)
where A, = (377 ls,,;“[[?’)‘/” and B, = (N8, Hgmﬂﬁ,)l/’". Forp > 1 we

shall choose the Eunctlonb $yk in such a way that we have equality in 1), 2),
andl 3), Since (Em(, AT = ||5NH Ry this gives

N 4 = L N < L N
11, 22, (ZB ) L] < 1415 iz,
from which we deduce that E|g|\ = (322, Bg N4 < || Lyl (at least

for N large enough, s”V will be non-zero in £4(L p))
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Assume first that p > 1 and ¢ > 1. Choose ¢4 € LP(u) in such a way
that supgue = 0 and js.]F = c,,k}g,,k[?’ where ¢, is a positive constant.
This gives equality in 1), and choosing ¢, not depending on &, ¢yp, = ¢, we
have |[s,z|5 = Cu‘]guk||£:: which gives equality also in 2). By choosing ¢, in
such a way that Al = Bg’ we get equality in 3). This concludes the proof if
p>1and g > 1.

If ¢ = 1, to get equality in 3) (with the usual interpretation) we choose
¢ = 01if » % ¥ and ¢y, > 0 arbitrary, where ¥ is such that B,, =
maxp<ugn By If p = 1, then define, given ¢ > 0, B, = {2z : |gua(2)
2 (1~ e)llguilloo} and take syp such that sypgue > 0 and [s,p] =

CukX B, |0uk]s where xg,, is the characteristic function of E,z. Then
Sk vk Al = (1 — £)||gurlloo][8uk|l1, and taking e.p = 0 except for k = ky,
where ky satisfies ||gur, [leo = maxicr<i ||gvklico, and cupy = cu > 0 we get
equality in 2). This leads as above to
(=l i, < Il
80 we get the desired estimate.
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