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Asymptotic expansion of solutions of
Laplace-Beltrami type singular operators

by

MARIA E. PLI§ (Krakéw)

Abstract. The theory of Mellin analytic functionals with unbounded carrier is devel-
oped. The generalized Mellin transform for such functionals is defined and applied to solve
the Laplace-Beltrami type singular equations on a hyperbolic space. Then the asymptotic
expansion of sclutions is found.

0. Introduction. This paper may be regarded as a sequel and correction
of [1], and we use similar notations.

In Section 2 we define directly the space of Mellin analytic functionals
with not necessarily bounded carrier, without using the notion of Fourier
analytic functionals.

Section 3 contains the definition of the generalized Mellin transform of
a Mellin analytic functional as some Fourier analytic functional. It is shown
in Theorem 2 that if the carrier of a Mellin analytic functional is compact
then its generalized Mellin transform is the boundary value (in some special
sense) of its ordinary Mellin transform.

In the next section we prove two Paley—Wiener type theorems for the
Mellin transform of Mellin analytic functionals. In the proof of Lemma 5 we
use estimates similar to those used in the proof of Theorem 3 in [1] but in
a corrected form.

In Section 6 we apply the theory of the Mellin transform of Meilin an-
alytic functionals to solve the equation Pu = f, where P is a Laplace-
Beltrami type operator. We find a solution in the space of Mellin analytic
functionals, by a method similar to that used in Section 7 in [1]. The es-
timate of Fj in [1], p. 274, is incorrect, because the “constant” A is not
constant (depends on Re z).

Here we find a correct but slightly worse estimate; thus the conclusion on
the Laplace--Beltrami operator in Section 8 of [1] is not true. The main result
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of this section (and of the paper) is the asymptotic expansion of solution
presented in Corollary 2.

1. Notation. We use the following notation: if 8 € [0,#) and ¢t € Ry,
then I(t,0) = {w € C: 0 < |w| < t,Argw < 8}, and R(A) = {w € C:
|Argw| < #}. We denote by I(t,9) and R(8#) the directional compactification
of I(¢,8) at 0 and of R(#) at 0 and at {oo}. We use the uniform notation
I{i,8) for t € Ry U{oo} so that [{oo,8) = R(8).

&% stands for the family of sectorial neighbourhoods of I(#,#) defined
in the following way: U € &% iff there exist o, 4 € (§,7) and a complex
(bounded in the case ¢ < co) neighbourhood V (in C) of I{t,#) such that

U=VnNn{—a<Argw < g}u{0}).

Now, for 8 = (81,...,0,),0; € [0,7) and t = (1,...,tx}, t; € RpU{oo},
we define I(t,8) = I{t1,01) % ... x I(tn,8,) and U € S U = Uy % ... x U,
with U; € §%.

We define I, = {2z ¢ R" : oz > 0} for o = (o4, ..

.,a‘n), o5 € {—-,+}.

2. Mellin analytic functionals. Let b € R, t € (R.. U {oo})™ and
V € 8% be a sectorial neighbourhood of I(t, 8).

DEFINITION 1. F € My, (V) iff F € O(V#{0}) and for every £ > 0
and every compact K C V, there exists a constant C(g, K} such that
lw™F(w)| < C(e, K) exple|in |w|]) for w € K#{0}.

DEFINITION 2. ¢ € M,y (V, 6) iff ¢ € O(V#{0}) and for every compact
K < V there exists a constant Cy such that

[ ()| < Crc exp(~6llm wll) for w € K.

Note that
—é .f 1
exnl—81 — 1wl if |w] > 1,
(sl = { 21" 1> 1
Now we define the space of test functions for Mellin analytic functionals:
DEFINITION 3.

My (I(t,8)) = im{ M) (V,6) : V € 8%, §> 0}

It is easy to see that the space M,y (I (¢, 8)) is endowed with the topology
defined by some increasing sequence of seminorms, so we can consider the
space My, (I(t,0)), dual to My, (I(2,0)).

DeriNiTiON 4. The functionals in M’( y( I(t,8)), are called Mellin ana-
Iytic functionals with carrier I(t, ).

Under the notation u(¢) = ¢, the following lemma is obvious {see [1]):
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LevMMA 1. (a) F € Myy(V) © e%(Fop) € O (i (V).
(b) f € Miyy(I(2,0)) & €*(f o p) € [O° (W T, )]
The next theorem gives a characterlzatlon of Mellin analytic functionals.

THEOREM 1. M’(b)(I( 8)) = My (V#I(Z,6)) )/ 2= 1M(b)(V#JI(t 8))
for every V e &Y.

Proofl. The isomorphism is given as follows: U F € ﬂ(b)(V#I(t, &)
then for ¢ € M, (1 I(¢,8)) we define

(1) Fl#] = @ni)~ f F{w)o

where y = 71 %...X¥,,7; isan arbltra,ry curve in the domain of ¢, encircling
I{t;,8;) in the counterclockwise direction. If ¢; = co, then v; = fy;' Uy,
and v C {w; € C: 6; < & Argw; < 0}} for some 8 € (8;, 7).

The inverse map will be defined below. First we shall prove the following
two lemmas:

LeEMMA 2. Assume t =00, § € [0,7), z € C\ R(8) and f € M’(O)(m).
Define
{2) g-(u) = (u(lnz — Inw)) " exp(—(In 2z — Inw)?),
(3) F(z) = flge]
Then g. € M (R(8)) and F € H(g)(V\m) for every V € 8.

Proof. For fixed z & R(9) let U € S? be such that z € 7. Then for
u € U we have

lInz —1lnu| > |Argz — Argu| > 0,

and

i

exp(— Re(ln z — nu)?)

exp({Arg z — Argu)? — (In|z] —In |u[}?)
< C(2) exp(2|In |2]||ln |u]] — (In |u])?)

< C'(z)exp(—6|ln|uj|) for every § > 0.

lexp(—(ln z —In w)?)|

i

Hence, we have
lugs (u)] < C'(z) exp(—6]In[ul]).
The holomorphy of ' (in (3)) is obvious. For z € V\R(f) and U € S°

such that z ¢ U, it follows from the continuity of f that there exists a
constant Cr; such that for every § > 0,

\F(z)| < Cu sug(\lnz —Inuf)"exp(—(Inz — 1nu)2)|exp(6|1n lud]).
ue
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Set @ = |Arg z|. Then we have
|F(2)| < Cula — 6] exp((Arg )% — (ln 2)°)

x sup exp(—(In {ul)” + (2[In{2]] + 6}|In |u||)
uelU
< Cyla— 0" exp(a®) exp(—(In|2])” + (((2[n|!] + 8)/2)°)
= Cyy exp(6lln |z]]),
putting z = Inju|, y = (2[ln|z|| + 6)/2 in the inequality —z? + 2zy < y*.

LemMa 3. Ifte Ry, 8&[0,m), =€ C\I(t,0), fc M’(O)(I(t,f))), and

(2) g:(u) = (z —u)™,
(39 F(z) = flg.],
then g. € Moy(I{t,0)) and F & M(o)(V \1(t,8)) for every V € 8°.

Proof. Similarly to the previous proof, if U € §? is such that 2 ¢ U and
if u € U then |z — u| > A for some A (depending on z). Hence |ug,(u)| <
Ayl € C(2) exp(—8|ln |ul|) for every § with 0 < § < 1, since U is bounded.

Now, if V ¢ 8% F is given by (3') and K C V is compact with X N
I(t,8) ¢ {0} then for some U € §? such that U N K < {0} and for some
constant Cx = Cy we have (from the continuity of f) for every € > 0 and
every § with 0 < 6 < 1,

|F(z)| € Cx sup |u — 2| "Lu|*~S
uely

< Crsup lu— 2761 — z/u*Hul™? forze K.
wel
If |Arg z — Arg u| > a for some a > 0, then |u—z| > |z|sine, and |1 —z/u| >
sin o, s0
[F(2)] € Clz|~(sine) ~*(sin a)** sup |u|* ™% = Cx 2|5,
ugl
If |u} < |z| for every w € U, then there exists a constant D g such that

sup,ey |u — #[7* € D, hence

|F(2)] < Cx Dic sup |ul' ™% = Agx < Brclz| ™.

it

Therefore if for 2= (21,...,2.), u = (uy,...,uy,) we define

(2”) gz(u) =9z (“‘1) coe Gay (U'n)n

where every g, is given by (2) for ¢; = oo, or by (2') for ¢; < oo, then it is
easy 1o see that g, € Mg)(I(2, 8)) and the function F defined by

(3") F(z) = flg.] for f € My (I(2,8))
belongs to M(D)(V#I(t, 8)) for every V & &%, '
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We can see that the map f — [F] given by (3”) is inverse to the map
[F] — f given by (1). Indeed, if ¢ € M) (I(t,6)) then

fle] = (2=xi)~™ f F(2)piz) d=

¥

= @ri)™ [ flolé(z)dz = £ {(2mi) " [ g.(u)b(z)da)-

For calculating the last integral we use the substitution z = e~¢ and

u=e" " and we apply the Cauchy theorem. Suppose for simplicity that
n
g2(u) = H(uj(ln z; — Inu;)) Pexp(—(lnz; — Inw;)?).
=1
Then we have
[ a:(w)p(z) dz
¥

= ﬁuj’l f ﬁ(lnzj ~Inu;) texp(—(inz; — lnuy)?)é(2) dz

= (2m)"p(e™™) = (2mi)" P{u).

We call the function F' defined for a Mellin a.f. f € M, (I(¢,8)) by (3),
(3"Y or (3"} the standard defining funciion of the functional f.

It is obvious that if f € M, (I(¢,8)) then the function

(4) F(z) = flu""g:(w)]

is a defining function for f, and we shall call it the standard defining function
of the functional f.

Suppose f € My, (I(t,0)) for some t & (R U{o0})?, and F is a defining
function of f. If F can be extended to a function in ﬂ(b)(l (s,8)) for some

5 < t, then we say that carrier f C I(s,8).

3. Generalized Mellin transform. Let f € M, (I(£,8)) for t =
{t1,. . tn), t; € RU{oc}. Let I € M(b) (V+41(t,8)) be a defining function
of f. We denote by F,, (¢ = (1,...,0,) € {—, +}") the restriction of F' to
Il = (V#I(t,8) N T,.
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DEFINITION 5. Let F € My (V#I(E,0)). If F =0 on IT for all 7 5 ¢
then the Mellin analytic functional f assigned to F' by the isomorphism (1)
‘s called the boundary value of F and is denoted by f = G (FY.

Suppose that {x,} is an “exponential partition of unity”, as in [1], See-
tion 3. We can see that the functions x.(—In whw™* 1 are in My (1(5,6))
for z such that —1 < o;(Rez; —b;) < 0 (j = 1,...,n) for every # and
t € (R, U {co})". Hence every Meliin a.f f can be evaluated on these

functions, so we can put for z € {~1 < oj(Rez; = b;) <0, j=1,... ,n}
(5) Cy(2) = sgnofixs(—nwyw =71,
(6) G (u) = Go(b+ iu).

LEMMA 4 (see [1]). G € OV (U N (D" + iT,)) for some tubulor neigh-
bourhood U of D* in D™+ iR™.

Proof We consider the case of n = 1; the proof generalizes to n > 1
without difficulty.

Fix ¢ > 0. By (1) we have

Ga(z) = (ZWi)“lsgncr{ f F(w)xe(—Inw)w™>"" dw
—'f Fp(w)xe(—Inw)w™** dw],

where v7 C {8 < TArgw < 8 + &}, 7 =+, From Definition 1 it follows
that

| [ Prw)xe (= ! dw}

< C. f]w|bexP(aun1w||)|x5(—1nw)uwrﬂ”—lexp(ImzArgw)dw
,T‘J'

< Coexp((f+e)[Im ) [ |w]" =% xo (— Inw)|exp(e|ln juw]]) du

T

+
< Ceerexp((f+e)Imz]) for —1+& <o(Rez—b) < —¢'.

Since Rew = Im # and Imu = —(Re z — b}, the lemma is proved.

DeRINITION 6. If f is a Mellin analytic functional, f € N’(b) (1(¢,6)),
¢t & (R U{oo})™, the generalized Mellin transform of f is the Fourier analytic
functional defined by

(7) Myf =) ir(Gh) € ("D
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PROPOSITION L. The map My : Miy, (I(¢,0)) — [O%(D™)) given by (7)
is an isomorphism with the inverse map

My'g = w'(Fgop™)

for g € [O%(D™)]', where F is the Fourier transformation in the space of
Fourier hyperfunctions (see [1]).

Proof. This follows immediately from Definition 6 and from [1], Sec-
tions 2 and 3.

It is obvious that if f € M}, (R(9)) and carrier f C I(t,8) for some

t € RY, then f & M, (I(t.9)).
THEOREM 2. If f € M’(b) (I{£,8)) for some t € R%, then

Myf = (2m) Yy, (MF{B i)
and
(8) |Mf(z)| < CE’EFE(6+E)|Imz\(tes)——Rez
where M f(z) = flw™>"1].

for Rez < b ¢,

Proof. We show this for n = 1. We have (from (7) and (5))
Myf = §+(GY) +3-(GL),
Gi(2) = £f[xx(—lnwhw™=" for —1 <£(Rez—1b)<0.

If F is the defining function for f then F'is helamorphié in V\ I(¢,8) for
some V € 8, and for every £ > 0,

P (w)| € Cerelw|?et™ ™Il for w € K,

for every compact K C V' \ I(t, ). Therefore, for b —1 < Rez < b we have

G (2) = flx4{= Inw)w 1] = (2mi) ™" f Fluyx (~Inw)w > dw
7yt
= (2ri)™t [ Fw)xy(—mw)w ™ dw,

where -y is a bounded curve encircling I(t,8), as in Figure 1.

Hence, G4 can be continued holomorphically to {Rez < b}. Similarly,
for b < Rez< b+ 1,

G- (2) = flx—(=nw)w™ Y = —@mi) ™ [ Flw)x-(~Inwjw™" dw
v
and this function can be continued holomorphically to {Re z > b}. Moreover,
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4 Imaw
-
Y
¢ >
Rew
-
Fig. 1
1fF (—lnw)w™*~ ldwt

SC; f ['LUIb—Ele'wl_Rez—ldw:CE f |wlb'—-€—Rezdw’

v Y

so that .. can be continued helomorphically to {Rez < b}. Then for z €
{Re z < b} we have

Gy (2) - G-(2)
= (i)™ [IF —Inw)w= =1 dw+fF('w
¥

= (2m)” f Flwyw™* ™ dw = (21) P M f(2).
¥
This means that

Myf = ji(GL) = j—(G2) = j4(Gh — G%) = (2mi) "G (MF(b+ &),

For n > 1, the idea of proof is the same. The condition (8) can be proved
exactly as in [1], Theorem 4. It is obvious that for every » € NP the function
(0/0z)" (MF) also satisfies the condition (8).

)x— (— lnw)w=*=? dw}

Similarly, we prove

THEOREM 3. If f € M’b)(R(G)) and carrier f ¢ R(D)EI(L, 0) for some
t € RY then
> Ge(2)

Myf =5 (30GE) = d-((2ri) MF(b + ),

= (2mi) "t Mf(2),
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and

IMF ()| < Ceer exp((6 + £)|Im 2]) (te =)~ Re
forRez>b+¢,

Now, we shall prove Paley—Wiener type theorems for Mellin a.f.

4. Characterization of Mellin analytic functionals
THEOREM 4. Assume that F is o holomorphic function on the set A =
{o- < Rez < ay}, where ap = (&,...,0), a- = {(a*,...,a"), and

oy =(al,,...,al ) foro=(oy,...,0,) € {—,+}", and for everye,e’ > 0

there erists o constant C; ¢ such that
9 |F(2)] £ Ceer exp ({8 + )T 2|)
on the set

Ao ={o_ +& <Rez<a, -}

Then, for every o, there exists a unique Mellin o.f. f € Mia., )(R(B)) such
that

Ma,,.fua = jo(F(aa -+ Z‘))

Proof Set z = ¢y + iu. Then Rez = ooy — Imu and Imz = Rewu, so
it is obvious that Fa, +4-) € O°(D" +i(I, N {0 < oImu < oy — a_})).
Taking g% = jo(F (o, +1-)) € [O?(D™)] and f* = M;'g® we see that
fere M(% (R(6)).

THEOREM 5. Suppose that F' is a function holomorphic on the set {o{Re z

—w) < 0} for some o € {—,+}", and for every g,&' > O there emists a
constant Cp o such that

(10)  |F(2)| < Ce o exp((8 + &) |Im 2])(te”®) " ®°=  for o(Rez —w) < —¢'.
Then there esists a unique Mellin a.f. f € M ,(1(t,0)}, where I,(t,0) =

Iy (t1,61) % oo X Lp (En, 0n), Ly (85, 05) = I(t;,0;) and I_(¢;,0;) = R(6;) \
I(tj,gj'}, such that

“Mf(z) = F(z) forze€ {oc(Rez—w) <0}

First we shall prove the following lemma:

LeMma 5. Suppose that F is a function of one veriable satisfying the
agsumptions of Theorem 5 for g = +. For¢ € [0,7/2], & <w,andT =+, —,
define R, = {z:2 =34+ irre™®, r € R} and Ry = Ry U R;j. Then, for
every ¢ € (0,7/2) and 7,7 € {—,+},

f F{2)r (2)w? dz = f F(2)xwm(z)w*dz. forwelU,,
Ay Ry
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where %.(2) = x5 (~i{z —w)) with {x%} an appropriate “cxponential parti-
tion of unity” defined in [1], Section 3, and
U, ={(f — rArgw)Ree’® — (lnjw| — Int) Ime’™ < 0, 0 < & < ¢}
Proof It is sufficient to observe that if
z=G+irre™™ = &+ rrsinTa + irTcos T
— & —rsina+irrcosa = & — rlme® + irr Re '@,
then Rez = & — rIme’®, Im z = r7 Re ¢'®,
w® = exp(zlnw) = exp(lnw(& + irre’™))
= exp((In |w| + i Arg w)(& — 7 Im '* + irr Re e'®))
and
|w?®| = exp(&ln|w| ~ r7 Argw Ree™™ — 7 In |w|im e*).
From the Cauchy theorem, for every r > 0 we have

[ Fla+iry)% (8 + iry)wiiTy dy

r
_ f F(&+i7_yeir¢)j‘c’r,(&+ iTyeirqS)w&+iryexp(‘irqb)Bi'rqb dy

@
— f F(&+iTeiTa)in(&—|—iTTeiTa)w&+ITTexp(i”‘)eﬁ'ra do = J (r, w).
0

‘We want to show that the last integral tends to zero as 7 — 0. From the
estimate (10) and the properties of x, it follows that

¢
|J(r, w)| < Cger f exp((0 +e)rRee*™ + (—& + rlme™™) (e + Int)
0

+ ln|w|d — rln jw[Ime*™ — rr Argw Re e'® + er Re e**)r do
@
e O o (1€5) ™% w|%r f éxp(((8 + 2& — 7 Argw) Re '™
0
— (In|w| — Int — €) Im &*)r) dov.
Therefore, J(r,w) converges locally uniformly to zero as » — 0, on the
set U.,.
Proof of Theorem 5. It is enough to prove this theorem in the case
when ¢; = + for § = 1,...,n. By Theorem 4 there exists a unique Mellin
analytic functional f* e .M(w)( R(9)) such that

Mo f* = iy (Flw +1-)).
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Therefore, it is sufficient to show that carrier f* C I(t, ). We can represent

f* in the form
where

sgn7TH, (w) = f F(2)xb (—i(z — w))w dz

for appropriate x? as in [1], Section 3, forafixed d <cwandwel ={0<
TArgw — 6 < 1} (Proposition 1).

For o = (%y,...,9n), ¥; € [0,7/2), define Ry = Ry, x ... x Ry, (with
Ry, as in Lemma 5). Suppose 7,7" € {—,+}"* and 7; = 7} for j # k, k fixed.
Then for w € U, N U and for ¢ sufficiently close to /2 we have, from
Lemma 5,

sgp(H,(w) - He(w)) = [ F)%e(2)w dz + [ F(2)%r (2)w” dz

Fo Ro

= j‘ F(2)x-(z)w® dz + f F(2)x(2)w® dz,
where t; = 0 for j 5 k and oy = ¢.
We can write the above sum as

f F(2)Xr (21) .- X+ (22) .-

o (Zm)w® dz

-+ f F(2) X (z1) X—(2)} - Xy (20)w* dz = fF(z);S{;.(?)wz dz,

where T = (71, Tho1sThals---»Tn) 804 Z = (Z1,. .., Zke1s Zhily- -3 2Zn)-
If we U, ﬂUT: and ¢ — /2, then the last integral converges to zero. Hence
H (w) = Hy(w) on U, NU,. Since we can fix k arbitrarily, there exists a

function H such that H(w) = H.(w) on U, and H € M, (V#I(t,0)) =
M_(u,)(UT U,). The proof is complete.

5. Differential operators in the space of Mellin analytic func-
tionals. Consider a differential operator R of the form

a x
R = alz‘(maa (ma—m) f

with ¢ € C, @ = (01, .., &n) being a multiindex. Let f € M (I 1(t,0)) be
a Mellin a.f. Tt follows from the properties of the Mellin transformatxon that



38 M. E. Plig

also Rf € M’w)(f(t,ﬂ)), and M(Rf)(z) = R(z)Mf(z}. The polynomial
R(z) = Y ja|<m Gez™ will be called the Mellin symbol of the operator R.
If {R(z) = 0} N {Rez < w} = 0, then the function F(z) = Mg(z)/R(z)
satisfies (10) for every Mellin a.f. g € M ([ 1(t,0)). Tt follows from The-
orem 5 that there exists a unique Mellin af. f € M’(w)(l (£, ) such that
Mf(z) = Mg(2)/R(z). Thus, we can define the operator £7" in the follow-
ing way:

DerNiTioN 7. For g € M I3, I(t,8)), R™'g = f is the Mellin a.f.
such that f € M (1 I(t,8)) and Mf z) = M(R™lg)(z) = Mg(z)/R(z) on
{Rez < w}.

Now, let R be a polynomial in one variable, for example z;, and let

81,..., 84 be the zeros of R, with multiplicities &1,..., k, respectively, such
that Res; £ ... £ Res, <wy.

THEOREM 6. If f € M’(w)(f(t, 8)), then there exzist a Mellin a.f.
g € M’(w)(R(Gl) x I(t',8"), constants CJ, and the Mellin a.f f;r €

MinJE,00) G=1...,¢s 7=0,... k;) such that

3 ™
M) = (5 ) M55

7]‘:,7; n="r.. .,

and
kj—1 kj—1

g
R =g+ w3 (3 Chlnw) ) gy

=1 r=0 n=r

Proof. Write R(z) = (21 — 5;)% R;(21). The function M f(z)/R(z1)
satisfies the condition (10) in the set {Rez < Res;, Rez’ < w'} and
the condition (9) in the sets {Res; < Rez; < Res;jqy, Rez’ < '} and
{Res, < Rez <wi, Rez’ <w'}.

From Theorem 5 we can write

RT'F =" 4,(H,),

where

Sgn O'HU(w) = f (Mf(a + iﬁ)/R(al + 7:,61))5('3(05 +'£ﬁ)w“+m B
R™ .

for some ﬁxed o with oy < Resy and & < o’ and for w € —fg.
Now, fix & such that Resy < &1 < wy and &' < o', and set 7y = &y +i8.
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Consider the integral
J (MF(z1, ) [ R(21))F0 (20w
R

for fixed 2. It follows from the residue theorem that

Ress; (Mf(21,2")/ R(z1))x 2} (21)
k-1

= 2mi(wy /(k; — 1)) > (’“J’; 1) (w516 (55, 21,

=0

where

Gj (zl:' Z,) = (Mf(zla Z’)/Rj (21))55311 (21)

Hence we have

J MF(z1,2) Rz )RE ()i 4y
R

= [ (Mf(E,2)/REDFE Giywd dpy

[
ki1 k-1
+2me Z (2 ~(Inw; )kj—ﬂ_—l) (83’1) MF(ss,27).

5 Ml;lltéplying!this quuality by 555: (z’)w’z' and integrating the result over
with fixed o < w' we obtain

sgnoH,(w f (MF(%,2")/RED)RE (F, 2 Ywiw' dpds’
RT‘L
ki—l k-1

+2me Z (Zﬂir(lnwl)kﬂ ")
x f (( )Mf)(sja xa (2w g

If we denote the first term on the right by sgn crﬁg(w), then we can put
9=2,Jo(He) and fr = “H((8/8z1)" MS)(s5,-))-

6. The Laplace—Beltrami type operators. Let P be a differential
operator of the form P = R+ @, where R = R(z,8/0z;) is a polynomial
in one variable, of degree at least 2, and Q = z7(3 7, 7;0%/8z3), 7; € C.
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Suppose R(z) # 0 on {Rez < d}. We define
Q3 ={zeC":Rezy, <d, Re(z; +21) <d, j=2,...,n},
2 ={2eC":Rez; <d, Rez; <0, j=2,...,n},
=2~ {0,2,...,2).

THEOREM 7. Suppose 8; € [0,7/2), § = 2,...,n, and t = (t1,...,%,}
satisfies |mo|(t1/t2)® + ... + |mal(t/tn)? < L. Let f € ML 0)) for
every w € Red2y. Then there exists a unique Mellin analytic functional
w € M (I(,6)) for w € Re 2] such that Pu = f. Here § = (61,8 + /2
ond t = (t;,t'e™?).

Proof. Applying the Mellin transformation to the equation Pu = f and
writing F{z) = Mu(z) we obtain the functional equation

n

(1) R(z2)F(z) = - > 7i(z + 1)(z; + 2)F (21 — 2,2 + 2€}) + M (2).

=2

Here e} = (0,...,1,...,0) with the unit as the jth coordinate. We solve this
equation by successive approximations, putting Fy(z) = M f(2)/R(z1) and

Fk,( ) [R(Z]_) ZTJ ZJ +1)(ZJ "|“2)F;\, l(zl —2,z +263) +Fg )
j=2

for k=1,2,... It follows that
k

Fi(z) = [R{z1)] {;hl)jm(zl —2)... R(z — 24"
5 L0 (D)

X (2a+1).. . (22 4+ 20n) ... (20 + 1) oo (20 + 205 — 72)
X M (21 = 2,22 + 2, ., 7m + 20 = 7)) +Mf(z)].

From the assumptions on f and R we get

|Mf(zl e 2.7: Zg + 2jn: sy B +- 2(.7 - .72))'
< Ceprexp((6 + &) |Im 2|) (te%) " Ro% (81%) ¥ (£9e%) 2 | (1,e5)2072)

= Oy o exp((0 + &) [Tm 2|) (te®) ™ Re% (ty /t2) ¥ . (b1 ft,) 20—
for z € (24) o, and |R(21)| > B./, {R(z1 — 2)|...|R(z1 — 25} > (27 GOV
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for some N € N, N > 2. Therefore we have

|22 +

1. fzs & 2l J2n = 1. 2m + 20 - G2)

|[B(z1 — 2) ... R(z — 27)]

S27H(N e + 1 |z + 2]z o .o zn + 205 — §2)!

_ ) . 23
=(2 23[(2_7 1)zg+1| |zQ+2jn|...|zn—3—l|...|zn+2(j—_72)|(;)

an 2(j““.j2)

< MUz +ki/i) . T Oz + /i)
la=1 Il
29n 2(j—72)

[T+ 0)* + 8512 /1) .. T Ulom + 1) + B21/2/1,)
In=1

la=1

2in

= [Tt +200/ls + (of + B2) /1) ..
ia=1
2(7 —j2)
IT (o 20n/tn+ (o + 62)/8)
{n=L
= J(22,...,Zn).
We have the following estimates on (24
2fn 2(3—72)
Hear o yzm) < [[+1mlPB2 . T (Ut |aa /2072
=1 =1

< Kexp((n/2)(|z2] + ...+ |za[))

for some constant X.

In

view of all the statements above we obtain the following estimate

for Fy:

|7x(2)] < CF o exp({B + &) I 2) (2e%) ~ *°* exp((7/2) ']

Jrr- S0

% (72| (t1/82)2)" . (|7n | (1 /1 Y 02 + 1]

< Cf o exp((f1 + &) [Im 2;|)
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w exp((ﬁ' + 71_/2 + s)llmz’[)(tlaE)Rezl (tferr/2+s)—Rezf

o ||t /8P for z & ($2)) .

k
x Y (Imal(t1/ta)? +

j=0

This means that the sequence {Fi} converges locally uniforraly to a
function F', holomorphic on 2}, and satisfying the condition: for every £,¢’ >
0 there exists a constant K, . such that

|F(2)l < K. o exp((B+¢)Imz)(Fe®) " Re%  for z € (2)_w.

From the definition of Fy it follows that F' is a solution of (11) on 2]
and satisfies (10), so by Theorem 5 there exists a unique Mellin a.f u €
My (I(Z,8)), for every b € Re 27, such that Mu(z) = F(2) on £27. Since
Mu is a solution of (11), u is a solution of Pu = f.

Moreover, the functional w can be written as
u="3js(Us),
o

where

sgn ol (w) = f F(z)ig(z)wz dz

Rez=8&

forw e {0 < cArgw—8 < 1or |w] > %}, & fixed in Re 27 and {Xﬂ} an
appropriate “exponential partition of unity”.

COROLLARY 1. Suppose that f € M’ (I(t 8)), for every w & Re 2
for some b € R, t is as in Theorem 7 51, ., 84 are the roots of R with
multiplicities ky,. .., kg respectively and Res; < b (j = 1,...,q). Then the
solution v of the equatv}on Pu = f can be represenied in the form

g I kj—1 ki1
= Z Z e Z ( Z Cﬂ’!‘p 111’!1)])}0-" n- 1).f.1'9w -+ g,
J=1p;=0 r=0  ne=p

where l; is o nonnegative integer with Res; +2l; < b, fip.r € M(w)(I(tf, 9;})

are Mellin o.f. for everyw’ < -2, and g € M(w)( (81) x I(,81) for every
w &€ Rel.

Proof. Define d = min{Res; : j = 1,...,q}. From Theorem 7 there
exists a solution # of (11) in 2. We can write this function as the sum of
a. series:

s

icm

Laplace-Beltrami type singuler operators 41

2)+ 3 (~1)V[R{z; — 2)... R(zx — 2)]

J=1

Jn 1 . j
Z (J) ) (n‘—-l) gn,rgn 1~Jn __7_7;:—_',-2
jooo \J2 JIn

{(z2+2fn) .- (2o + 1) ... (2o + 2(F — f2))
X MF(z1 — 25,204+ 290y -, 2n +2(j—j2))}-

S

X(ZQ+1)

We can see that the series (12) converges locally uniformly on 2]\ {s;42p; :
J=l...,qp=0.., I;} and that F can be continued to a meromorphic
function on {2 with poles at {21 = s; +2p;} of degree k;, for p; =0,...,1;,
Fi=1,...,q. This means that F' can be written in the form

F(Z) — I‘}P(z) -
(71 = 85 — 2p;)%

locally on some neighbourhood of {z; = s; + 2p;}.
Similarly to the proof of Theorem 6 we obtain the formula

bl

g I ky-L ki1
Sg]JG'Ua-(’LU) = ZWZZ Z wij+2pj Z ( Z Cirpj (lnwl)kj——n——l)
i= 1173:0 r=0 n=r
' +m/2 2
x f ((621) Jp,)(5;+2p3, ’)X /(z’)w’ dB’
B -1
+ f F(z))”{g(z)wz dz,
Rez=&

where in the last term & is fixed such that ¢ < &; < b and ¢ > max{Res; +

2p;: 7=1,...,4,p; =0,...,1;}, and & is such that the last integral exists.
It is sufficient to put
. ot _ .
sgno’ G (w') = f (3_21) Fiyp; (85 +2pj,2 )Xﬁ'+ /2( 2w’ dg’

Rn—l
for w' € {0 < o' Argw’ — (8 + 7/2) < Lor |u'| > t'e™/?}, and
f F(z)%f(z)wz dz
Rez=&

forwe {0 <o Argw—8 <1 or |w|>7}
Immediately we obtain the following

sgpn oGy (w) =

COROLLARY 2. Suppose f is a Mellin a.f. such that Mf ts holomorphic
on 2 = {z : Re(z; + z1) < d, § = 2,...,n} for some d € R. Then the
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solution u of the eguation Pu = f has the asymptotic expansion

oo 3

q
ZZZ s;+pz(z 5o (lnaw, Yo == l)fm,
p=0 j=1

r=0  a=r

where fipr € M (I #, 5)) forw' < —2. This means that for every N € N,

ki—1 fj—1

u~2iw +2PZ(Z Frp(lnws) )f”,,

p=0 =1 r=0  m=r .
€ M, (R(61) x I(@,8))  forwe Rell.
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Holomorphic functions and Banach-nuclear
decompositions of Fréchet spaces

by

SEAN DINEEN (Dublin)

Abstract. We introduce a decomposition of holomorphic functions on Fréchet spaces
which reduces to the Taylor series expansion in the case of Banach spaces and to the mono-
mial expansion in the case of Fréchet nuclear spaces with basis. We apply this decomposi-
tion to obtain examples of Fréchet spaces E for which the 7, and 75 topologies on H{E)
coincide. Our result includes, with simplified proofs, the main known results—Banach
spaces with an unconditional basis and Fréchet nuclear spaces with DN [2, 4, 5, 6]—
together with new examples, e.g. Banach spaces with an unconditional finite-dimensional
Schauder decomposition and certain Fréchet-Schwartz spaces. This gives the first exam-
ples of Fréchet spaces, which are not nuclear, with 7y = 75 on H(E).

In this article we introduce a new decomposition method for holomor-
phic functions on domains in ¥Fréchet spaces which admit a Banach-nuclear
decomposition {Proposition 1). This decomposition reduces to the Taylor
series expansion for Banach spaces and to the monomial expansion in the
case of Fréchet nuclear spaces with basis. This allows a unified treatment
of topological problems on a variety of Fréchet spaces—including Banach
spaces and Fréchet nuclear spaces. We apply this decomposition to obtain
exammples of Fréchet spaces E for which the 7, and 75 topclogies on H(E) co-
incide. Our result includes, with simplified proofs, the main known results—
Banach spaces with an unconditional basis and Fréchet nuclear spaces with
DN [2,4, 5, 6]—together with new examples, e.g. Banach spaces with an un-
conditional finite-dimensional Schauder decomposition and certain Fréchet—
Schwartz spaces (see the examples given below). Combined with results in
[7] this gives the first examples of Fréchet spaces, which are not nuclear,
with 75 = 75 on H(E).

The proof is quite technical and we could not avoid some complicated
notation. To keep the technicalities to a minimum we confined ourselves in
Propositions 3 and 4 to entire functions and indicated afterwards the mod-
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