

[14] S. L. Sobolev, The density of C_0^{∞} finite functions in the $L_n^{(m)}$ space, Sibirsk. Mat. Zh. 4 (1963), 673-682 (in Russian).

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 02-097 WARSZAWA, POLAND E-mail: HAJLASZ@MIMUW.EDU.PL KALAMAJS@MIMUW.EDU.PL

> Received September 10, 1993 Revised version August 16, 1994

(3161)

On automatic boundedness of Nemytskii set-valued operators

S. ROLEWICZ (Warszawa) and WEN SONG (Harbin)

Abstract. Let $X,\ Y$ be two separable F-spaces. Let $(\varOmega,\varSigma,\mu)$ be a measure space with μ complete, non-atomic and σ -finite. Let N_F be the Nemytskii set-valued operator induced by a sup-measurable set-valued function $F: \Omega \times X \to 2^Y$. It is shown that if N_F maps a modular space $(N(L(\Omega, \Sigma, \mu; X)), \varrho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega, \Sigma, \mu; Y)), \varrho_{M,\mu})$, then N_F is automatically modular bounded, i.e. for each set $K \subset N(L(\Omega, \Sigma, \mu; X))$ such that $r_K = \sup\{\varrho_{N,\mu}(x) : x \in K\} < \infty$ we have $\sup\{\varrho_{M,\mu}(y) : x \in K\}$ $y \in N_F(K)$ $< \infty$.

In 1933–1934 V. Nemytski
ĭ [10], [11] considered the operator $F:L^2[a,b]$ $\rightarrow L^2[a,b], y(\cdot) = F(x(\cdot)), \text{ where } y(t) = f(t,x(t)). \text{ Nemytskii proved that if}$ F maps $L^2[a,b]$ into itself, then it is automatically continuous. He also used the obtained results to prove the existence and uniqueness of solutions of Hammerstein equations. Since that time the operator F has been generalized in several ways and there are many papers devoted to this subject. Operators of this type are now called Nemytskii operators.

In the last years a new important extension of Nemytskii operators appeared.

Let (Ω, Σ, μ) be a measure space. We assume that the measure μ is complete and σ -finite. A function $x(\cdot)$ mapping Ω into a Banach space X is called measurable if for each open set $Q \subset X$ the inverse image $x^{-1}(Q) =$ $\{t\in\Omega:x(t)\in Q\}$ is measurable, $x^{-1}(Q)\in\Sigma$. The set of all measurable functions defined on Ω with values in X is denoted by $S(\Omega, X)$.

A function $F(\cdot)$ mapping Ω into subsets of X is called measurable if for each open set $Q \subset X$ the inverse image $F^{-1}(Q) = \{t \in \Omega : F(t) \cap Q \neq \emptyset\}$ is measurable, $F^{-1}(Q) \in \Sigma$. By a measurable selection of $F(\cdot)$ we mean a (single-valued) function $x_F(\cdot)$ such that $x_F(t) \in F(t)$ for all $t \in \Omega$.

¹⁹⁹¹ Mathematics Subject Classification: 47H99, 28B20, 46A06,

Key words and phrases: Nemytskii set-valued operators, superposition measurable set-valued operators, automatic boundedness, modular spaces.

Research of the first author was partially supported by the Polish Committee for Scientific Research under grant no. 2 2009 91 02.

Let $F(\cdot,\cdot)$ be a function mapping $\Omega\times X$ into subsets of an F-space Y. We say that F is sup-measurable if for any measurable function $x(\cdot):\Omega\to X$, the set-valued function $s\to F(s,x(s)):\Omega\to 2^Y$ is measurable.

Every sup-measurable closed-valued map $F: \Omega \times X \to 2^Y$ induces the set-valued operator $N_F: S(\Omega, X) \to 2^{S(\Omega, Y)}$ defined by

$$N_F(x(\cdot)) = \{y(\cdot) : y(\cdot) \text{ is a measurable selection of } F(\cdot, x(\cdot))\}.$$

The set-valued operator N_F is called the *superposition operator* (or *Nemytskii operator*) generated by F.

In the last years set-valued Nemytskii operators are extensively used in the theory of differential inclusions (see for example [2]).

Recently Appell, Nguyen and Zabreĭko [1] proved the following extension of the classical Nemytskiĭ theorem. Let as before (Ω, Σ, μ) be a measure space. Let U, V be spaces of measurable functions with values in \mathbb{R}^n (resp. \mathbb{R}^m). We assume that U, V are so-called ideal spaces. We shall not give the definition here; we only want to mention that Orlicz spaces are ideal spaces. We assume, moreover, that V is reflexive. Appell, Nguyen and Zabreĭko [1] proved that if a Nemytskiĭ operator N_F maps an open set $\Omega \subset U$ into V, then for each $u_0 \in \Omega$ there is a neighbourhood U_0 such that $N_F(U_0)$ is a bounded set.

Then a natural questions arises. Is the Nemytskii type theorem also valid for spaces of functions with values in infinite-dimensional spaces?

The aim of this paper is to show that this is true for a large class of spaces called Musielak-Orlicz spaces. The considered spaces need not be locally convex.

Let X be a separable F-space (i.e. complete linear metric space) (1) with an F-norm $\|\cdot\|_X$. We say that a set $A\subset X$ is bounded in X if for each neighbourhood U of 0, there is a constant k>0 such that $A\subset kU$. The space X is called locally bounded if there is a bounded neighbourhood of 0. An operator (resp. a set-valued operator) $T(\cdot)$ mapping an F-space X into an F-space Y (resp. into subsets of Y) is called bounded if for each bounded set $K\subset X$ the set $T(K)=\{y\in Y:y=Tx,\ x\in K\}$ (resp. $T(K)=\{y\in Y:y\in Tx,\ x\in K\}$) is bounded.

Let \mathcal{F} , \mathcal{G} be two classes of F-spaces. We say that an operator (resp. a set-valued operator) is automatically bounded with respect to $(\mathcal{F}, \mathcal{G})$ if for each $X \in \mathcal{F}$, $Y \in \mathcal{G}$, whenever T maps X into Y (resp. into subsets of Y), then it is bounded from X to Y. If T is automatically bounded with respect to $(\mathcal{F}, \mathcal{F})$ then we say that T is automatically bounded in \mathcal{F} .

In this paper we shall show that set-valued Nemytskii operators (and thus also single-valued Nemytskii operators) are automatically bounded in

locally bounded (thus in particular normed) Musielak-Orlicz F-spaces of functions with values in locally bounded F-spaces.

In fact, we shall prove a stronger theorem for all Musielak–Orlicz spaces, which gives the result mentioned above for locally bounded Musielak–Orlicz spaces.

Firstly we define a set-valued Nemytskii operator for functions with values in an F-space as at the beginning of this paper. It is enough to assume that X is an F-space.

Let $N(\cdot, \cdot)$ be a real-valued measurable function on $\Omega \times \mathbb{R}$ such that for each $t \in \Omega$ the function $N(t, \cdot)$ is continuous increasing and N(t, 0) = 0 for all $t \in \Omega$. We can define on $S(\Omega, X)$ a metrizing modular

(1)
$$\varrho_{N,\mu}(x(\cdot)) = \int_{\Omega} N(t, ||x(t)||_X) d\mu$$

(see Nakano [7]–[9], Musielak [4], Rolewicz [13], p. 6). The set of those $x(\cdot) \in S(\Omega, X)$ such that there is a positive k such that $\varrho_{N,\mu}(kx(\cdot)) < \infty$ is denoted by $N(L(\Omega, \Sigma, \mu; X))$.

Observe that if $x_1(\cdot), x_2(\cdot), \ldots$ have disjoint supports, then

(2)
$$\varrho_{N,\mu}(x_1(\cdot)) + \varrho_{N,\mu}(x_2(\cdot)) + \ldots = \varrho_{N,\mu}(x_1(\cdot) + x_2(\cdot) + \ldots).$$

We recall that a metrizing modular on a linear space X is a function $\varrho: X \to [0,\infty]$ such that

$$(md1) \varrho(x) = 0 if and only if x = 0,$$

$$(md2)$$
 $\varrho(ax) = \varrho(x)$ provided $|a| = 1$,

(md3)
$$\rho(ax + by) \le \rho(x) + \rho(y)$$
 provided $a, b \ge 0, a + b = 1,$

$$(md4)$$
 $\varrho(a_nx) \to 0$ provided $a_n \to 0$, $\varrho(x) < \infty$,

(md 5)
$$\varrho(ax_n) \to 0$$
 provided $\varrho(x_n) \to 0$.

A linear space X with a modular ϱ is denoted by (X, ϱ) and called a modular space. Let (X, ϱ) be a modular space with metrizing modular ϱ . It is known that ϱ induces an F-norm $\|\cdot\|_X$ in X by

(3)
$$||x||_X = \inf \{ \varepsilon > 0 : \varrho(x/\varepsilon) < \varepsilon \}.$$

The norm $||x||_X$ is equivalent to the modular ϱ in the sense that $||x_n||_X \to 0$ if and only if $\varrho(x) \to 0$ (Musielak and Orlicz [5], [6], Musielak [4]; see also Rolewicz [13], p. 8).

Let (X, ϱ_X) and (Y, ϱ_Y) be two modular spaces. An operator (resp. a set-valued operator) $T(\cdot)$ mapping (X, ϱ_X) into (Y, ϱ_Y) (resp. into subsets of (Y, ϱ_Y)) is called *modular bounded* if for each set $K \subset X$ such that

(4)
$$r_K = \sup\{\varrho_X(x) : x \in K\} < \infty$$

⁽¹⁾ The basic properties of F-spaces can be found in [13].

Nemytskii set-valued operators

we have

(5)
$$\sup\{\varrho_Y(y):y\in T(K)\}<\infty,$$

where $T(K)=\{y\in Y:y=Tx,\ x\in K\}$ (resp. $T(K)=\{y\in Y:y\in Tx,\ x\in K\}$).

Of course the definition of a modular bounded operator depends on the modulars ϱ_X , ϱ_Y and it is not a topological invariant.

However, just from the definitions it follows that if the spaces (X, ϱ_X) and (Y, ϱ_Y) are locally bounded and the modulars ϱ_X and ϱ_Y satisfy (4) for all bounded sets K, then boundedness and modular boundedness coincide.

THEOREM 1. Let X, Y be two separable F-spaces. Let (Ω, Σ, μ) be a measure space with μ complete, non-atomic and σ -finite. Let N_F be the Nemytskii set-valued operator induced by a sup-measurable set-valued function $F(\cdot, \cdot): \Omega \times X \to 2^Y$. Then N_F is automatically modular bounded from a modular space $(N(L(\Omega, \Sigma, \mu; X)), \varrho_{N,\mu})$ into subsets of a modular space $(M(L(\Omega, \Sigma, \mu; Y)), \varrho_{M,\mu})$

Proof. The proof will be done in three steps:

(s1) If μ is finite then there is a neighbourhood U of 0 in $N(L(\Omega, \Sigma, \mu; X))$ such that

(6)
$$\sup \{\varrho_{M,\mu}(y(\cdot)) : y(\cdot) \in F(x(\cdot)), x(\cdot) \in U\} < \infty.$$

- (s2) The same as in (s1) for σ -finite measures.
- (s3) Each operator as in (s2) is automatically modular bounded.

Proof. (s1). Suppose that (s1) does not hold. For every $\delta > 0$ we can find sequences $\{x_n\}$, $x_n \in N(L(\Omega, \Sigma, \mu; X))$, and $\{y_n\}$, $y_n \in M(L(\Omega, \Sigma, \mu; Y))$, such that $y_n(\cdot) \in N_F(x_n(\cdot))$,

(7)
$$||x_n(\cdot)||_{N_n} < 2^{-n} \delta$$

and

(8)
$$\varrho_{M,\mu}(y_n(\cdot)) \ge n2^n.$$

Since we have assumed that the measure μ is non-atomic and finite, we can find a partition $\{D_{n,j}\}, j = 1, \ldots, 2^n$, of Ω such that $\mu(D_{n,j}) = 2^{-n}\mu(\Omega)$ for $j = 1, \ldots, 2^n$. For at least one index j(n) we have

(9)
$$\int_{D_{n,j(n)}} M(t, ||y_n(t)||_Y) d\mu \ge n,$$

since otherwise $\varrho_{M,\mu}(y_n(\cdot)) < n2^n$ contradicting (8). Set

$$\Omega_{n,m} = D_{n,j(n)} \setminus \bigcup_{k=m}^{\infty} D_{k,j(k)}.$$

Since

$$\mu\Big(\bigcup_{k=m}^{\infty} D_{k,j(k)}\Big) \le \sum_{k=m}^{\infty} 2^{-k} \mu(\Omega) \to 0$$

as $m \to \infty$ and $y_n \in M(L(\Omega, \Sigma, \mu; Y))$ we have

(10)
$$\int_{D_{n,j(n)}} M(t, \|y_n(t)\|_Y) d\mu - \int_{\Omega_{n,m}} M(t, \|y_n(t)\|_Y) d\mu$$

$$= \int\limits_{\bigcup_{k=m}^{\infty} D_{k,j(k)}} \!\!\! M(t,\|y_n(t)\|_Y) \, d\mu \to 0$$

as $m \to \infty$. Thus

(11)
$$\int_{\Omega_{n,m}} M(t, \|y_n(t)\|_Y) d\mu \to \int_{\Omega_{n,i}(n)} M(t, \|y_n(t)\|_Y) d\mu$$

as $m \to \infty$. This means that with each $n \in \mathbb{N}$, we can associate an $h(n) \in \mathbb{N}$, h(n) > n, such that

(12)
$$\int_{\Omega_{n,h(n)}} M(t, ||y_n(t)||_Y) d\mu \ge n.$$

Thus by induction we construct a sequence $n_1, \ldots, n_k = h(n_{k-1}), \ldots$ of natural numbers such that the sets $\Omega_k = \Omega_{n_k, n_{k+1}}$ are mutually disjoint and satisfy

$$\mu(\Omega_k) \le 2^{-k}\mu(\Omega)$$

and

(14)
$$\int_{\Omega_k} M(t, ||y_{n_k}(t)||_Y) \, d\mu \ge n_k.$$

Define

(15)
$$x_*(s) = \begin{cases} x_{n_k}(s) & \text{if } s \in \Omega_k, \ k = 1, 2, \dots, \\ 0 & \text{if } s \notin \bigcup_{k=1}^{\infty} \Omega_k, \end{cases}$$

(16)
$$y_*(s) = \begin{cases} y_{n_k}(s) & \text{if } s \in \Omega_k, \ k = 1, 2, \dots, \\ v(s) & \text{if } s \notin \bigcup_{k=1}^{\infty} \Omega_k, \end{cases}$$

where $v(\cdot)$ belongs to $N_F(0)$.

By (2) and (7), $x_* \in N(L(\Omega, \Sigma, \mu; X))$. It is obvious that $y_*(\cdot) \in N_F(x_*(\cdot))$. On the other hand,

(17)
$$\int_{\Omega} M(t, \|y_*(t)\|_{Y}) d\mu \ge \sum_{k=1}^{\infty} \int_{\Omega_k} M(t, \|y_{n_k}(t)\|_{Y}) d\mu \ge \sum_{k=1}^{\infty} n_k \to \infty,$$

contrary to the assumption that N_F maps $N(L(\Omega, \Sigma, \mu; X))$ into subsets of $M(L(\Omega, \Sigma, \mu; Y))$. This finishes the proof of (s1).

Nemytskii set-valued operators

71

Proof of (s2). Since μ is σ -finite, we can represent Ω as a countable union of sets Ω_n of finite measure. Without loss of generality we may assume that the sets Ω_n are disjoint and that $\mu(\Omega_n) \leq 1$. Now we define a new measure on Ω by

$$\mu_1(A) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu(A \cap \Omega_n) \quad \text{for } A \in \Sigma.$$

Observe that μ_1 is complete, non-atomic and finite. Now we consider the functions

(18)
$$N_1(t,u) := N(t,2^n u) \quad \text{for } t \in \Omega_n,$$

(19)
$$M_1(t,u) := M(t,2^n u) \quad \text{for } t \in \Omega_n.$$

It is easy to see that $x(\cdot) \in N(L(\Omega, \Sigma, \mu; X))$ if and only if $x(\cdot) \in N_1(L(\Omega, \Sigma, \mu; X))$, and similarly $y(\cdot) \in M(L(\Omega, \Sigma, \mu; Y))$ if and only if $y(\cdot) \in M_1(L(\Omega, \Sigma, \mu_1; Y))$. Moreover,

(20)
$$\varrho_{N,\mu}(x(\cdot)) = \varrho_{N_1,\mu_1}(x(\cdot))$$

and

(21)
$$\varrho_{M,\mu}(y(\cdot)) = \varrho_{M_1,\mu_1}(y(\cdot)).$$

Note that if N_F maps $N(L(\Omega, \Sigma, \mu; X))$ into subsets of $M(L(\Omega, \Sigma, \mu; Y))$, then it also maps $N_1(L(\Omega, \Sigma, \mu_1; X))$ into subsets of $M_1(L(\Omega, \Sigma, \mu_1; Y))$. Thus applying the previous step we trivially obtain (s2).

Proof of (s3). By (s2) there exist r>0 and R>0 such that for all $x(\cdot)\in N(L(\Omega,\Sigma,\mu;X))$ such that $\varrho_{N,\mu}(x(\cdot))\leq r$ we have

(22)
$$\sup \{\varrho_{M,\mu}(y(\cdot)) : y(\cdot) \in F(x(\cdot))\} < R < \infty.$$

Let $K \subset N(L(\Omega, \Sigma, \mu; X))$ be an arbitrary set such that

(23)
$$r_K = \sup\{\varrho_{N,\mu}(x) : x \in K\} < \infty.$$

Let k be the smallest integer greater than r_K/r . Then each $x(\cdot) \in K$ can be represented as a sum of k elements $x_1(\cdot), \ldots, x_k(\cdot)$ with disjoint supports and such that $\varrho_{N,\mu}(x_i(\cdot)) \leq r$, $i = 1, \ldots, k$. Observe that the $N_F(x_i(\cdot))$ also have disjoint supports. Thus by (22) we trivially obtain

(24)
$$\sup \{\varrho_{M,\mu}(y(\cdot)) : y(\cdot) \in F(x(\cdot)), \ x(\cdot) \in K\}$$

$$\leq \sum_{i=1}^{k} \sup \{\varrho_{M,\mu}(y(\cdot)) : y_i(\cdot) \in F(x_i(\cdot))\} \leq kR. \blacksquare$$

For single-valued operators we obtain

COROLLARY 2. Under the assumptions of Theorem 1, let G be the Nemytskii operator induced by a sup-measurable function $g(\cdot,\cdot): \Omega \times X \to Y$

by means of the formula $G(x(\cdot)) = g(t, x(t))$. Then G is automatically modular bounded from a modular space $(N(L(\Omega, \Sigma, \mu; X)), \varrho_{N,\mu})$ into a modular space $(M(L(\Omega, \Sigma, \mu; Y)), \varrho_{M,\mu})$.

As mentioned above, if the spaces (X, ϱ_X) and (Y, ϱ_Y) are locally bounded and the modulars ϱ_X and ϱ_Y satisfy (4) for all bounded sets K, then boundedness and modular boundedness coincide. Hence we obtain

COROLLARY 3. Let X, Y be two separable locally bounded F-spaces (in particular, normed spaces). Let (Ω, Σ, μ) be a measure space with μ complete, non-atomic and σ -finite. Let $N(\cdot, \cdot)$ be a non-negative measurable function such that for all $t \in \Omega$, N(t, 0) = 0, $N(t, \cdot)$ is increasing and there is $p \geq 1$ such that $N_0(t, u) = N(t, u^p)$ is a convex function of u. Let N_F be the Nemytskii set-valued (resp. single-valued) operator from $N(L(\Omega, \Sigma, \mu; X))$ into subsets of $M(L(\Omega, \Sigma, \mu; Y))$ (resp. into $M(L(\Omega, \Sigma, \mu; Y))$) induced by a sup-measurable set-valued function $F(\cdot, \cdot): \Omega \times X \to 2^Y$ (resp. a measurable function $F: \Omega \times X \to Y$). Then the operator N_F is automatically bounded.

In particular, we obtain

COROLLARY 4. Let $X, Y, (\Omega, \Sigma, \mu)$ and F be as in Corollary 3. Then the operator N_F is automatically bounded from $L^p(\Omega, \Sigma, \mu; X)$ into subsets of $L^q(\Omega, \Sigma, \mu; Y)$ (resp. into $L^q(\Omega, \Sigma, \mu; Y)$), $0 < p, q < \infty$.

As an immediate consequence of Corollary 4 and Theorem 2 of [14], one sees that the composition TN_F of the superposition operator N_F with some completely continuous linear operator T is upper semicontinuous and compact provided $F: \Omega \times X \to 2^Y$ has closed images, for each $t \in \Omega$ the mapping $F(t,\cdot)$ is upper semicontinuous and the Nemytskii operator N_F maps $L^p(\Omega, \Sigma, \mu; X)$ into subsets of $L^q(\Omega, \Sigma, \mu; Y)$, $0 < p, q < \infty$.

Such results are useful in proving existence of solutions to boundary value problems for differential inclusions [12].

References

- J. Appell, Nguyen Hong Tai and P. P. Zabrejko [P. P. Zabrejko], Multivalued superposition operators in ideal spaces of vector functions. I, II, Indag. Math. (N.S.) 2 (1991), 385-395, 397-409.
- [2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- M. C. Joshi and R. K. Bose, Some Topics in Nonlinear Functional Analysis, Halsted Press, New York, 1985.
- [4] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer, 1983.
- [5] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
- [6] --, --, Some remarks on modular spaces, Bull. Acad. Polon. Sci. 7 (1959), 661-668.

S. Rolewicz and W. Song

- H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 (1950).
- —, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
- -, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951.
- V. Niemytzki [V. Nemytskii], Sur les équations intégrales non linéaires, C. R. Acad. Sci. Paris 196 (1933), 836-838.
- [11] —, Théorèmes d'existence et d'unicité des solutions de quelques éguations intégrales non-linéaires, Mat. Sb. 41 (1934), 421-438.
- T. Pruszko, Topological degree methods in multi-valued boundary value problems. Nonlinear Anal. 5 (1981), 959-973,
- S. Rolewicz, Metric Linear Spaces, Reidel and PWN, 1985.
- W. Song, Multivalued superposition operators in $L^p(\Omega, X)$, preprint.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES P.O. BOX 137 00-950 WARSZAWA, POLAND

72

DEPARTMENT OF MATHEMATICS HARBIN NORMAL UNIVERSITY HARBIN, P.R. CHINA

Received October 15, 1993 Revised version March 14, 1994

(3171)

STUDIA MATHEMATICA 113 (1) (1995)

On the embedding of 2-concave Orlicz spaces into L^1

by

CARSTEN SCHÜTT (Stillwater, Okla., and Kiel)

Abstract. In [K-S-1] it was shown that $\text{Ave}_{\pi}(\sum_{i=1}^{n}|x_{i}a_{\pi(i)}|^{2})^{1/2}$ is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence a_1, \ldots, a_n so that the above expression is equivalent to a given Orlicz norm.

A convex function $M: \mathbb{R} \to \mathbb{R}$ with M(t) = M(-t), M(0) = 0, and M(t) > 0 for $t \neq 0$ is called an Orlicz function. M is said to be 2-concave if $M(\sqrt{t})$ is a concave function on $[0,\infty)$, and strictly 2-concave if $M(\sqrt{t})$ is strictly concave. M is 2-convex if $M(\sqrt{t})$ is convex, and strictly 2-convex if $M(\sqrt{t})$ is strictly convex. If M' is invertible on $(0,\infty)$ then the dual function is given by

$$M^*(t) = \int_0^t M'^{-1}(s) ds.$$

We define the *Orlicz norm* of a sequence $\{x_i\}_{i=1}^{\infty}$ by

$$||x||_M = \sup \Big\{ \sum_{i=1}^{\infty} x_i y_i \, \Big| \, \sum_{i=1}^{\infty} M^*(y_i) \le 1 \Big\}.$$

In [K-S 1, K-S 2] we have used a different expression for the definition of the Orlicz norm: x has norm equal to 1 if and only if $\sum_{i=1}^{\infty} M(x_i) = 1$. But it turns out that the above definition gives slightly better estimates.

Bretagnolle and Dacunha-Castelle [B D] showed that an Orlicz space l^M is isomorphic to a subspace of L^1 if and only if M is equivalent to a 2-concave Orlicz function. As a corollary we get the same result here. In [K-S 1] a variant of the following result was obtained.

THEOREM 1. Let $a_1 \geq \ldots \geq a_n > 0$ and let M be an Orlicz function with

¹⁹⁹¹ Mathematics Subject Classification: 46B07, 46B09, 46E30. Supported by NSF-grant DMS-9301506.