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On automatic boundedness of Nemytskil set-valued operators

by

B ROLEWICZ (Warszawa) and WEN SONGQ {Harbin)

Abstract. Let X, Y he two separable F-spaces. Let (2, 2, 1t) be a measure space
with p4 complete, nou-atomic and o-finite. Let Np be the Nemytskil set-valued operator
induced by a sup-measurable set-valued function F ; 2 x X — 2Y. It is shown that
if Ny maps a modular space (N(L({2, %, X)), aN,) into subsets of a modular space
(M{L{02, 2, Y )), ¢r,), then Np is automatically modular bounded, i.e. for each set
K ¢ N(L(£2, 2, 11; X))} wuch that rg = sup{ew,.(2) : € K} < 0o we have sup{oar . (¥) :
Yy e NF(I{)} <O

In 10331934 V. Nemytskif [10], [11] considered the operator F : L%{a, B]
— L*[a,b], y(-) = F(x()), where y(t) = f(t, 2(t)). Nemytgkif proved that if
F maps L?[a, b] into itself, then it is antomatically continuous. He also used
the obtained results to prove the existence and uniqueness of solutions of
Hammerstein equations. Since that time the operator F' has been generalized
in several ways and there are many papers devoted to this subject. Operators
of this type are now called Nemytskii operators.

In the last years a new important extension of Nemytskil operators ap-
peared.

Let (£2,%, ) be a measure space, We assume that the measure p is
complete and o-finite. A function z(-) mapping {2 into a Banach space X is
called measurable if for each open set @ C X the inverse image 2~ (Q) =
{t € 2:2(t) € Q} is measurable, x~(Q) € ¥. The set of all measurable
functions defined on £2 with values in X is denoted by §(£2, X). .

A function J'(-) mapping £ into swbsets of X is called measurable if for
each open set @@ € X the inverse image F™(Q) = {t e R: F()NQ # B}
is measurable, F~1(Q) € ¥. By a meusurable selection of F'(-) we mean a
(single-valued) function 2x (") such that 25(2) € F(t) for all ¢ € (2.
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Let F(.,
say that F is sup-measurable if for any measurable function z(-):
the set-valued function s — F(s,z(s)): 2 — 2 is measurable.

Every sup-measurable closed-valued map F : £2 x X — 2¥ induces the

set-valued operator Np : (2, X) — 25U%Y) defined by

Np(z()) = {g(}:
The set-valued operator Ny is called the superposilion opercior (or Nemy-
tskif operator) generated by F.

In the last years set-valued Nemytskil operators are extensively used in
the theory of differential inclusions (see for example [2]).

Recently Appell, Nguyen and Zabretko [1] proved the following exten-
sion of the classical Nemytskil theorem. Let as hefore (2, X, u) be a mea-
sure space. Let U,V be spaces of measurable functions with values in R
(resp. R™). We assume that U,V are so-called ideal spaces. We shall not
give the definition here; we only want to mention that Orlicz spaces are
ideal spaces. We assume, moreover, that V' is reflexive. Appell, Nguyen and
Zabrefko [1] proved that if a Nemytskil operator Ny maps an open set 2 U
into V, then for each uy € {2 there is a neighbourhood Uy such that Ng(Up)
is a bounded set.

Then a natural questions arises. Is the Nemytskif type theorem also valid
for spaces of functions with values in infinite-dimensional spaces?

The aim of this paper is to show that this is true for a large class of
spaces called Musielak-Orlicz spaces. The considered spaces need not be
locally convex,

Let X be a separable F-space (i.e. complete linear metric space) (1)
with an F-norm || - ||x. We say that a set A € X is bounded in X if for
each neighbourhood U of 0, there is a constant k& > 0 such that 4 ¢ kIJ.
The space X is called locally bounded if there is a bounded neighbourhood
of 0. An operator (resp. a set-valued operator) 7'(-) mapping an F-space
X into an F-space Y (resp. into subsets of ¥) is called bounded if for each
bounded set K C X theset T(K) = {y €Y : y = Ta, ¢ € K} (resp.
TK)={yeY: :yeTx, zc K})is bounded.

Let 7, G be two classes of F-spaces. We say that an operator (resp. a set-
valued operator) is automatically bounded with respect to (F, G) if for each
X eF, Y €0, whenever T maps X into ¥ (resp. into subsets of ¥), then
it is bounded from X to V. If 7" is automatically bounded with respect to
(F, F) then we say that T' is autornatically bounded in F.

In this paper we shall show that set-valued Nemytskil operators (and
thus also single-valued Nemytskii operators) are antomatically bounded in

-} be a function mapping 2 x X into subsets of an F-space Y. We
iy X,

y() is a measurable selection of F'{-, z(-))}.

(}) The basic properties of F-gpaces can be found in [13}.
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locally bounded (thus in particular rormed) Musielak-Orlicz F-spacés of
functions with values in locally bounded F-spaces.

In fact, we shall prove a stronger theorem for all Musielak—Orlicz spaces,
which gives the result mentioned above for locally bounded Musielak—Qrlicz
spaces.

Firstly we deline a set-valued Nemytskil operator for functions with val-
ues in an F-space as at the beginning of this paper. It is enough to assume
that X iy an F-space.

Let N (+,-) be a real-valued measurable function on 2 x R such that for
each ¢ € {2 the function N(#,-) is continuous increasing and N(t,0) = 0 for
all t € £2. We can define on 5(£2, X) a metrizing modular

1) onu(el)) = [ N, [a(2)]x) dp

2

(see Nakano [7] [9], Musielak [4], Rolewicz [13], p. 6). The set of those (-} €
5(12, X) such that there is a positive k such that px ,(k2(-)) < cois denoted
by N(L(Q:Z: }“';X))'

Observe that if x1(-), 22(-),... have disjoint supports, then

(2) onw(@10)) +onp(@a()) + o= on (1 () F () + ).

We recall that a metrizing modular on a linear space X is a function
0: X — {0, 00] such that

(md1) glx)=0 ifandonlyif z=0,.

(md?2) olax) = p(z) provided J|a]=1,

(md 3) olaz + by) < o) + o(y) provided e,b>0, a+b=1,
(md 4) olanz) — 0 provided a, — 0, o(z) < oo,
(md5} olazy) — 0 provided g(z,) — 0.

A linear space X with a modular p is denoted by (X, o) and called a

modular space. Let (X p) be a modular space with metrizing modular o. It
is known that ¢ induces an F-norm || - [|x in X by
(3) | x = inf {& > 0 p(x/e) < e}
The norm ||z x is equivalent to the modular g in the sense that €, x — 0
if and only if p(z) — 0 (Musiclak and Orlicz [5], [6], Musielak [4]; see also
Rolewicz [13], p. 8).

Let (X, 0x) and (Y, gy) be two modular spaces. An operator (resp. a

set-valued operator) T'() mapping (X, ox) into (¥, gy) (resp. into subsets
of (¥, ov)) is called modular bounded if for each set K C X such that

(4) rg =supf{ox(z):x € K} < oo
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we have
(5) sup{ev(y) : ¥ € T{X)} < o0,
where T'(K) = {y €Y :y =Tz, s € K} (resp. T(K) = {y € Y : y ¢
T, e K1),

Of course the definition of a modular bounded operator depends on the
modulars gx, oy and it is not a topological invariant.

However, just from the definitions it follows that if the spaces (X, px)

and (Y, gy) are locally bounded and the modulars gx and py satisfy (4) for
all bounded sets K, then boundedness and modular boundedness coincide,

THEOREM 1. Let X, ¥ be two separable F-spaces. Let (£2,X, u) be a
measure space with p complete, non-atomic and o-finite. Let Ny be the Ne-
mytskil set-valued operator induced by o sup-measurable set-valued function
F(,) 1 2x X — 2Y. Then Np is automatically modular bounded from
a modular space (N(L(£2, X, u; X)), on,p,) into subsets of @ modular space
(M(L(Q: Ea Hi Y)): QM,,U,)

Proof. The proof will be done in three steps:

(s1) If u is finite then there is a neighbourhood Uof 0 in N(L(£2, 2, u; X))
such that
(6) sup {oar,u(u()) 1 ¥() € Fla(),a() € U} < oo,
(s2) The same as in (s1) for o-finite measures.
(s3) Each operator as in {s2) is automatically modular bounded.
Proof. (s1). Suppose that (s1) does not hold. For every § > 0 we can find

sequences {zZx}, zn € N(L(2, X, u; X)), and {yn}, yo € M(L(02,5, 1Y),
such that ¢,(-) € Np(2,(-)), _

(7) ”mn( )“N.u $2776
and
(8) ont,u(yn () = n2™

Since we have assumed that the measure u is non-atomic and finite,
we can find a partition {Dy;}, j = 1,...,2"% of 2 such that u(Dy ;) =
27"u(f2) for j =1,...,2" For at least one index j(n) we have

(9) J M @) ly) du = n,
D

ni(n)

since otherwise gar (s (-)) < n2" contradicting (8). Set

o0
ym = Do itny \ U Djir)-

k=m
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Since

u( U Dy < if’“u(ﬂ —

HE=TT) k=m

as m — oo and y, € M(L(£2,Z, 11 Y)) we have

W) [ MGy di~ [ My (0)]y) du

]-}n,j('ﬂ.) -Qnﬂu

= [ M@l du—0

UL D (i)
as m — oo. Thus
(11) [ M@ @y du— [ M, lya)y) d
25, Dn.?(n)

as m — . This means that with each n € N, we can associate an
hin) € N, (n) > m, such that
(12) [ Mt |lyn(®ly) dp = 2.

-Qﬂ,h(n)
Thus by induction we construct a sequence ny,...,np = h(ng.1),... of

natural numbers such that the sets 2y = (2 n,., are mutually disjoint
and satisfy

(13) u((2) < 275 u(2)

and

(14) f M2, [|yn, (Bl ) du = n.
o

Define

(15) 2a(s) = {wﬂks ifse, k=1,2,...,
o(8) =

if § g Ufocoz]_ Qk!
, y,,k fsey k=1,2,...,
09 =1l ilka
where %(-) belongs to Ng(0).

By (2) and (7), 2, € N (L(

On the other hand

(17) f M(t, lya (2)]v) du>2 J My, (8) \ty>du>2nwoo,

=1 2%

contrary to the assumptmn that Ny maps N(L({2, Z, p; X)) into subsets of
M(L(£2, £, Y)). This finishes the proof of (s1).

2,5, 14, X)), Tt is obvious that y. () eNp{z.(-)).
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Proof of (s2). Since u is o-finite, we can represent {2 as a countable
union of sets §2, of finite measure. Without loss of generality we may assume
that the sets (2, are disjoint and that w{f2,) < 1. Now we define a new
measure on {2 by

|
p(d)=>" SeMANQ) for A€ X
n=1
Observe that py is complete, non-atomic and finite. Now we consider the
functions

(18) Ni(t,u) == N(t,2"u) fort € (2,

(19) M, (¢, 'u,) M(t,2™) forte £,

It is easy to see that x(-) € N(L{£2, X, pi; X)) if and only if 2(-) € Ny(L(£2,
X, p1; X)), and similarly y(-) € M(L(2,2,4;Y)) if and only if y() €
Mi(L(2, X, 114; Y)). Moreover,

(20) QN;,Lﬁ(x(')) = 0Ny, (CE())

and

(21) QM,M(?J()) = @M1, (y())

Note that if Np maps N(L(£2, &, u; X)) into subsets of M (L(2, 2, 1Y),

then it also maps Ny (L{£2, 2, u1; X)) into subsets of M;(L(f2, ¥
Thus applying the previous step we trivially obtain (s2).

Proof of (s3).
z(-) € N(L(2, 5, s

Ml»Y))

By (s2) there exist r > 0 and R > 0 such that for all
X)) such that g ,(z(-)) < r we have

(22) sup {om,u,{y(1)) 1 (") € Flz(-))} < R < co.
Let K ¢ N(L(2, 2, 4; X)) be an arbitrary set such that
(23) ri = sup{on.(z):z € K} < 0.

Let k be the smallest integer greater than rg/r. Then each z(-) € K can
be represented as a sum of k elements 21 (-), ..., zx(-) with disjoint supports
and such that gy, (2:()) < r, i =1,...,k. Observe that the Np(z;(-)) also
have disjoint supports. Thus by (22) we trivially obtain

(24} sup {emu(y()) : ¥() € Fa(), () € K}
k

<> sup {enru{y():

A=1

yi(+) € F(z(-))} £ kR. w

For single-valued operators we obtain

COROLLARY 2. Under the assumptions of Theorem 1, let G be the Ne-
mytskil operator induced by o sup-measurable function g(,-) : 2 x X =V

icm
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by means of the formula G(z()) = g(¢,2
uler bounded from a modular space (N (L(
space (M(L{12, X, 1Y), 0ar,)-

As mentioned above, if the spaces (X, 0x) and (Y,gy) are locally
bounded and the modulars pox and gy satisfy (4) for all bounded sets & R
then boundedness and modular boundedness coincide. Hence we obtain

z(1)). Then G is automatically mod-
2,5, 1, X)), o) into a modulor

CoronLARY 8. Let X, Y be two separable locally bounded F-spaces (in
particutar, normed spaces). Let (82,3, 1) be a measure space with p com-
plete, non-alomic wnd o-finite. Let N(-,\) be o non-negative measurable
function such that for all L& 2, N(+,0) = 0, N(t,) is increasing and there is
p > L1 such that Nyt w) = N{I,u) is u convex function of u. Let Np be the
Nemytskit' set-valucd (resp. single-valued) operator from N(L(2, T, u; X))
into subsels of M(L(£2, X, 1Y) (resp. tnto M(L(2,Z,15Y))) induced by
a sup-measurable set-valued function F(-,) + 2 x X — 2¥ (resp. o mea-
sureble function F i 2 % X — Y. Then the operator Nr is auiomaticolly
bounded.

In particular, we obtain

CorOLLARY 4. Let X, Y, (2, £, 1) and F be as in Corollary 3. Then
the operator Ny i automalically bounded from LP{02, £, 1; X)) into subsets
of L2, 5, 1Y) (resp. dnfo LY, 2, 1Y), 0 < p,g < co.

As an immediate consequence of Corollary 4 and Theorem 2 of [14],
one sees that the composition TNy of the superposition operator Ny with
some completely continuous linear operator T is upper semicontinuons and
compact provided F : 2 x X — 2 has closed images, for each ¢ € {2 the
mapping F(¢,+) is upper semicontinuous and the Nemytskil operator Np
maps LP((2, X, 1; X) into subsets of L¢(2, X, 1Y), 0 < p, g < 00.

Such results are useful in proving existence of solutiens to boundary
value problems for differential inclusions [12].
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On the embedding of 2-concave Orlicz spaces into L1
by

CARSTEN SCTUTT (Stillwater, Okla., and Kiel)

Abgtract. In [IX 5 1] it was shown that Avenr (30 lm?;aw(i)lz)lf 2 is equivalent to an
Orliez norm whose Orlies function in 2-concave. Here we give a formula for the sequence
1,. .0t S0 Lhatl the above expression 8 equivalent to a given Orlicz norm.

A convex fuuction M : R — R with M%) = M(—¢), M(0) = 0, and
M(t) > 0 for t # 0 is called an Orlicz function. M is said to be 2-concave
if M{v/1) is a concave function on [0, 00), and strictly 2-concave if M () is
strictly concave. M is 2-conven if M (/1) is convex, and strictly 2-conves if
M{y/t) is strictly convex. If M’ is invertible on (0, co) then the dual function
is given by

]
MA(t) = [ M'7}(s) ds.
0

We define the Orlicz norm of a sequence {2;}52, by

o0 o0
ar = sup{zmﬂ-a D My < 1}.
i=]

im=]

In K-8 1, K 8§ 2] we have used a different expression for the definition
of the Orlicz norm: @ has norm equal to 1 if and only if Y0, M(zy) = 1.
But it turns out that the above definition gives slightly better estimates.

Bretagnolle and Dacunha-Castelle [B )] showed that an Orlicz space
M iy fsomorphie to a subspace of L' if and only if M is equivalent to a
2-concave Orlics funetion. As a corollary we get the same result here. In
K 8 1] a variant of the (ollowing rosult was obtained.

]

THROREM 1, Let a4 2 ... = ay > 0 and let M be an Orlicz function

with -
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