72 8. Rolewicz and W. Sung

[?7] H. Nakano, Modulared linear spaces, J. Fac. Sci. Univ. Tokyo Sect. I 6 {(1950),
85-131.
[8]  —, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
9] —, Topology and Linear Topological Spaces, Maruzen, Tokyo, 1951,
| V. Niemytzki [V. Nemytskil], Sur les éyuations intégrales non linéaires, C. R.

Acad. Sci. Parls 196 (1933), 836-838.

{11] —, Théorémes d’exvistence et d'unicité des solutions de quelques équations intégrales
non-linéaires, Mat. Sh. 41 (1934}, 421438,

[12] T. Pruszko, Topolegical degree methods in multi-vabued boundary value problems,
Nonlinear Anal, 5 (1981}, 959-973.

[13] 8. Rolewicz, Metric Lineer Spaces, Reidel and PWN, 1985,

[14] W. Song, Multivalued superposition operators in LP{£2, X, preprint,

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
P.C. BOX 137

Q00-950 WARSZAWA, POLAND

DEPARTMENT OF MATHEMATICS
HARBIN NORAMAL UNIVERSITY
HARBIN, P.R. CHINA

Reveived October 15, 1093

(3171)
Revised version March 14, 1894

icm

STUDIA MATHEMATICA 113 (1) (1995)

On the embedding of 2-concave Orlicz spaces into L1
by

CARSTEN SCTUTT (Stillwater, Okla., and Kiel)

Abgtract. In [IX 5 1] it was shown that Avenr (30 lm?;aw(i)lz)lf 2 is equivalent to an
Orliez norm whose Orlies function in 2-concave. Here we give a formula for the sequence
1,. .0t S0 Lhatl the above expression 8 equivalent to a given Orlicz norm.

A convex fuuction M : R — R with M%) = M(—¢), M(0) = 0, and
M(t) > 0 for t # 0 is called an Orlicz function. M is said to be 2-concave
if M{v/1) is a concave function on [0, 00), and strictly 2-concave if M () is
strictly concave. M is 2-conven if M (/1) is convex, and strictly 2-conves if
M{y/t) is strictly convex. If M’ is invertible on (0, co) then the dual function
is given by

]
MA(t) = [ M'7}(s) ds.
0

We define the Orlicz norm of a sequence {2;}52, by

o0 o0
ar = sup{zmﬂ-a D My < 1}.
i=]

im=]

In K-8 1, K 8§ 2] we have used a different expression for the definition
of the Orlicz norm: @ has norm equal to 1 if and only if Y0, M(zy) = 1.
But it turns out that the above definition gives slightly better estimates.

Bretagnolle and Dacunha-Castelle [B )] showed that an Orlicz space
M iy fsomorphie to a subspace of L' if and only if M is equivalent to a
2-concave Orlics funetion. As a corollary we get the same result here. In
K 8 1] a variant of the (ollowing rosult was obtained.

]

THROREM 1, Let a4 2 ... = ay > 0 and let M be an Orlicz function

with -
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! 2 n 1/2
~afl 1 L/l
(1) M 1(—) = {(‘Z"’i) +R(?i > Iai;lg)}
n n i=1 i={+1

for all 1 = 1,...,n and such that M*~* is an affine function between the
given values. Then for all x € R™ we have

1 (n—1)2 i 5 z\f
2 . : < A ( s < X2
D 57wl < A (Do) < 2 kel
where cp, = 1 — 51,- + §IT - ...+ (wl)”"'lalf_

We present here those arguments of the proof of Theorem 1 that are
different from the arguments in [K-§ 1, K-8 2].

There is always an Orlicz function M satisfying the assumptions of The-
orem 1. In order to verify this we show that

{(ff(t)dt)z—l-m j‘ |f(t)|2dt}1/2
° g

is a concave function of z. We may assume that f is differentiable. The
second derivative of the above expression is

"(@){([fy F(8)dt — af(z))
{Ug Fyde2 +z [ |F)2 dt}l/z

_L (5@ 3 i+ [ (f0Pdt - 21 ()
4 fo (tdeP +a [[IFFan

The first summand is nonpositive since f is decreasing.

It follows from Theorem 1 that an Orlicz function M has to be equivalent
to a 2-concave Orlicz function if 1* is isomorphic to a subspace of L’ K-S 1,
K-S 2]. We compute here how we have to choose the sequence ai,..., Gy to
get (1) for a given 2-concave Orlicz function M. From this it also follows
that [¥ is isomorphic to a subspace of L' if M is 2-concave.

THEOREM 2. Let M be a strictly convez, twice differentiable Orlicz func-
tion that is siricily 2-concave. Assume that M*(1) = 1 and let

i/n =132\
D " (M ) )" (s)
(3) ] 2(;_i{/n( \/(M* 2(s) — s({M*~ 12)(s)

we

+1—4/1— ((M*"l)2)’(1)) dt

icm

. Then for all Orliez functions M with M*(Ej__, i) =

Bmbedding of Orlicz apaces into 11 75

. Then for all 2 € R™ we have

1 S 1
~lzllsr < Ave (3 |”i“nti>|2) < elzlla
eS|

where ¢ @8 a constant that does not depend on n and M.

forl=1,..,n

Since R™ with the norm

n o 1/2
[l]] = A-;YO’ (Z |-7:Nw(«z)|2)
=il

is sometric to a subspace of L', we get the following corellary.

CoroLLARY 3. Let M be o 2-concave Orlicz function. Then 1M s iso-
morphic to a subspace of L.

LeMMa 4 ([K-S 1]). For all n € N and all n x n matrices A with
nonnegative entrics we have

1 T 1 n
s < < -
Cn ,;Z:T s(k) < A;re Jpax |{t, 'fr( N < - kz;ls(k:_)
where ¢y, = 1 — o + o — .+ (=1)" L and s(k), k = 1,...,n°, is the
neninereasing rearrangement of the numbers a(i, ), i, =1,...,n
Limma b (K-8 2]). For all n € N and all nonnegative numbers a(i, j, k),
Whk=1,...,1n, we have
(n- 1 ¥
L stk
- 1 1223 Ave max Il m(), o) < 5 ) alh
where the average 18 taken over all permutations w o of {1,...,n} and
{slk)}y h, s the nonincreasing rearrangement of the numbers a(i, g, k),
,J,k»-..l,_..,'n

LemMa 6 (K S 1]). Let by = ...

" ky
e
@ lall = guex 3 (ébj)w-

>hy>0,n<s and

/s, I=1,...,8 and

all @ € R™ we have
{E
The proof of the right hand inequality of Lemma 6 is the same as in
[K-8 2]. The left hand inequality follows from the definition of the norm.
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Proof of Theorem 1. We choose the sequence by, § = 1,...,n, with

k
ij =+nk, k=1...,n
§=1

Then by Lemmata 4 and 6 we get

n 1/2
c . 2
—éi A:rfe (; [Titr (s | ) < }}r'\;e X |2 (i) 00 (i)
n 1/2
< Ave (Z \m,;a,r(z)J )
ToMim
By Lemma 5,
(n— ( )1/2 2 1 ¢
_~— k T Z < DY ]{) b
‘TL2+ TL—]. ?12 ZS( Elxia - Cn 'I’L2 k:lS( )

where s(k), £ = 1,...,n% is the nonincreasing rearrangement of |z:aib],
i,4,k = 1,...,n. We apply Lemma 6 again with s = n? and the Orlicz
function A such that

I}
* 1 §: : ! 2
N(n—g t(j))z‘n—z, l:l,...,n,

J=1
where t(f), 5 = 1,...,n% is the nonincreasing rearrangement of laibzl,
&,k =1,...,n, and such that N* is an affine function between the given
values. We get

1 (n—1)?

T 9 1/2 2
_—— < 1 i < — .
3 Tl < (?-::1 zianl”) < el

For some integers k; with k; < n and 3" k; = In we have

N l(n) nzz QZQ*ZB = zza%\/;k.

i=1 i=1 f=]
Since ay > . = ky. Therefore

N+ 1<n) 3/2(\/_2%4- Z a&\/_:)

. 2 ap, = 0 we also have ky >

i==]4-1 1 ) s
n3/2(‘2% +i Z ““l) ( T 2 k")
f==i41 z“—H-].
<-_(,Zag +1 Z jail?) Y =\/§M*“1(é).
i=l41
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We get imwmedialely

in
NY 1(,”) 2o naz le,a

and as in [K 8 2],

o d(ﬁ) = QH(ZW,;)W

Therefore we have

M I( ) (‘LMI gamif |

Altogether, for I = 1,...,n wo have

] *]ﬂ )kﬁ]l _1l
— — ) <M - < * -
A" () s () s ()

Since M™* and N" are afline functions for the other values, the above in-
equalities extend to arbitrary values and we get

13 Jaf 9 < \/EN*"l(%).

1
5l < llefar < V5 |||y

LevmMa 7. Lot H be o coneave, increasing function on [0,1] that s
twice conlinuously differentiable on (0,1], continuous on [0, 1] and satisfies
H(0) = 0. Asqume that (H()/8) # 0 for allt € (0,1]. Then

L HB\\'?
o~ 5(5)) =

(ii) The function f given by

( 1 (s)

) f(t) = - 3 |t e VI - VA -

is weil defined, 7mwmr,tcu'mt, decreasing, and differentinble on (0,1].

(1) iy a2 f(8) == 0.
(tv) The integral .lu S dt s findle and for ali t € 10, 1],

1 . ]
1) = (“] f(s)rls)2 + 4 Ef | (9)]* ds.

Prool (i) We have

. HENY ) J N
%E%t( 5 (WT—)) ez 11}}[1) Fra —}i%(ff(t) tH ()4,

We use the fact that 0 < H'(¢) < H()/t
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(ii) Since (H(t)/t)' # 0 and H is concave, we have H(t) — tH'(t) > 0
Again, by the concavity of H the integrand is nonpositive and therefore f
is nonnegative and decreasing.

(1il) We have
1 4 d(HO\\ _ H'@®)
(6) Z'E(t “E(T))" 2/ H{E) — tH (£)

Integration by parts gives us
d (H
m( (8)) ds
ds g

d (Hs)\1' . +1

Y - ¢ [ =

240 i[ ds( 8 )] + fs

+t(H() — H(1) - B'(1)).
The first summand tends to 0 because of (i), and the third trivially. The
second summand also tends to 0: If the integral is bounded this is trivial. If
the integral is not bounded we apply I'Hépital’s rule and (3).
(iv) In general f is unbounded in a neighborhood of 0. We have
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i

ffs)ds—"hm{sfs)]t f ()ds}

£

y (ii}, the definition (5) of £, and (6) we get

t @Y _ . d ( H(e)
[ ss = enf—5(52) - ime -2 (72),

By (i),

(7) 5[ Fls)ds = tf(t) + m%(@)
; 2 d[H@

{;()ff(S)dS~f(t)} -4 (E0)
Therefore we have
1 1 t 9
H:(Cz)__H(l)z"“f%(ifﬂ')dt:f %ff(S}ds—f(t) dt.

= 0

2

%{%(ff(s)ds)2+f Ff(s)IQdS}f——H f s = 709
0

0 t
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By (7) we have

|
f Ss)ds =
0

By the definition (5} of [ we get f(1 = /H(1) ~ /H(1) ZH'I) and
therefore ;J (8) dw o JH(T) Hl[LH llum (8) we obiain

II(J') ]1(] f(ﬂ)(g,q)z [ ()] ds ~ E(1),

S (Y

or

-~(jf )ds)” l«rf|f )2 ds. n

Proof of Theorem 2. Since M is strictly convex, M/~ exists and
M*'{) M), Sinee J\l is twice differentiable, so is M*~', Since M (V)
is strictly coneave, (A* '( N)? Is also strictly concave. Therefore,

guel gr—l
> (M 1)) () (CE N ] ((M () )

a s 5
We put H(t) = (M* ()% and apply Lemma 7. Therefore Qiyereyln
given by (3) is a positive, decreasing sequence with

t/n
g = f‘ fla)ds.

(/0
We get

w1 - ((Tm) 0+ frmea))”

i/
1 [o\ ] ( fIL)/n 1/2
] ((;{L(h,) s "’*‘(Z j |zd3)) .
FEQ! sl d/n

Since f(I/n) < ap < f((I - 1)/n) we get
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l 2 n—1 1/2
(1 (1 ) 1(1 2>)
* . — . +__ a5 N
OB (CMREIEE
ﬂ‘{*ﬁl i)
n

! 2
1 Z If1
o) n\n
Now it remains to apply Theorem 1. w

IA

v

F=1
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On the behaviour of Jordan-algebra norms on
associative algebras

by

MIGUEL CABRERA GARCIA, ANTONIO MORENO GALINDO,
and ANGEL RODRIGUEZ PALACIOS (Granada)

Abstract. We prove that for a suitable associative (real or complex) algebra which
has many nice algebraic properties, such as being simple and having minimal idempotents,
a norm can be given such that the mapping (a, &) + ab + ba ig jointly continuous while
(a, B) — ab is only separately contimious. We also prove that such a pathology cannot arise
for associative simple algebras with a wnit. Similar results are obtained for the sc-called
“norm extension problem”, and the relationship between these results and the normed
versions of Zel’'manov’s prime theorem for Jordan algebras are discussed.

Introduction. If 4 is an associative algebra with the product ab, then
its symmetrization AT, which has the same vector space as A and new
product a.b := &(ab-+ba), becomes a model for the so-called Jordan algebra.
Jordan algebras are a well-known class of nonagsociative algebras defined by
a. suitable identity. Our general reference for them is Jacobson’s book [11].
Not all Jordan algebras are of the formmn AT, Another example of such an
algebra arigses when A has an invelution #. Then the space of hermitian
elements (A, ) 1= {z € A : 2* = ¢} is closed for the product “.” so it
can be naturally considered as a subalgebra of A*. In many cases A+ and
H{A, ) will not be isomorphic. Other standard examples can be constructed
from bilinear forms (see Section 1) and octonion matrices. In the algebraic
theory of Jordan algebras one of the most powerful results is the recent
Zel’manov prime theorem.

Zel'manov’s theorem [27] classifies prime nondegenerate Jordan algehras
into four types which, roughly speaking, are the following: simple exceptional
ones, simple Jordan algebras of a symmetric bilinear form, prime associative
algebras regarded as Jordan algebras, and Jordan algebras of hermitian el-
ements in prime associative algebras with a (linear) involution. In this way,
an attempt to obtain a reasonable normed variant of Zel’manov’s theorem
has to involve the following:

1991 Mathematics Subject Classification: 46H70, 17C10, 17C65, 47A30.

[81]



