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On local automorphisms and mappings that
preserve idempotents

by

MATEJ BRESAR and PETER SEMRL (Maribor)

Abstract. Let B(H) be the algebra of all bounded linear operators on a Hilbert
space H. Automorphisms and antiautomorphisms are the only hijective linear mappings
¢ of B(H) with the property that (P) is an idempotent whenever P € B(H) is. Tu
case H is separable and infinite-dimensional, every local antomorphism of B{H)} is an
automorphism.

Introduction and statements of the main results. A linear map-
ping # of an algebra A into itself is called a local automorphism if for every
a € A, there exists an automorphism ,, of 4 such that #(a) = 6, (a). This no-
tion was introduced by Larson and Sourour in [11]. They have proved that
every surjective local automorphism of B(X), the algebra of all bounded
linear operators on an infinite-dimensional Banach space X, is an auto-
moarphism {11, Theorem 2.1] (for finite-dimensional spaces X, the result is
somewhat different [11, Theorem 2.2]). The aim of this paper is to prove
two theorems, which, for the case when X is a Hilbert space, generalize the
result of Larson and Sourour.

Note that any local automorphism # of an algebra A preserves idempo-
tents, that is, for any idempotent p € A, 6(p) is again an idempotent. The
question arises whether this condition itself is sufficient for determining the
structure of linear mappings. In our first theorem we give the answer for the
case when A == B(H) and @ is bijective.

THEOREM 1. Let H be a Hilbert space and let § : B(H) — B(H) be
a bijective linear mapping. Suppose that 8(P) is an idempotent whenever
P € B(H) 5. Then 8 is either an automorphism or an anticutomorphism.

Let us point out that we do not assume the continuity of ¢. A recent
paper (3] of the present authors alse contains a result concerning mappings
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of B(X) which preserve idempotents; however, the continuity in the weak
operator topology was required.

We also remark that linear mappings preserving idempotents have al- -

ready been treated on matrix algebras [4, 1, 3],
The second question that we pose here is: Can the assumption of the

surjectivity in the result of Larson and Sourour be removed? We settle this
question for separable Hilbert spaces,

THEOREM 2. Let H be an infinite-dimensional separable Hilbert space.
Then every local automorphism of B(H) is an automorphism,

It should be mentioned that there is also an analogous notion of local
derivations (its definition should he self-explanatory), introduced indepen-
dently by Kadison [10] and Larson and Sourour [11]. Local derivations and
some related mappings were also considered in |2} and [3]. An inspection
of these two papers shows that certain algebraical methods allow a unified
approach to both local derivations and local automorphisms. This paper
however, is devoted to local automorphisms only. ’

Proofs. Throughout, H will be a complex Hilbert space and B(H) the
algebra of all bounded linear operators on . By F(H) we denote the ideal
of all operators in B(H} of finite rank, and by P(H) the set of all idempotent
operators in B(H ) (that is, P(H) = {P € B(H) | P? = P}). By a projection
we mean a self-adjoint idempotent. Given z,y € H, by 2 ® y* we denote a
rank one operator defined by (x @ y*)u = (u,y)x. Operators T, S ¢ B(H)
are said to be similar if there exists an invertible operator 4 € B (H) such
that § = AT'A~! Since every automorphism of B(H) is inner [6], a local
automorphism @ of B{H) can be characterized as a linear mapping such that
the operators A and (A) are similar for every A € B(H).

The proofs of both Theorems 1 and 2 are based on the following simple
lemma, which was also proved in [3].

LeMMA 1. Let § : B(H) — B(H) be a linear mapping such that (P(H))
€ P(H). Then the restriction of 8 to F(H) is a Jordan homomorphism of
F(H) into B(H) (that is, 0(A%) = §(A)? for every 4 € F(H)).

Proof Let S € F(H) be a self-adjoint operator. Then § = Yo tP
W.here the P; are mutually orthogonal projections and #; are real n:;mbers.
Since F; + P;, © # j, is again a projection, it follows that B(P; + P;)? =
O(F; + PJ) Hence 8{F;)8(P;) + 6(F;)8(P;) = 0, which (by standard argu-
ments)_gwes 0(P;)8(P;) = 0, i # j. Note that this implies #(S?) = 8(8)2.
:Repla_tcmg in this identity S hy 5+ T, where S and T are both self-adjoint,
it follows that (ST + T.8) = 0(S)8(T) + 8(T)6(S). Since every operator
A € F(H) can be written in the form A = § + 4T with S5,T € F(H) self-
adjoint, we get #(A%) = §(A)2. '
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From the proof of Lemma 1 it is evident that §(P)(Q) = #(Q)0(F) =0
whenever P,Q € P(H) satisfy PQ) = QP = 0. Besides this simple observa-
tion and Lemma 1, the main tool in the proof of Theorem 1 is a result of
Pearcy and Topping which implies that every operator in B(H) is a linear
combination of idempotents [12].

Proof of Theorem 1. Pick an idempotent P of rank one, and let
us show that @ = @(P) also has rank one. Set X; = PB(H)P, Xy =
PB(H)(I - P), X3 = (I — P)B(H)P, Xs = (I — P)B(H)(I — P); thus
B(H) = X1 & X2 & X3 ® X4 Similarly, B(IH) = Y1 @ Y2 ® Y3 & Yy where
Y, = QBH)Q, Y2 = QBH)(I - Q), Ys = (I - Q)B(H)Q, ¥s =
(I-Q)B(H)(I—Q). Take A € X;5. For any o € C we then have P+ oA €
P{H), and hence @ + af(A) € P(H). This clearly yields #(4)Q + QO(A) =
8(A), whence QO(A)Q = 0, and therefore we get 8(A) = QO(A)(I — Q) +
(I —Q)9(A)Q € Ys & Ys. Thus, 8(X3) C Yy Y3, and similarly we see that
G(Xg) CYoBYs.

Next we claim that 6{X,) C Ya. As X, is isomorphic to B{Ker P), the
result of Pearcy and Topping tells us that it suffices to show that §(R) € Yy
for any idempotent R € X4. Thus, we have to see that #(R)Q = QO(R) = 0.
Since P and R are idempotents such that PR = RP = 0, this is true
indeed. Finally, as Xy = CF, we have 8(X;) = CQ. Therefore, we conclude
that (B{H)) CCQ & Y &Yy & Yy However, ¢ is onto, so it follows that
CQ =Y, = QB{H)Q. This means that @ has rank one.

By Lemma 1, | F(H) is a Jordan homomorphism. Since F(H) is a locally
matrix algebra, a result of Jacobson and Rickart [8, Theorem 8] tells us that
O|F{H) = ¢ + v, where ¢ : F(H) — B(H) is a homomorphism and ¢ :
F(H) -+ B(H) is an antihomomorphism. Pick an idempotent P of rank one.
Then 8(P) is the sum of the idempotents ¢(P) and v (P); therefore, as 6(F)
also has rank one, it follows that either ¢ (P) = 0 or %(P) = 0. Thus, at least
one of v and 1 has a nonzero kernel. Since the kernels of homomorphisms
and antihomomorphisms are ideals, and since the only nonzero ideal of F{H)
is F(H) itself, we have = 0 or ¢ = 0. Thus, either 8|F(H) = ¢ or
8|F(H) = 4. There is no loss of generality in assuming that §|F(H) = ¢
is a homomorphism-otherwise consider the mapping A — #(A4)" where B
denotes the transpose of B relative to an arbitrary orthonormal basis fixed
in advance. _

Take z € H with ||z|| = 1. Since £ ® z* is an idempotent of rank one,
there exist u,v € H such that f(z @ z*) = v @ v* and (u,v) = 1. Define
a linear operator T : H — H by Ty = 0y @ =*)u. Given F € F(H) and
z € H, we have . :

TFz=0({Fz@z")u=0(F(z@a"))u={F)8(z®z"ju = 0(F) Tz
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Thus, T satisfies
(1) TF=0(F)T for every F € F(H).

We claim that T is opne-to-one. Indeed, if Ty = 0 for some y € H, then we
have 0 = 0(z @ y*)Ty = T(z @ y*)y = (y,y)Tz; since Tz = u # 0, it follows
that y = 0,

Our next goal is to show that

(2) TA=0{A)T for every A € B(H).

Of course, it is enough to show that T'P = §(P)T for every P & P(H).
Set § = TP — 0(P)T and let us prove that S = (. Note that it suffices
to show that 5Q = 0 for any idempotent Q of rank one satisfying either
PQ = QP =0o0r PQ = QP = Q. Let us first consider the cage when
PQ = QP =0. Then 6(P)#(Q) = 0, and therefore, using (1), we get SQ =
TPQ — 8(PYI'Q = —08(P)8(Q)T = 0. Now suppose that PQ = QP = Q.
Then @ and P — @ are idempotents such that (P — Q)Q = QP-Q)=0,
which yields 6(F — Q)8(Q) = 0, that is, {P)8(Q) = 8(Q). Applying (1) it
follows that SQ =0, and (2) is thereby proved.

As 6 is onto, (2) shows that every operator in B(H) leaves the range of
T invariant. Hence T is bijective, and therefore, #(A) = TAT~! for every
A € B(H). This means that # is an automorphism and the proof is complete
(we remark that using the closed graph theorem one can show that T is
actually continuous).

Remark. Under the additional assumption that @ is norm-continuous,
Theorem 1 is much easier to prove. Namely, using the fact that the set of
real-linear combinations of mutually orthogonal projections in B (H) is dense
in the space of self-adjoint operators in. B(H), it can easily be shown (just
adapt the argument given in Lemma 1) that 8 is a Jordan automorphism.
But then [7, Theorem 3.1} tells us that # is.either an automorphism or an
antiautomorphism.

In order to prove Theorem 2, we establish two preliminary results.

LemMaA 2. Let 7,5 € B(H) and let A, B : H — H be linear operators.
Suppose that for each pair of vectors z,y € H, the operators T+ x @ ¥~ and
S+ (Az) @ (By)* are similar. Then

(Tra,y) = (S"Az, By), =zyeH n=01,2,...

Proof. Let A be any complex number such that |A| > max{||T|}, ]!$]}.
Suppose that ((A —T)'z,y) = 1 for some z,5 € H. Then

T+ )A-T)"z=TA-T) 2 +z=AA-T)"'z.

P
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Thus, A is an eigenvalue of 7 + 2z ® y*. By the assumption, A must also be
an eigenvalue of § + (Az) ® (By)*, i.e.,
(8 +(Az) ® (By)u = Au
for some u # 0. This yields u = (u, By}(\ — S)1 Az, and therefore,
{4, By) = (u, By}{(\ — 5)~ Az, By).

By the previous relation, (u, By} # 0. Thus, (A — T)"!z,y) = 1 implies
{(A—8)"'Az, By) = 1. In a similar fashion one proves the reverse implica-
tion. Hence ((A - T)7 e, y) = 1 if and only if (A — 5)~1Az, By) = 1. By
linearity, it follows that

{(A=T)" 2, y) = (2 - §)~1 Az, By)
for all 2,y & H, [\ > max{||T|, ||S|[}. Using (X — Tyt = 390 TR/ AR
and (A — 8)7t = 3777 | 8% /)3+1 we obtain the statement of the lemma,

We remark that in the proof of Lemma 2 we have used some ideas of
Jafarian and Sourour [9].

LEMMA 3. Let H be a separable Hilbert space and let 8 be a local au-

tomorphism of B(H). If the restriction of 0 to F(H) is a homomorphism,
then & is an automorphism.

Proof. Of course, we may assume that ¥ is infinite-dimensional. Let
(ex) be an orthonormal basis in H. Define § & B(H) by

S = 22_”en ®er.
n=1

Since 0(5) = AgSAg" for some invertible Ag € B(H), there is no loss of
generality in assuming that 8(S) = § (otherwise replace 6 by the mapping
T — AZ'O(T) Ag).

Pix u € H such that flu]] = 1. As 8(u ® u*) is an idempotent of rank 1,
we have

Blu®u™) =wev*,
where (w,v) = 1. Define 4, B: H — H by
Ar=0z®u")w, Br=~0ugz*)v.

Clearly, A and B are lincar operators. Since 6|F(H) is a homomorphism,
for all z,y € H we have

Bz ®Yy") = 0((z @ u*)(u @ u*)(u® y*))
= 0{z @ u*)(w @ v*)0(u® y*)
= (0(z @ u")w) ® (A(u@y*)*v)* = (Az) ® (By)*.
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Hence
(S +z0y")=0(5)+0z®y") =5+ (Az) @ (By)*.

Thus, for each pair 2,y € H, the operators S+ z®y* and 5+ (A2)® (By)*
are similar. By Lemma 2, it follows that
(3) (8%z,y) = (S*Az,By), =z,yeH k=0,1,2,...

We claim that
(4) (Aes en)(Bej,en) =0, i#n.
Since the operator 5 + (Ae;) @ (Be;)* is similar to § +e; @ ef, 27" is an
eigenvalue of & + (4de;) ® (Be;)* for every n # i. Thus, there exists z s
such that

(84 (Ae;) @ (Bef))z = 27",
That is,
(S —2"")z = —{z, Be;) Ae;.
Using (8 — 2"")e, =0, it follows that
0=A(S— 27"z, en) = {z, Bey){Aey, en).

Suppose {Ae;, e,) # 0. Then (z, Be;) = 0, which yields Sz = 2 "z. But
then © = Ae,, for some A # 0. Consequently, (e, Be;) = 0. This proves (4).

Applying (3) we get

o0
L= (e;,e;) = (Ae;, Bey) = Z(Aei,en)(Bei,en),
n==1

and so (4) implies
(5) (Aei, 8@)(365, 6i> = 1.

Fix positive integers ¢ and j, ¢ # j. By (3) we have

0= (S*e; ;) = (8 de;, Bey)
= S0 de; e Besren),  k=0,1,2,...
n=1

Let A, = (Aey, en}(Bej, e,). We intend to show that A, = 0 for every n. We
have proved that

oo
YA =0, k=0,1,2,...,

n=1

and we know that 37 | |A,| < co, Suppose there exists a positive integer
no such that A,, % 0 and Ay = 0 for k < ng. Let

pe Z [ A

n>ng
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and pick a positive integer kg such that |A,,| > 2% 4. Then we have

0= J ig*kgn/\n’ > z—knnol)‘noi . Z 2—A:gnp\ﬂ|

n=1 n>nn

— 9—Famo (I'\nol _ Z 2~kn(n*ﬂ0)|)\ﬂ4) > 2~ Fono (|'\nc|1 — ke Z P\RJ)

n>np n>na

= 2—k0n0(!)\no‘ - zmkoﬂ) > 0.

This contradiction proves that (Ae;,en){Bej,en) = 0, i # j. In particular,

if { # n, then we have (Ae;,en)(Ben,e,} = 0. Since (Be,, e,) # 0 by (5), it
follows that {Ae;,e,) =0, i # n. Therefore, for every ¢ we have

(6) Ae; = ayey

for some complex number a;; observe that (5) implies that ¢v; = 0. Similarly
we see that Be; must be a multiple of e;; in view of (5) we then have

(7) Bef,j s (1/‘@—1)61

By (3) we have
(8) {r,y) = (Az,By), =z,y€H.
Applying (6), (7), {8) and the closed graph theorem one can easily show that
A and B are bounded operators. Therefore, (8) implies that A*B = . Thus
A* is surjective. By (6) we see that the range of A is dense in H. Hence A*
is bijective, which yields B = (4*)71.

Now, for every T' € B(H) and all 2,y € H we have

T +a®y")=0(T) + (Az) ® ((A~1)*y)*.
Thus, Lemma 2 tells us that
(Tz,y} = (6(T) Az, (A™)'y), =z yeH,
which gives A~'6(T)A =T, T € B(H). This proves the lemma.
We now have enough information to prove Theorem 2.

Proof of Theorem 2. Using Lemma 1 and the result of Jacobson
and Rickart one shows in the same manner as in the proof of Theorem 1
that #{F(H) 1s either a homomorphism or an antihomomorphism. In view
of Lemma 3 it suffices to consider the situation when 8|F(H) = ¢ is an
antihomomorphism. But then, as § maps F(H) into itself, 8| F{H) = ¢? is
a homomorphism. Observe that 7 is also a local automorphism. Applying
Lemma 3 we then find that 62 is an automorphism. In particular, §2 is onto,
which implies that so is §. Thus, § satisfies the requirements of Theorem 1.
Hence # is either an automorphism or an antiantomorphism. But the latter
cannot occur. Namely, as is known, in that case we would have §(4) =
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VA*V~! for every A € B(H), where V is a bounded invertible conjugate-
linear operator on H. On the other hand, 8{A) is always similar to A. In
particular, it would follow that an operator A is one-to-one if and only if A*
is. But this is certainly not true {consider, for instance, the shift operator).
Thus, # is an automorphism. The proof of the theorem is complete.
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The upper bound of the number of eigenvalues
for a class of perturbed Dirichlet forms

by

WIESLAW CUPALA (Wroclaw)

Abstract. The theory of Markov processes and the analysis on Lie groups are used
to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.

Introduction. Let A(z, D) = 37, < 0 (7)(i7'9/82)* be a selfadjoint
differential operator with the symbol A(z,£) = Zl al<m Ga (). The Bohr—

Sommerfeld quantization principle, according to which the volume ~ A< in
the phase space should count for one eigenvalue of A(z, D), leads us to the
hypothesis that the number of eigenvalues of A(z, D) which are less than A
should be approximately the volume of the set A = {{z,£) | A(z, &) < A}
If A(z, D) is elliptic and A — oo, this hypothesis is asymptotically correct
(cf. {10]). For the Schrédinger operator —A--V, this “volume-counting” has
been fully expressed in the form of the Cwikel-Lieb—Rosenblum inequality
{cf. [13]). However, this inequality can also produce grossly inaccurate esti-
mates for systems as simple as two uncoupled harmonic oscillators. Following
Fefferman (cf. [b]), it is better to count the number of distorted unit cubes
which can be packed disjointly inside the subset A instead of measuring
the importance of A. This idea, called the SAK-principle, led to sharp esti-
mates of eigenvalue asymptotics (cf. [5], [6]). Because counting the number
of distorted unit cubes which fit inside 4 is not easy, this kind of estimate
gives us only a qualitative description for the number of eigenvalues. (In [3],
it is shown how we can count the number of proper boxes in the case of
Schrédinger operators with polynomial potentials.)

The aim of this paper is to redefine the place of “volume-counting type”
estimates and to give a quantitative description of the number of eigenvalues
for operators defined as T + V, where D is the infinitesimal generator of
a (sub)markovian semigréup and V is a function. For D being a sum of

1091 Mathematics Subject Classification: Primary 35H05.

Key words and phrases: eigenvalue asymptotics, Dirichlet form, Markov process, Lie
group. -
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