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Vasilescu—Martinelli formula for operators in Banach spaces
by

V. KORDULA and V. MULLER (Praha)

Abstract. We prove a formula for the Taylor functional calculus for functions analytic
in a neighbourhood of the splitting spectrum of an n-tuple of commuting Banach space
operators. This generalizes the formula of Vasilescu for Hilbert space operators and is
closely related to a recent result of D. W. Albrecht.

Let A be an n-tuple of mutually commuting operators in a Banach
space X. The existence of the functional calculus for functions analytic in a
neighbourhood of the Taylor spectrum is one of the most important results
of spectral theory [4], [5]. The formula giving the calculus is, however, rather
inexplicit. Situation is better for commuting Hilbert space operators where
an explicit formula was given by Vasilescu [6], [7].

The aim of this paper is to show that for such a formula to hold the
equality between the Taylor and splitting spectra for operators in Hilbert
spaces is essential. We generalize the Vasilescu formula to commuting Ba-
nach space operators and to functions analytic in a neighbourhood of the
gplitting spectrum.

The results are closely related to the paper of D. W. Albrecht {1]. He
proved the Vasilescu formula under the assumption of existence of a certain
“smooth generalized inverse”.

We show that a smooth generalized inverse with similar properties exists
everywhere in the complement of the splitting spectrum, which enables us
to construct the calculus. Another difference is that we do not assume the
existence of the Taylor functional calculus.

Let X,Y be Banach spaces. We say that an operator 7' : X — Y has a
generalized inverse if there is an operator § : ¥ - X such that TST =T
and STS = 85.

We shall use the following easy characterization (see e.g. [2]):
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ProrosiTioN 1. Let X, Y be Banach spaces, and let T : X — Y be an
operator. The following conditions are equivalent:

(1) T has o generalized inverse,

(2) there exists an operator S:Y — X such that TST =T,

(3) Im T is closed and both ker T and Im T are complemented subspaces
of X and Y, respectively.

Proof. Clearly (1)=-(2).

(2)=>(1). Let TST = T for some operator §:¥Y — X. Set §' = STS. It
is easy to check that TS'T = T and 5'TS" = §.

(1)=(3). Let TST =T and STS = S. Then T'S : ¥ — Y is a bounded
projection and Im7 D Im TS D ImT'ST =ImT), so that T'S is a projection
onto Im 7.

Similarly ST is a bounded projection with ker ST = ker T

(3)=(1). Let X =ker T &M and let P € B(Y) be a bounded projection
onto ImT. Then T|M : M — ImT is a bijection. Set § = (T|M)~'P.
Then TST = T(T|M)™'PT = T and STS = (T|M)~*PT(T|M)"'P =
(T|M)™1P = 8.

‘We now repeat the basic notations of Taylor [4].

Denote by A{s) the complex exterior algebra generaied by the indeter-
minates s = {81,..., 8, ). Then

kel
A(s) = D 4,
p=0
where AP(s) is the set of all elements of degree p in A(s).

Let X be a Banach space. Set A(s, X) = X ® A(s) and AP(5,X) =

X @ AP(s). Then the elements of A?(s, X) are of the form

E Bi,..ripSiy FAN /\.‘5;‘:J
151;1<...<1:p5'ﬂ.

where ©;,,..q, € X.
Let A = (4;,...,A,) be an n-tuple of mutually commuting operators
in X. Define an operator §4 : A(s, X} — A(s, X) by

v
5_4(21182'1 Ao A S,;P) = E(Aj:l:)sj Asy Ao A8y,
=1
Write 6% = 84|47(s, X). Then the Koszul compler K(A) is the sequence
n—1

] 1
0 — A%(s, X) 24 A1(s, X) 245 AL An(s,X) o 0.

We have (84)% = 0, i.e. 6565 " = 0 for each p (for convenience we define
A7 s, X) = A"Tl(s, X) = 0).
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We say that the n-tuple 4 = (Ay,..., A,) is Toylor-regular if the Koszul
complex K (A) is exact (i.e. Imé4 = ker64). The Toylor spectrum or(A) is
the set of all n-tuples A = (A1,...,An) € C™ such that A — X = (41 — Ay,
..., Ap — Xp) is not Taylor-regular.

Closely related to the Taylor spectrum is the splitting spectrum. We say
that A = (Ay,...,Ay) is splitting-requlor if ker6,4 = Iméa and the space
ker 84 is complemented in A(s, X). The splitting spectrum os(A) is the set of
all A € C™ such that A — X is not splitting-regular. Clearly or(4) C os(A).
It is well-known that the properties of the splitting spectrum are similar to
those of the Taylor spectrum—it is a compact subset of C™ and it has the
spectral mapping property.

The foHowing result characterizes the splitting-regular n-tuples of
operators.

PROPOSITION 2. Let A = (A1, ..., Ay) be a Taylor-regular n-tuple of mu-
tually commuting operators in o Banach space X. The following condilions
are equivalent:

(1) A is splitting-regular,

(2) ker 6% is a complemented subspace of A?(s,X) (p=0,...,n—1),

(3) there exist operators Vi, Va : A(s,X) — A(s, X) such that Viéa +
§aVa = Iys x)s

(4) there emists an operator V : As, X) — A(s, X) such that V2 = 0,
Viéa+ 64V =1 and VAP(s,X) C AP7(5,X) (p=0,...,n) (i.e. there are
operators Vp © AP¥(s,X) — AP(s,X) such that Vo1V, = 0 and Vpé} +
& W = Iar(s,xy for every p).

Proof. {4)=(3) is clear.

(3)=(1)- If Vi6a + 64aVa =TI then §4V164 = 84, so that 64 has a gener-
alized inverse, i.e. ker § 4 is complemented.

(1)=>(2). Denote by J, : A7(s, X} — A(s, X) the natural embedding,
Qyp : A(s, X) — AP(s, X) the natural projection and let P : A(s, X) — ker 64
be a bounded projection onto keré 4.

Clearly Qp(ker 64) = keré”,. Then @, PJ, is a bounded projection onto
ker &% .

(2)=5(4). Let M, be a subspace of AP(s, X) such that keré} & M, =
AP(s, X). The operator 6%|M, : M, — Imé&% = ker 6511 is a bijection. In
the decompositions AP (s, X) = ker 6% @ M, A1 (s, X} = ker S @ Mpia
we have

' Kerf% M,
5 = ( 0 5Q|Mp) Imé,
A 0 0

My
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Set
Im 8% Mpt1
Vo= 0 0 ker 67
PUN(GIM)TY 0 )

Then V,,_1V}, = 0 since Im V,, € M, C kerV,_;. For z € M, we have
(Vb + 85 V1) = Vbl = a.
For z € ker 6% we have
(Vb + 65 Vpmt)o = 857 V1o = =
Thus V,é% + 6% Vo1 = Iarex) for each p. (For p = 0 and p = n this
reduces to V6% = Thos,x) and 62“1Vn_1 = Ipns xy-)

THEOREM 3. Let A = (Ay,..., An) be an n-tuple of mutually commut-
ing operators in a Banach space X. Let y € C" ond suppose that u — A
is splitting-regular, i.e. keré,_4 = Imé,_4 and 6,4 has o generalized
inverse. Then there exisls o neighbourhood U of g in C" and an analytic
function V' : U — B(A(s, X)) such that V(A)8i-a + 83— aV (A} = a4, x)
Jor every A € U. Moreover, we may assume that V(A)® =0 (X € U) and

VA5, X) C AP Hs, X) (MNeU, p=0,...,n).

Proof. By the previous proposition there exists an operator V' : A(s, X)
— A(s, X) such that V2 =0, 6,4V + Vb,_4 = Iy x), and VAP(5,X) C
AP=1(5, X)) for every p.

For A € C" define Hy = 6x_4 — 6,_4. Let U be the set of all A € C*
such that |[|H,| < [|V]|~!. Clearly U is a neighbourhood of g in C* and,
for A € U, the operators I + H,V and I + VH, are invertible. We have

V(I +H\V)=(T+VH\)V,sothat (I +VH,)™'V = V(I + H\V)~L For
A€ Uset V() = (I + VH))~V. Then

Sa—aV{(N) + V(/\)5A—A
= a tH)VI A HV) T+ T+ VH) W (Su—s + Hy)
= (I +VH) I +VH)(Sy—n -+ H\)V
+V(ua+ H)I+ HV)(I + H V)L
The expression in square brackets is equal to
8 AV + H\V + VH),.. AV + VHEV
+V8ua+VHy + V8 s H\V +VHV

=+ VH)I+H\V)+ V(H\byon+ 6 aHy + HOV -
=T+ VH)I +HV)+V({(8u-s + H2)? — (6,_2))V
= (T +VH)I + H\V)
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since (6,—4)? =0 and (6,—4 + H)? = {6s—4)? = 0. Thus

AV +V(Nbaa=Iaxy (AU
Further,

VA =T+ VHE) W - VI + V) =0
Finally, V(}) = 3252, (~ 1) (V H,)*V where

(VHA\)A(s,X) C 47(s, X} (p=0,...,n),
so that

V(NAP(s,X) C AP s, X) (AeU, p=0,...,n).

COROLLARY 4. Let A = (A4,..., A,) be an n-tuple of mutually com-
muting operators in a Banach space X. Define G = C* — o.(A). Then
there exists an operator-valued O™ -function V : G — B{A(s, X)) such that
5,\AAV(/\) +V{N)br-a = IA(s,X): V()\)z =0 and

VNAP(s,X) C AP M5, X) (A€G, p=0,...,n)

Proof. For every p € G there exists a neighbourhood U, of u and
an analytic operator-valued function V, : U, — B(A(s, X)) such that
Vi A)br—a + EacaVu(X) = Lys xy, Vu{A)? =0 and

Vi NAP(5,X) c AP"5,X) (AeUy, p=0,...,n).

Let {1152, be a C™-partition of unity subordinate to the cover {U, : p &
G} of G, ie. 9;'s are C*-functions, 0 < v < 1, suppy; C Uy, for some

it; € G, for each u € G there exists a neighbourhood I7 of p such that all
but finitely many ; are 0 on U and 3 .o, ¥i(p) = 1 for each p € G. For
A€ G set

PO = iwz-(/\)ea_,qvm@\)-

=1

Clearly Im P(A) C Im 83— 4 and, for © € Im 6.4, we have
o
PXzx = Z YAz =z,
i=1
since §x— 4V, (A) is & projection onto Im &y 4 (Vy,, (A} is 2 generalized inverse
of 8x—4). Thus P(}) is a projection onto Im x_4 (A € G). Further,
PMAP(s, X) Cc AP(s,X) (A€ G, p=0,...,n).
Set ' '
o -
V() =3 eI - POOVL(APQ) (A eq).

i=1
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Clearly V is a C*°-function, V(\)? = 0 and
VAP(s,X) C A7 Hs, X)) (MG, p=0,...,n).
It remains to show that 6y aV(A)+V{(A)6r_a = Ia x) If 2 € Im 8, _4
then
(5)\_,4‘/'()\) -+ V(A)5A~A)$ = (SA_AV()\).’B

=) (A
i=1

= i ¢i(A)6A~AV i ()‘)‘7"

)8r—all — PV, (N P(N)

= SO~ Ve Wre )z = W)z = o
i=1 g,

If z € ker P(A) then
(6)\_AV()\) -+ V()\)tf)‘mA)m == V()\)CS)‘_AI

= Zwi(‘)‘) (I = POV (M) P(A)br—az
i=1

= (NI = POV, (Nb6r-az
i=1
=2 Ui = PONI = 8r-aVi ()2

=Y BN~ Pz =3 di(Nz =
=1 =1
The proof is complete.

In the rest of the paper we shall fix a commuting n-tuple A=(A41,..., 4,)
of operators in a Banach space X, G = C" — g,(A4) and a C°°-function V :
G — B(A(s, X)) with the properties of Corollary 4. Denote by C*{G, X)
the space of all X-valued C*°-functions defined in G.

We shall consider the space C*°(@, A(s, X)). Clearly this space can be
identified with the set A(s, C°(G, X)).

Every function V' : G — B(A(s, X)) induces naturally the operator
(denoted by the same symbol) V : C°(@, A(s, X)) — C=(G, A(s, X)) by

(V) =V(Wy(w) (ue G, yeC®(G A(s X))
Similarly we define the operator § : C*°(G, A(s, X)) — C®(G, A(s, X)) by
(B)(p) = bu-ay() (n€G, y € C®(G,Als, X))).

icm

Vasilescu—Martinelli formula 133
Clearly V2 = 0, §% =0, Vé+ 6V = L as,0=(3,x)) and both V and 6§ are
“graded”, i.e
VAP(s,C® (G, X)) C Ai""l(s, C=(GE, X))
§AP(s,C%°(G, X)) C APTH(s, C(G, X)).

Consider now other indeterminates dz = (dz,...,
A(s,dz,C%(G, X)). We define the operator

B: Als, dz,C(G, X)) — A(s, d7, C=(G, X))

dZ,) and the set

by
gf.ﬁ'il /\..A/\Sip/\(132'—_7'1 /\.../\dz”jq

= Z%f—dfk/\sn Ao Asiy AdEg AL AdE,.
Clearly 8% = 0.

The operators ¥V and 6 can be “lifted” from A(s,C™(G, X)) to A(s,dz,
C*(G, X))} by
Viy Adzy A

8y A dZ; A (y € A(s,C™(G, X))).
Clearly the properties of V and § are preserved: V> =0, V6 + 6V = I and
both V and & are graded. Note also that 60 = ~86 and if U is an open

subset of G and n € A(s,C°(G, X)) (= C®(G, A(s, X)) with 9|U =
then 9n|U =0, 6n|U =0 and V|U = 0.

../\dzip) = (Vi) AdzZy, AL AdE;,
LANdE) = (6y) AdE, AL AdE,

THEOREM 5. There exists an operator
W : A(s,dz, C=(G, X)) — A(s,dz,C*(G, X))
such that W2 =0, W(§+0)+ (6 -+ D)W = I and
WAP(s,dz, C™(G, X)) C AP (s,d%,C(G, X))
(i.e. W “splits” § + O).

Proof. Clearly V : A(s,dz, C*°(G, X)) — A(s,dz, C*®(G, X)) decreases
by 1 the degree in sy,...,5, and 0 does not decrease this degree Thus
(8V)*** = 0. Hence I+8V) 1 exists and ([ +0V) ™= 30 (-1)(BV)I.

Similarly (I + V3)™ = Y 1. (—1)f (V). Since V(I + V) = (I+Va)V
we have (I + VB)™V = V(I + V)~
Set W == (I 4+ V)~V =V(I +aV)™ = L715, (-1¥V(@V). Clearly

W2=(I+Va W -VI+dV) =

{(p=20,...,2n)
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and W decreases the (total) degree by 1. It remains to prove that (§--8)W +
W(E+0)=1,1e.

(6 + YWV (I+ V)
It is sufficient to show

(I+VANE+B)WV +V(6+8)I+3V)= (I + VI +3V)

LI+ VE)TWVI(E4D) =

or
8V + 0V + VAV +VE+VO+ VIV =T+ VE+ V.
The last equality follows from the relations 6V -+ V6§ = I and 96 + 69 = 0.
Denote by P the natural projection
P: A(s,dz, C*(G, X)) — A{dz, C (G, X)).
Let M : X — A" 1(dz, C=(G, X)) be the operator defined by
Mz = (~1)"" 1 PWzs,

where we write briefly s = 83 A... A 8,,. Since

n—1
W=V-> (-1 =V =VoV+.. .+ (-1 (EV)!
i=0
8 does not decrease the degree in (81,--.,8n) and V' decreases it by 1, we

can see that
| Mz =V (@V)™!
PROPOSITION 6. Mz =0 for every z & X.
Proof. We have (§ + 8)zs = 0 so that
(6+BVWas = [(6+DW + W(6+0)|zs = zs.

Let Wxs = PWzs+ n, where n € A(s,dz, C*(F, X)) consists of terms of
degree at least Lin s1,..., 554,
Thus

_ (6 +8)Wzs = [(6+ B)n + 6PWas) + GPWs,
where 0 PW 25 consists of terms of degree 0 in s1,.. ., sn. Thus
0= Pzs, = P(§ + 8)Wxs = OPWas.

Let U be a neighbourhood of o3(A4). One can find an open set A con-
taining os(A) such that A is compact, A C U and the boundary A4 is a

smooth surface. Let f be a function analytic in U. Define the operator f{A)
by

(1) FlA)z = f Mf(zndz (@€ X),

(27rz)”
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where dz stands for dzy A ... A dz,. By the Stokes formula
1 "
= M f(z d
HAs = Gy [ DeM fle)e nde

where ¢ is a C®°-function which is 0 on a neighbourhood of o5(A) and 1 on
cr—
To show the correctness of the definition of f({A) we need the following
simple proposition (see [6]).
PROPOSITION 7. Let 7 € A™(s,dz,C*(G, X)) be a differential form with
a compact support disjoint from o5(A) such that (6 + 8)n = 0. Then
f Py Adz=0.

Proof. Set £ = Wn. Then (6 + 8)¢ =75 and Py = P(é + 8)¢ = POt =
BHP¢. Hence, for a suitable surface X' we have

J Pphdz= [ 8P¢ndz= [ Pendz=0.
=

We now show that the definition of f{A) does not depend on the par-
ticular choice of . Indeed, if w1 and py are two C*-functions with the
required properties, then (5 + d)(w1 — w2)W f(2)zs has the properties of
Proposition 7. Thus

0= f P(6+0)(p1 — ) f(2)Wxs Adz
= f PO(py — wo)f(z)Was Adz
= (=1)* [ (g1 - g2)f(2) Mz N da.

This also means that f(A) does not depend on the choice of the sef A.

Finally, we show that f{A4) does not depend on the choice of the gener-
alized inverse V which determines W and M.

Suppose that W1, Wa are two operators satisfying

(E+W+ Wi+ =1 (i=12)
Then (6 + 8)W;f(z)zs = f(z)xs. For those z where ¢ = 1 we have
(6 + B)p(W1 — Wa) f(2)zs = 0

so that the form (6 + 8)p(W1 — Wa) f(2)zs satisfies the conditions of Propo-
sition 7. Hence

0= f P{6+ 0)p(Wy — Wa) f(z)zs Ndz
= f Po(Wy — Wa) f(2)zs Adz
= f DoP(Wy — Wa)f(2)zs Adz
= (—1) [ Bl ()M — Ma)x Az,
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where
Mz = (-1"'PWzs (i=1,2).

Clearly f(A) is a bounded linear operator and the mapping f — f(A)
is linear. To show that f — f{A4) is a functional calculus we have to prove
that

FA=r1 iff=1,
flA)=A ff(z)=2 (i=1,...,n),
and the multiplicativity of the mapping f ~— f(A).

As the proof is rather technical and it is described elsewhere (see [6]
[3]), we just outline the main steps.

7

1) If n = 1 then M is just the inverse Mz = (A — 4;) 'z, so that the
described calculus coincides with the ordinary calculus for one operator, Set

— 1

(2) W= W(—l)”_l[(5+5)¢W—I],

so that
FA)zs= [ f(2)PWzs A dz.

2) Let (A, B) = (Ay,..., A, By,..., By,) be a commuting (n + m.)-tuple
of operators in X, let 4, A’ be open neighbourhoods of a5(A4), o, (B) with
compact closures and with smooth boundaries. Let f be a function analytic
in a neighbourhood of Ax A'. Let W", W™ W"+™ be the operators defined
by (2) for the tuples A, B and {4, B), respectively. Then

I Few)P(W™™ — W W™ as At Adz A dw = 0,

where ¢ = (t1,...,tn) and dw = (dw;,...,dw,,) are indeterminates cor-
responding to B. This follows from considerations similar to the proof of
Proposition 7.

3) If f(z,w) = fi{z)fo(w) then, by the Fubini theorem and by 2),
f(A, B) = f1(A)f2(B).

4) Consider the n-tuple A = (Aj,...,4,) and the identity function
f:C" = C, f =1 Then 3) together with 1) gives f(A) = I. Similarly
JlA) = A; for f(z) =2z (i=1,...,n).

5) Consider the 2n-tuple (4, A) = (Ay,..., A, Aq,. ..
functions analytic in a neighbourhood of o4(A4). Then

F(A)g m—f f(z) PWZ(I g(w)PW—wmt/\dw)/\s/\dz
_f F @) g(w)PW*W¥zs At Adz A dw
= f F(2)g(w)PW=¥zs At Adz A dw

»An). Let f,¢ be
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and, by 2),
(Fo)(A) = (fg9)(4)-id(4) =

Thus it is sufficient to show
[ F(2)(g(2) ~ g(w))PW=zs At Adz Adw = 0.

Since g(z) — g(w) = Y (2 — wi)hai(z,

hi(z,w), the previous integral is equal to
n

S [ fam(
i=1

ﬁi‘f F(2)hilz,w)(z — A)PW s At Adz Adw

=1

=50 [ F@haz,w)w
=1

Thus it is sufficient to show that
f F(2)h(z,w){z ~ A)PW*¥zs At Adz Adw =10

[ fR)g()PW* 58 At A dz A duw.

w) for some analytic functions

(25 — w; )PW*¥zs At A dz A dw

— A)PWHzs At Adz A dw.

for every analytic function h(z,w). The last integral is equal to (up to mul-
tiplication by a constant)

f h(zi— A P(E+8)pWasAtAdzAdw = f hdpP(z
By using the definition of W one can show that
Plzi — A)Was At hdz Adw = ¢

—A)WazsAtAdzAdw.

for some £ so that

f hBpOE = f Bpdhe = f Bhe =0.
aA

Concluding remarks. 1) If X is a Hilbert space, then A(s, X) can
be given a natural Hilbert space structure, so that the splitting spectrum
coincides with the Taylor spectrum. For A & o.(A4) the operator §y_a +

Y4 A5, X) — Als, X) is invertible and

(brea+ 65 ) 6a_a+baa(Brma+65_a)

Clearly the function A\ — (8x..a + 6%_4)"* is C* and although it does
not satisfy all the conditions of Corollary 4, it can replace the operator
Vi A(s, C™(G, X)) — A(s,C°{@G, X}). The remaining conditions of Corol-
lary 4 (V2 == 0 and that V is “graded”) are not essential for the con-
struction of the functional caiculus and only make the considerations easier.

V= Ip,x)-
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On the other hand, the formula obtained for f(A) using the function A s
(6r—a +65_4)7" is quite explicit (see [6], [7)).

2) Let V' : A(s,0%(G, X)) — A(s,C(G, X)) be an operator with the
properties of Corollary 4. Then (6§ + V)~ =6+ V and

P8+ V)BE+ V)™ las = PV(FV)"1ds

s0 that the functional calculus constructed here coincides with the constric-
tion of Albrecht [1].

3)If A = (4;...., Ay) has areal Taylor spectrum, o7 (4) ¢ R™, then one
can show that g,{A) = or(4). Indeed, if A € C" — o (A4) then one can find a
point 4 & C"—(ar(A)U{A}) and a rational function f(z) = el P
such that [£(A)| > max{|f(2)| : z € or(4)}. Consider the operator flA). If
A € o5(A) then, by the spectral mapping theorems for o and oy, we have

max{|z| : z € op(f(A))} < max{|z|: z € 0. (F(A))},

which contradicts the fact that or and o, coincide for single operators.
Thus the functional calculus for functions analytic in a neighbourhood of
the splitting spectrum coincides with the Taylor functional calculus.

4) In general, or(A) C o5(A). It is an open problem whether it is possible
to find an n-tuple A = (4;,...,4,) of mutually commuting operators in a
Banach space X such that op(A) # o4(A).

5) The Taylor functional calculus can be constructed similarly to the
calculus for the splitting spectrum constructed here. It is well known that
the sequence ’

T8 (s, d5,0(G, X)) B ¥, az,0%(G, X)) T

is exact (see e.g. [8], Propositions I11.2.4, 2.5, 2.8). If f is a function analytic
in a neighbourhood of ¢p(4), then instead of Wis, one can take in (1} a
form £ € A"~1(s,dz, C°(G, X)) such that (6 + §)¢ = zs. It is not clear at
first glance that the operator f(A) defined in this way is bounded. This can
be shown by choosing £ not too big in norm (cf. 3.
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