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Denseness of the spaces @y of Lizorkin type
in the mixed L*(R")-spaces

by

STEFAN SAMKO (Rostov-na-Donu)

Abstract. The spaces $y(R™) are defined to consist of Schwartz test functions p such
that the Fourier transform 5 and all its derivatives vanish on a given closed set V' < R",
Under the only assumption that m(¥) = 0 it is shown that $1- is denge in Cp(R™) and in
the space LP(R™) with the mixed norm, for 1/P in a certain pyramid. The result on the
denseness for arbitrary B = (p1,...,Pr), 1 <pp < 00, k= 1,...,n, is proved for so-called
quasibroken sets V.

1. Introduction. The space § = &(R™) of Schwartz test functions,
invariant relative to the Liouville fractional integrodifferentiation of func-
tlong of several variables or relative to the Riesz potential operator, is well
known in the theory of function spaces and in operator theory ([5], [3], [6],
see also [4]; [11], p. 18; [12], pp. 352, 359). It consists of those Schwartz
functions whose Fourier transforms vanish with all their derivatives on the
coordinate planes in the former case and at the origin in the latter case.
Such spaces are convenient when treating Riesz potentials as distributions
(see e.g. [8]).

Various problems of function theory and operator theory involve similar
invariant spaces which correspond to convolution operators with Fourier
transform vanishing on a given set V ¢ R™ (e.g. for the hyperbolic Riesz
potential operator, V' is a conic surface, see [12], p. 410, while for the operator
of Bochner -Riesz means, ¥ is the sphere). The general case of the spaces &y
of Schwartz test functions with Fourier transform vanishing on an arbitrary
closed set V was treated in [9], [10]. In particular, in [9] the convolutors in
;- were characterized and the space ¥y = gﬁv was applied to the problem
of division by a regular distribution f(z) which slowly decreases as = tends
to the set of zeros of f. For a conic set V', a constructive characterization
of By was given, not appealing to Fourier transforms. In [10] the denseness
of @y in LP{R™) was shown for any V with m(V) = 0if 2 < p < oo, and for
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200 S. Samko

special types of V' if 1 < p < 2. Here m(V) denotes the Lebesgue measure
of V.

In this paper the denseness of $y is proved in the space LP(R™) with

P=(p1,...,0n), for

1/1_7 = (1/p1: HEER 1/}’71.)
in a certain convex polyhedrown. In the case of all admissible py € (1,00),
k=1,...,n, the denseness is shown for so-called quasibroken sets V.

Moreover, we show that the given approximations by functions in dy
converge in all considered cases not only in L'-normn, but alnost, everywhere
as well,

The paper is organized as follows. Section 2 containg the necessary pre-
liminaries; we also formulate there the main results of this paper (Theorems
A-D) and give, for the reader’s convenience, the statements of some results
from [9] as well. Sections 3-6 contain the proofs of Theorems A D.

2. Preliminaries and statements of the results

2.1. The spaces Wy and WUy,. Let S be the space of Schwartz test func-
tions. Let V be an arbitrary closed set in R". We denote by %y the space
of all functions in § which vanish on V together with all their derivatives:

Ty ={feS:(DNx)=0,2&V, [j=01,2,...}
Obviously, ¥y is a closed subspace in 5.

The space ¥y is non-trivial if V' £ R™, containing elements of § with
support beyond V. If V' is a surface defined by the equation p(z) = 0 with an
infinitely differentiable function p such that [D¥p(z)| < cexp((1—e)|z|?) for
gome & > 0, every multiindex k and large ||, then the function exp({—|z]? ~

[p(z)]™?), extended by zero to z € V, is an example of a function in ¥y .
Let g(x V) mmyev jz — y} and let

=max{/1+z]2, [o{e,V)]™'}, zeR"\V.
We equip Wy Wlth the countable set of norms
(2.1) bl = max sup My (@)Y | Dip(z)], N=1,2,...,
Br\V

which turns ¥y, into a linear topological space. It is complete in that topology
(see [9], p. 679).

The space ¥y, of continuous linear functionals on ¥y, can he identified
with the quotient space
(22) W =S§/8), Bh={feS () =0, 9cby)
of the Schwartz space 5’ by the subspace ¥ of functionals f € §' supported

on V. Therefore, ¥j, can be considered as the space obtained from §' by
identification of any two functionals which differ by a functional supported
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on V. For f € ¥, and its “representative” g € S! we can formally write
f=g+y.
2.2. The Fourier-dual space & = F~H(Py). Let

(Ff)(z)=Flz)= [ ™ (W) dy
R®
be the Fourier transform of the function f. Let
(2.3) Py ={feb:feciy)
Obviously, @ ¢ § and @y is closed in . Similarly to (2.2),
= S"/@%—,

where &%, = {f € §' : (f,¢) = 0, p € Py} consists of functionals which
vanish on $v . o

It follows divectly from (2.3) that f € .S’ belongs to @y if and only if it
is orthogonal to all functions of the form z?e***, o € V:

f o(z)ri e dx =0
B
where [j] = 0,1,2,... and @ is an arbitrary point of V.
A more effective characterization of & when V is a cone is given in
Theorem 3 below.

2.3. The space LP(R®), P = (p1,..-
(2.4) £l =1 AN - - 152,

where Hft[( ) stands for the LP* (Rl)-norm in the kth variable, 1 < pp < o0
(see [1]). Tt is known ([1], p. 302) that the interpolating inequality

(2.5) I£lz < LA A1

holds for all B, ¥ and g with py, i, gi € [1,00] such that 1/5 = (1“)\)/F“_1*/\/G,
0 € A < 1. We also recall that the Hausdorff~Young theorem is valid for
LP-spaces:

(2.6) 1fly < 2m)°If s

with 5 = (..., Pp) o = Belpe — 17
p. 322). It is also known that

1 < pp < 00, where xq,, I8 the chalacteristic function of the set G, G ©
wH 1y UGm = R"” ([2} Ch. I Sec. 1)
We denote by C§° = C3°(R™) the space of infinitely differentiable func-

tions in B™ with compact support. This space is dense in LPF(R™), 1 < pg
< oo, k=1,...,n ([2], Ch. I, Sec. 1}.

, pn) is defined by the mixed norm

1Spn§Pn,-1§---SP1S2»

and 5 = S r (P~ (see [1],

as m — oo,
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2.4. Some properties of ¥y and Py

THEOREM 1 ([9]). A function f on R™ is o multiplier in Uy if and only
if f € C°(R"\ V) and jor every multiindex j there exist an integer iy > 0
and a number ¢; > 0 such that

1D F ()] < e[ My ()]

Theorem 1 can also be reformulated as follows: Multipliers in ¥y are
precisely those functions f{x) which are slowly growing as x tends to infinity
and to the set V.

A function f defined beyond V is said to be slowly vanishing as @ tends
to V if there exist an integer m > 0 and a number ¢ > (0 such that

\flz)| = clo(x, V)], aweR"\V

THEOREM 2 ([9]}. If f 45 o mulliplier in Wy, slowly vanishing as @ tends

to V, then 1/f is a multiplier in ¥y as well.

THEOREM 3 ([9]). Let V bea cone in R™ (ie. x €V = Az € V, VX €
RY), V £ {0}. Then f € &y if and only if

f (ka(.‘l’:) de, =10

Feg=const

forollaceV and k =0,1,..., ds, standing for the volume element at the
point x in the hyperplene 2 - a = const.

We single out the case when V = | Pa; is the union of the hyperplanes
Paj={eeR":z-0; =0}, a;=(a),...,ad), j=1,...,1, 1 €1 < o0.

THEOREM 3' ([9]). Let V = |JPa,;. Then f € By if and only if
f €8 and f is orthogonal to oll polynomials along lines perpendicular to
the hyperplanes Pa;:

[ erftta;+n)de=0

Jorallm=0,1,...,9=1,...,1 and h € R,

2.5. Statements of the main results. Let 11, and I1; be the following
pyramids in R™:

H{]={$QR1LZO<.’EQS$”_]5...SLE1§1/2},
I ={zeR":1/2<m <z ... S a, < 1},

both contained in the unit cube {z: 0 < 2, < Lk =1,. ..y} and symmet-
rical with respect to the center (1/2,.. ., 1/2) of this cube, Let conv(iTy, IT1)
be their convex hull. It is characterized in Theorem D below.

THEOREM A. Let m(V') = 0. Then v is dense in LF(R") if 1/7 € Hy.
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ConJECTURE. If m(V) = 0, then &y is dense in LP(R") if 1/p &
conv (I, IT1). '

We call a set V' quasibroken (see [10) if, within every ball, it is contained
in a union of a finite number of hyperplanes (of dimension n — 1).

THEOREM B. Let V be a quasibroken set. Then &y is dense in LP(R™)
Jor all D with 1 <pp <oo,k=1,...,n.

THEOREM C. Let m(V} = 0. For any f ¢ LP(R"), 1 < py < o0, k =
L....n, there ezists a sequence fy € Sy, N = 1,2,..., which converges
to f almost everywherc. Moreovef, if either V is gquasibroken or 1/7 & Iy,
then fiv also converges to f in LP-norm.

THEOREM D. We have 1/F € conv(ITy, II1} if and only if 1 < pp < oo,
k=1,...,n, and :

1 2 2 2(—1)™ -1 1
(2.8) o — USRS ) A i

Pn Pim  Phas Pj, 2 2
for any choice of integers jr, k = 1,...,m, satisfying 1 < j1 < ... < fm <
n—1, for arbitrarym=1,...,n~ L.

Sorting out all admissible j5, k= 1,...,m < n— 1, we see that the total
number of inequalities in (2.8) is

CL i+ ...+Cr =011

For n = 2 conditions (2.8} have a simple form:

2 1 2
—_——lg — < —
F1 P2 Py

3. Proof of Theorem A

3.1. Our considerations essentially use the notion of the regularized dis-
tance A(z, V) from the point & to the set V' ([13], Ch. VI), which can be
constructed so that AL, V) e O®°(R™\ V) and
(3.1) Cro(z,V) < Az, V) < Cyp(=, V),

(3.2) DI A, VY| € Bylo(z, VP il =1,2,...

for all multiindices j, with the constants 'y, Cy and B; depending on the
set. V' only, Moreover, the regularized distance may be chosen in such a way
that

(3.3) Al—2, V)= Az, V),

which will he essentially used below (to achieve (3.3) it is sufficient to take

a radial function o(z) for the partition of unity used when constructing
Az, V), see [13]).
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3.2. Our first step in proving Theorem A is to show the denseness of ¥,
in LP(R™). Let  be a smooth step function, ie. x € (0, 00), pu(r) =1
frz2pr)=0f0<r<land0 < ulr) <lforl <or <2 Let
pn(z) = p[NA(z, V)] and

Uy () = pn(a)¢(z)
so that
(3.4) YES = Py e Wy
(for the proof of (3.4), based on (3.1)(3.2), see [9]).

LemMa 1. Let m(V) = 0 and ¢ € LP(R"), 1 < p, < oo. Then by
converges to v in LP(R™), so that Py (and Wy N CE°) is dense in LP(R™)

Proof. Since CF° is dense in LP with 1 < py < oo, in view of (3.4) it
is sufficient to show that || ~ ¥n [l — 0 as N — oo for ¢ € C5°. We have
1= u[NA(z, V)] =0 for o(z,V) > 2/(C1N) by (3.1). So

I =~ onllp < 11— xa)¥ls

where Gy = {z 1 o(z, V) > 2/(CyN)}. It remains then to refer to (2.7). The
lemma is proved.

Let A% be the operator defined via the Fourier transforms:
(3.5) (FARD) @) = pn(=)(Ff)(z), [e€S,

so that AGf € @y if f € 8. By the denseness of § in LF(R™), to prove
Theorem A it is sufficient to show the convergence

(3.6) IA%f - flg—0, fe&.

By the Hausdorff-Young theorem (2.6) we immediately deduce from
Lemma 1 that (3.6} holds for p,, > p_y > ... > p = 2, ie for 1/p € ITy.
This yields the assertion of Theorem A.

3.3. Foundations of the Conjecture. We need the following lemma.
LEMMA 2. Let m(V) = 0. Then (3.6) holds for a gtven B if
(3.7) lARflz s e, fes,

with ¢ not depending on N, for any T such that 1/P is an interior point of
the straight line segment with ends 1/ and (1/2,...,1/2).

Proof By (2.5) with 7 == (2,...,2) we have
JART = fllr < |AKF = FIRMIA%F - 712, fes,

for  and 7 as in the statement of the lemma. Then (3.7) yields (3.6), which
proves the lemma.
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Let now 1/5 € II; so that 1/% € II;. We have

(3.8) (AR ~ £ < | Flls| (AR e — wll5
for w € L7 (R™), where (AK)* is the operator conjugate to AY,. Taking (3.3)
into account we see that

(AN)* =AY,
Since m(—V) = m(V) = 0 and 1/5' &€ I, in view of Theorem A we can
hope that

JARY W~ wlly — 0.
(Unfortunately, Theorem A only provides this for w € § or w € L*n LF.)
Then (3.8) would yield the weak convergence of AL f to f in LP(R™). Hence
the sequence {A} f}$f_, would be bounded in LP(R") for every 1/p € IT;.
Since Iy is convex, Lemma 2 provides then the convergence (3.6) for 1/7
€ II7. Thus, Theorem A would be proved also for 1/p € IT;. Application of
the inequality {2.5): _
145 f = fls < IAKF = FIEPAKS - £

with 1/7 € IIy and 1/g € IT; would then yield (3.6) for 1/% € conv{Ilg, IT1).

4. Proof of Theorem B
4.1, The cose when V' is a subspace in R™

LEMMA 3. Any space Py with V a subspace in R™ is dense in LP(R™)
forl<pip<oo,k=1,...,n. :

Proof. Without loss of generality we can take V = R™ = {z € R™ :
Emti = ... =Zn = 0}, 1 <m < n—1. We have to justify the passage to
the limit in (3.6). Let 2z = (2/,2") with 2’ = (z1,...,2n). Now Az, V) =
g(m, V) = |$Ht = (a:;zn+1 +. m;zm)l/Q' Let

Ba"y = @mmT [ L= alDle™™ dy
-
be the inverse Fourier transform of the function 1 — p(ly|) € Cgo(R™—™).
Jonsidering 1 - p(Njz"|) in R* as the direct product 1{z') x [1 — p(Niz"])]
we see that the operator I — AY can now be interpreted as convolution with
the generalized function §(z') x N™ "k(z"/N), where §(z’) is the Dirac
delta-function in R™. So
(T=A0NE) = [ k) f(', =" - Ny) dy.

g™

Then the desired convergence is derived from the following lemma.
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LeMMA 4. Let k € LYR™™") and let

(Exf)=) = [ k@) fE 2"~ Ny)dy.
H&ﬁ‘—m
Then |Enfllzg — 0 as N — oo for all f € LF(R"), 1 < p, < 00, k =
1,...,n.
Proof. By the generalized Minkowski inequality for mnixed norm spaces
([2], Ch. 1, Sec. 1) we have the uniform estimate

(4.1} [En flly < cllfllz: e = [[Bllorgen-m-
So, by the Banach-Steinhaus theorem it suffices to prove that |[IXy f|lz — 0

for f € C§°(R™). First, let p1 = ... = p,, = 2. Then by the Parseval equality
we have

(4.2) @mEnflE= [ [R(N2")f(z)*dz >0
RT!,
by the Lebesgue dominated convergence theorem. Let now ¥ be arbitrary,
1< pp <oc, k=1,...,n Then there always exists 7 with 1 < r; < oo,
k=1,...,n, such that 1/7 is an interior point of the segment with ends 1/7
and {1/2,...,1/2). The interpolating inequality (2.5) yields the estimate
1K flly < K £l 1B 13 — 0
as N — oo, by (4.1) and (4.2). This proves Lemma 4 and, thereby, Lemma 3.
4.2. The general case

LEMMA 5. Let V be o umon of a ﬁmte number of shifted hyperplanes:
V= UJ 1 Vi, Vi = Hy 4 x3, where o, € R™ and H; are subspaces in R™,
i=1,...,0. Then &v is dense in LP(R™) for 1< py < oo, k=1,...,7

Proof. The approximating operator A} in this case can be constructed
! 1 4H; izl
as szl .Ej YAV E;, where (Byf)(z) = ™ f(z) and Aﬁ" are the ap-
proxiumating operators constructed for the subspaces H; (see‘the proof of
Lemma 3). It is easily seen that

IIf - A% f||p<ZC;Hf AR flly—0

F=1
as N — oo by Lemma 3.

Proof of Theorem B.IfV is bounded then, by definition, V' is con-
tained in a union of a finite number of hyperplanes and therefore &y is dense
in L?(R™) by Lemma 5. Let V be unbounded. Every function f € LP(R™) can
be approximated in LP(R") by functions f,, € § whose Fourier transforms

fm have compact support (this is achieved by the identity approximation
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with a C™-kernel whose Fourier transform has a compact support). Let
Vi =V = V.Nsupp fin. Then V, is bounded and contained in a union of a

finite number of hyperplanes, by definition. Let V be this nnion and let AY
be the approximating operator constructed in the proof of Lemma 5. Then

1AY fr — me|p — 0 as N — oo by Lemma. 5. Clearly, Ame € Py C Py
Moreover, ANf,,L e Py, because F(Ame) € ¥y, which is the des1red result.

5. Proof of Theorem C. Let AY be the operator defined by (3.5).

LeMMA 6. Let m(V) = 0 and f € 5. Then A} f umformly COTVETGES
to f.

Proof. We have
(5.1)  |f(2) = ALf@) = [F- 1 - p[N A, V}F Y]
< {1 = pIN A, VI (@) 22
It was shown in the proof of Lemma 1 that |[{1 — p[NA(z, V)]}lz — 0 as

N — co for all ¢ € §, including the case p; = ... = p, = 1. So from (5.1)
we obtain the assertion of Lemma. 6.

To prove Theorem C we first note that every function f € LP{R"), for
1 < py < oo, can be approximated by functions fy, € 8 both in ZP-norm and
almost everywhere simultaneously. The approximation in LP-norm is known
{[2], Ch. 1, Sec. 1) and is achieved by means of the identity approximation
with a “good” kernel and by multiplication by an expanding smooth step
function. So, to guarantee the almost everywhere convergence we only have
to choose the kernel of the identity approximation to be radial and monotone
(see {13], Ch. IIT}. Thus for any £ > 0 we can construct ¢ € § such that both
|f — 9l < €/2 and |f(z) — g{z)| < £/2 for almost all z. It now remains to
apply Lemma 6 to g and take into account that the approximations A g
converge in LP-norm as well, as was shown in the proof of Theorem A or
Theorem B.

6. Proof of Theorem D. We have to prove that x € conv(Ily, IT1) if

and only if 0 < 2 < 1 and
1 1
2 (=1 ey, - (—1)””5 < 5

,n — 1. Clearly,

(6.1) Ty, ~ 225, + 235, —
for all L < 41 < ... € o £ n~1and every m = 1,...
conv(ITy, IT)) is the convex hull of 2n points
=(0,0,...,0), &= (£,0,...,0), ..., a" = (3,%,...,4,0)
and
= (hde1), @ = (3

ba|=

on L), o e = (1,10, 1),
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So, as is well known, conv(dy, I1) is the set of points = representable as

2n
(6.2) = Z ot
k=2
with pz > 0 such that
2n
(6.3) Y e <1
b2
‘We observe that (6.1) is equivalent to
(6.1) 0< my — 2, + gy — ...+ 2m;, <1
if m is even, and to
(6.1”) 0 < Qmjm - 2$f1n.—-1 +.+ 22—z, < 1
if m is odd.
The “if” pert. From (6.2) we obtain
20— 2n
p= D uk+2 >
h=j-+1 k=2n—j41

2n

fj=1,...,n—land z, = 3} ;" . s Hence direct calculations give

jm—l

Ji 2n—-gy
Ty — 224, 4+ 225, — .. 2@y, = Z 17 S Z Mg -+ Z HE;
kefm+1 k=js+1 b=n-+41
2n—js 27
+ Z e+ .. F Z 17
k=2n—ja+1 k=2n— fp 1
if m is even, and
2ay, — 2z, b+ 2@y, -y
jm—l jm-a n
= > met D .t Y
e m A1 b=fm-a+1 k=gl
2n-ja 29

D DR TS SUUE S ST

k=2n—7; +1 Ram= 20—y - 1
if mm is odd. So the conditions (6.1') and (6.1") are satisfied.
The “only if” part. In the linear algebraic system defined by (6.2) we
congider the nnknowns pn1a,..., 2, to be free. We define
2n,

= Z Bk

k=n+2

Denseness of spaces &y of Lizorkin fype 209

and put
(64) e = 2@n_1 — 20p + bengi-k, E=23,...,n—1,
(6.5) P = 2Tpo1 — T — [,
(66) Hao4l = Ty — M.
Hence

2n
6.7) Z i = 221 — pag.

fe==2

The direct substitution of (6.4)~(6.6) into {6.2) shows the validity of (6.2}
for all free unknowns f,1s,. . ., fian. S0 we only have to prove that they can
be chosen in such a way that both p > 0, k= 2,3,...,2n, and (6.3) hold,
provided that (6.17) or (6.1”) is satisfied. We have

(6.8) max(0, 2z, — 1) < p < min(z,, 20n_1 — Tn),

the former inequality following from (6.5) and (6.6), and the latter be-
ing obtained by summing the inequalities popi1-& > 22 — 2ep_1, b =
2,3,...,n — 1, resulting from (6.4), and using the condition pon > 2y — 1
derived from (6.6). Let 4 be chosen in the non-empty interval (6.8). Starting
from (6.4) we put

(6.9) = max(0,22anq1-k — 2Bon—p) +h, k=n+2,...,2n-1,

with % > 0. Then g > 0 for k= 2,...,2n — 1. As for gy, by summing all
the inequalities (6.9) we obtain
n—32
o = b — ZZmax(O,mj+1 — ;) — (n—2)h.
j=1
Since we must have both pa, = 0 and pan > 2 — 1, we see that the
condition

n—32
W—2 Z max(0,z;41 — ;) — max(0,2x; — 1) > (n—2)h
j=1
is sufficient for this purpose. This last condition can be satisfied by the choice
of hif '
. n.—2
(6.10) p> max(0,2e1 — 1)+ 2> max(0, 2541 — ;) =1 4,
i=1
which enables us to choose any h € (0, — A). Since the inequality po, >
221 — 1 is the condition (6.3), we see that the requirement (6.10) guarantees
the possibility of choosing s, to satisfy (6.3). The condition (6.10) together
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with {6.8) leads to
-1

(6.11) (221 - 1) + 2(2‘%’%—1 —22;) 4 < @y,
J=1

where t = ¢ if ¢t > 0 and ¢4 = 0if £ < 0. It remains to observe that (6.11)
is satisfied by {6.1°), (6.1").
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The Bourgain algebra of
the disk algebra A(D) and the algebra QA

by

JOSEPH CIMA (Chapel Hill, N.C.} and
RAYMOND MORTINI (Karlsruhe)

Abstract. It is shown that the Bourgain algebra A{D); of the disk algebra A(D) with
respect to H°°{D) is the algebra generated by the Blaschke products having ouly a finite
number of singularities. It is also proved that, with respect to H™ (D), the algebra QA of
bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain
map as is A(D),.

Introduction. Let A C B be two commutative Banach algebras. The
Bourgain algebra (A, B)y of A with respect to B is the set of all f € B for
which dist(f f,, A) := infyea [[ffn + gliz — O whenever f, is a sequence in
A converging weakly to zero (i.e., such that @(f.) — 0 for every bounded
linear functional ¢ on A). In a recent paper [4] Cima, Stroethoff and Yale
characterized the Bourgain algebra (A(D), L*={I); of the disk algebra with
respect to the algebra L% (D) of Lebesgue measurable, essentially bounded
functions on the unit disk I. They showed that

(A(D), L=(D))p = (H=(D) n W(D)) + UC(D) + V,
where
WD) ={feL>D):
for every § > 0 the set {( € T : w(f,¢) = §} is finite}

is the set of all functions in L°°{[D) whose essential oscillations

W, 6a) = i esssup{Lf(2) — flw)] s 2,0 €D, |2 = Cal < 6, |w = ¢l < )
counverge to zero whenever (, € T is a sequence of different points of the
unit circle T. Moreover,

V = {f e L¥D): || fxoupllec = 0asr—1} (Y

1991 Mathematics Subject Clagsification: 46J15, 307305,
The authors were supported by a NATO grant.
(l) v g 19 the characteristic function of a subset & C I
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