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Property (wM*) and the unconditional metric
compact approximation property

hy

ASVALD LIMA (Kristiansand)

Abstract. The main objective of this paper is to give a simple proof for a larger class
of spaces of the following theorem of Kalten and Werner,

THEOREM. Let X be a separable or reflesive Banach space. Then K(X) is an M-ideal
in L(X) if and only if

{(a) X has property (M™), and

(h) X has the metric compoct npprorimation property.

Our main tool 18 a new property (wdf*) which we show to be closely related to the
nnconditional metric approximation property.

1. Introduction. We shall give characterizations of Banach spaces X
such that K(X), the space of compact linear operators on X, is an M -ideal
in £(X), the space of bounded lincar operators on X. We shall give a new
argument for the known fact that such spaces have the metric compact
approximation property.

A closed subspace M of a Banach space X is called an A -ideal if there
exists a projection P on X* such that ker P = M+ and

la*| = e — Pe*| + |Pa*|  for all 2* € X*,

Such a projection is called an L-projection. M-ideals were fivst defined and
studied by Alfsen and Effros in [1] in 1072,

Many authors have tried to characterize those Banach spaces X such that
K(X) s an M-ideal in £(X). Finally, Kalton succeeded in [15] by ntroducing
property (M) and showing that it plays a koy role. But he had to assume
that X satisfies a very strong form of the metric compact approximation
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250 A Lima

property, in particular, that the approximating compact operators (T.) on
X satisfy |7 ~ 2T, — 1. Finally, Kalton and Werner [16] showed that this
property follows from property (M*) and the metric compact approximation
property. Our aim ig to show that the condition |7 — 2T, || — 1 is very closely
related to a weak form of property (M*) which we call property (wAl*).

Let us fix some notation. X, Y denote Banach spaces. The dual space of
X is denoted by X*. If M is a subspace of X, then its annihilator in X is
written A+, B(z,r) or Bx (z,) denotes the closed ball in X with center
and radius r. We write Bx(0,1) = Bx = X.

We denote the space of compact linear operators from X to Y by
K(X,Y). If X =Y, then we write (X). Similarly, £{X,Y) and F(X,Y)
denote the spaces of bounded and finite rank operators. T* denotes the
adjoint operator when T € L(X,Y).

For a set C, conv(C) denotes its convex hull, € denotes its closure and
ext C' denotes its set of extreme points.

2. Property (M*) and M-ideals of compact operators. In [15],
Kalton characterized those Banach spaces X such that C(X) is an M-ideal
in £{X) using property (M*). We shall give a new proof of the implication
K(X) is an M-ideal in £{X) == X hag property (M*). Our proof uses
only the fact that K{X) has the two-ball property in L({X). M-ideals were
characterized by an intersection property of 3 balls by Alfsen and Effros
in {1]. In [17], Lima introduced semi- M -ideals, and he gave a characterization
of semi- M-ideals using intersections of 2 balls.

A closed subspace M of a Banach space X is called a semi-M -ideal if
for all z € By, all my,mg € By and all £ > 0, there is m & M satislying

|z +m;—m||<14+e fori=1,2

DEFINITION 2.1. We say that a Banach apace X has property (M*) if
whenever u*,v* € X* with |lu*|| = ||v*|| and (z},) is a bounded weak* null
net in X™*, then :

limsup ||u* + 7, || = limsup |[v* + <.
Y [
Property (A1) is defined similarly using bounded weakly null nets in X

Properties (M*) and (M) were defined by Kalton in [15] using sequences.
Thus there are two versions of these properties, defined by nets or by se-
quences. It is shown in [22] that if X is separable, then properties (M*)
defined using sequences or nets are equivalent. Moreover, if X* is separable,
then properties (M) defined using sequences or nets are equivalent. As the
next result shows, property (M*) is closely connected to M-ideals.
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THEorREM 2.2, If K(X) is ¢ semi-M-ideal in L(X), then X has property
(M*).
Prool Let (x) be a bounded weak* null net in X™*. Define ¢ : X* — R
by
¢lx*) = limsup l|z* + % ||.

oy
It is easily scen that ¢ is a convex norm continuous function. In fact, |¢{u*)—
d(v*)] < |Jut — v*||. It suffices to show the following claim:

Cram. If ||u*|] = ||y*|| = L and y* is weak™ strongly exposed in Bx«,
then o{y*) < dlu*).
Agsume the claim s proved. Let ||u*}] = | and let & > 0. Since

B+ = comwl ||(w*-str.exp. Bx-) (see [18]), we can Aud «* = S0, Myl €
conv (w*-str.exp. Bx+) such that |u* — 2*|| < & Here A; > 0 and
Yo A = 1. Let y* € By« be weak* strongly exposed. From the claim,
it follows that

Thuy (™) = (y*).

In order to prove the claim, we use iutersections of balls. Let y* and u*
be as in the claim. Assume y € By strongly exposes y*. Let ¢ > 0 and let
£ > & > 0 be such that diam S(y, 8} < ¢, where

S(y,8) = {a* € Bx« : z*(y) = 1 - 6}.

Let u € By be such that v*{u) > 1—§/5. Define S = y* @u € By x)- Since
K(X) has the two-ball intersection property, there exists U € K(X) such
that '

m:ettxHI + 39Ul <14 6/5.
Let ¥ =y ®u* € Bgrxy«. Then
14 6/5 > mf,xl*a/}(f & 8- U}
[y ) ) = (" = 0 )
> 1~ &/5+ |(u* — U u")(y)|
so |(w ~ U u*)(y)| € 26/5. Thus
(u*(w)y® &= (u* -~ U*u*))(y) = 1 - 36/5 = (1 6)(1 + &/5)
and
w (u)y* & (u* - U*u®)
1-+6/5

S S(’Uvé)‘
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Hence
2t - T7ur| = (o (uly + (" - Un)) = (u* (udy” = (u° — )|
<e(l+6/5) < 2

and ||u* - U*w*]l < e. Since (z%) is bounded weak* null, [|[U*2z}|] — 0 and

[[8*z%|| — 0. We also have ||S*u* — y*|| = [1 — w*(u)| < & <e. Thus
Hy") — e £ ¢(8"u) = limsup [| 57 (u" + 25) + (1 = Ui

<|IS+ T - Ulé(u”

Let € — 0, and the claim follows. m

VAt =T < (T+e)p(u”) +e.

3. The metric compact approximation property and extension
operators. In this section we focus on the connection between the met-
ric compact approximation property and the existence of certain norm one
projections. The results are closely related to those of [19].

THEOREM 3.1. Let X be a Banach space. Consider the following state-
ments:

(a) X has the metric compact approzimation property.

(b) For every Banach space Y, there exists a norm one projection P on
LY, X)* with ker P = K(Y, X)*

(c) There exists o norm one projection P on L(X)* with ker P = K(X)t,

(d) There exists a linear norm preserving extension operator & : K(X)*
-+ span(JC(X), I'}*.

Then (a)=(b)=(c)=>(d). All staternents above are equivalent if every
Junctional on K(X) has o unique norm preserving estension to span(K(X)

H
I). Similar statements hold for the metric approzimation property.

Proof. (a)=-(b) follows by a procedure due to J. Johnson [13]. Let (K,)
be a net in By(x), which converges to the identity in the strong operator
tepology. Using the weak® compactness of By(xy++, by passing to a sub-
net, we may assume that lim, x(K,) exists for all x € K(X)*. Define the
projection P by

P(3)(T) = lim §(K,.T),

where T' € L{Y,X) and ¢ € L{Y, X)*. Note that ¢ : § — S(ST) is in
K(X)*. This P has the right properties.

(b)=(c) is obvious.
_ (c)={d) is straightforward. For ¢ € K(X)", define &(p) =
¢ is any bounded extension of ¢ to £L{X).

(d)=>(a). Let @ be the extension operator in (d), and let (an) ¢ X and
(z3) © X~ be such that 327 | ||z, |||jz% || < oo and | Yo ok (T < |7

P(¢) where
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forall T € K(X). Define ¢, = xn, @2}, € K(X)* and ¢ = 307, ¢, € (X"
Then ||<;’>“ < 1. By uniqueness of norm preserving extensions of functionals,
P(y) = = Ty, @ @y, for all n. Since @ is linear and has norm one, we get

oo

B(g) =) B(p) Z ¢

=1 n=1

55t =[S0 -

(@) (D] = 8] < 1.
n=sl ==l

By Proposition l.e.l4 of [21], X has the metric compact approximation
property. =

COROLLARY 3.2. Assume K(X) 45 an M -ideal in £(X). Then X has the
metric compact approvimation property.

and

The corollary follows from Theorem 3.1 using the L-projection on £(X)*.
Note that every functional on an M-ideal has a unique norm preserving
extension. {See Proposition I.1.12 of [11], or [18].)

Corollary 3.2 was first proved by Harmand and Lima [10]. Their ar-
gument used intersection properties of balls. Observe that if K{X) is an
M-ideal in £{X), then by Proposition 4.1, Bx+ = conwl |l (w*-str.exp. Bx-).
Let w* € Bx« be strongly exposed by w € By and define U = u*®@u € X(X).
Now let

Tel(X)NBO,l+e)NBIxU,1+6).
Then ||T}| < 1--¢ (this gives the metric in the metric compact approximation
property) and ||[U7 &= (I ~ T)|] € 1+ §. Evaluate at ¢ = u ® u* to get
1-T*u*{u)| < 1+6.1f 6 > 0 is properly chosen, we get {u* —T™u*|| < 1+-e.

Using many weak” strongly exposed points, we can approximate I at all
these points simultaneously. This shows that we can find a net (7,) such
that Tre* — @* in norm for all z* € X*.

If we replace the ball B(0, L+¢) above by B(4I, § <€), then we see that
limsup, I — 27| = 1.

Another approach uses the L-projection PP on L(X)* with ker P =
K"(X)”L Then P*l ¢ BK:(A")»«*. It (Sﬂ) < B}C(X) and Sy — £*I in the
weak” topology, then these (9p) have the saine properties as (Th) above.

Grothendieck has shown that reflexive and separable dual spaces with
the approximation property bave the metric approximation property [9, .
181], 121, p. 39] or [6, p. 246). In [6] it is shown that if a Banach space has
the Radou Nikodym property and is norm one complemented in its bicdual,
then it has the approximation property if and only if it has the metric
approximation property. The next result is less general, but it shows the use
of extension operators.
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PROPOSITION 3.3. Let X be an Asplund space. The following statements
are equivalent:

(a) X* has the metric approzimation property.
(b) X* has the bounded approzimation property.

Proof. We only have ta prove (b)=-(a).

Let (A;) be a net of finite rank operators on X* such that sup, ||4;||<eo
and lim; || A;2* —a*| = 0 for all * € X*. By using the “principle of local re-
flexivity”, we may assume all A; are conjugate operators, i.e. A; = S} where
5; € F(X). Taking a subnet if necessary, we may assume that ling 4(9;)
exists for all ¢ € F(X)*. This follows from the comnpactness of Br(xye.
Thus we can define an extension operator by the J. Johngon procedure:

B(9)(T) = lim $(5:T).
Ifp=a"@az"e X* X", then for T € L{X),
B(8)(T) = lim T**¢**(S5z*) = T*&**(¢*) = $(T).
Thus (@) = ¢ and ||¥| < sup, [4:]| < oo.
Let ¢ € F(X)* and let £ > 0. By a result of Feder and Saphar [7), since
X is an Asplund space, there exist (z3*) C X** and (z}) C X* such that

¢ =3 xrr @k and Yoo, [l@x*||llzx] < |9] + &. Since ¢ is bounded
and linear, we get

=] o
B(g) =D Py @ay) = i @
n=1 el

Thus [8(¢)] < 4]+ . Hence ] = 1.
Assume next that (z}) C X* and (z%*) C X** are such that

o0 oo
S llenlllarl < oo and |3 sy (Tan)
n=1 n=1

for all T & F(X*). Define ¢, = 23" @ 2% € F(X)" and § = £, ¢, €

F(X)*. Then ||¢|| < 1since | 307, ap(T™x) < ||T|| for all T € F(X). By
definition, $(¢.) = ¢n for all n. Since & is linear and has norm. one, we gat

< |7

B(p) =D Blgn) = ¢u
=l n=1L

and

> enen) = | 3 euD)] = (o)) < )] < 1.
n=1 n=1

By Proposition 1.e.14 of [21], X™* has the metric approximation property. m
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In Theorem 3.1, we can show that (d)=(a) when sufficiently many func-
tionals have a unique norm preserving extension. This was used in [19].
Lemma 11 of [19] can be improved, as the next result shows. Lemma 3.4
below will be used in the proof of Theorem 4.3.

Lemma 11 of [19] is also extended by Theorem 3.7 of [20]. Note that by
Proposition 3.3 of [20], in some cases the existence of denting points follows
from nnique extension of functionals,

LumMMA 3.4. Let X and Y be Bonach spaces, let @ € X ond y* € Y*
ond let ¢ =2 @ y* € F(X, V).

(a} If y* is a weak® denting point in By, then ¢ has o unique norm
preserving exlension to L{X,Y)*.

(b) If « is a denting point in Bx, then ¢ has a unique norm preserving
extension to L(X,Y)*.

Proof. (a) We can assume [|y*[l = 1 and ||z|| = 1. Let € > 0 and let
T € L(X,Y). By Lemma 4.5 of D. Werner [24], we can choose § € (0, €]
suficiently small and y € ¥ such that

vy =1, |yl £ 1+&6,
(") > 1-band 27| < 1) = fjg* —2"|| < e
Choose ¢* € X™ such that z*(z) = 1 and ||2*|| = 1 + 4. Define S,U €
FX,VYby S=s*@yand U = T*y*®9y. Let r} be the natural extension of
$ to L(X,Y) and let 4 be any norm preserving extension of ¢ to L(X,Y).
We now show that ¢(T) = ¥(T) so that ¢ has a unique extension to L{X,Y).
Note that [|¢]] £ 1 and

$(U) = ¢(U) =" @)(T"y")(2) = $(T).
Since the unit ball of L(X,Y)* is the wealk*-closed convex hull of By ¢ By »,

e

we can find m, A; > 0, z; € Bx and y} € By. such that 3 7", Ay =1 and
()~ n(U <&, [BT)~n(T)| <e, [B(S) - ()| < &,
where = 30" A 8 g But then
[BT) = ()] = (V) = (7)) |
< () = n(U)] + [ (1) = n(T)] + [p(U) = n(T)]
< 2+ |n(U) ~ p(T)].

We have

kil m

n(U) =3 NIy @yily), (T =Y NTy (@),

], i==1
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and $(5) = (S) = y*(y}x*(x) = 1. Thus we get

1—8 <n(8) = hyi 1)z (=:).
i=1
We can assume all z*(z;) > 0. Let J = {é: yf{y) < 1 —§}. Then

1= 82 < > M1 - 8){(1+ &8) + Y XL+ 8e)?
ied igJ

so that Y, ; Ay < §+2¢ Ford ¢ J we have yf(y) > 1 - 6. Hence [|y" — yf||
< £. Thus we get

In(U) ~n(T)| € > Mlwr ()T y* (z:) — Ty ()]

=1
<@+ed)TI> N
e
+ 3 Nl (Tes) ~ g (T2:)) ~ y* (Ta) (] (y) ~ 1)
igJ
< 3|TNE +28) + > Xl Tl + [1T118) < {T)|(7e + 48).
igd

Thus (;‘;(T)Z’tf) (T) and ¢ has a unique norm preserving extension to £{X,¥).
(b) follows by the same reasoning. If x is a denting point in By, then we
choose z* € X* such that

pi(z) =1, |lz"| < 1+eb,
(*(z)>1~6and ||2| 1) = |z —z| S e

We may assume ||3*|| = 1. Choose § = z* ® y, where y € ¥ with y*(y) = 1
and ||y|| < 1 -6, and choose U = z* @ Tz. Then proceed as for (a). m

4. Property (wM*) and the unconditional metric compact ap-
proximation property. Casazza and Kalton [3] introduced the notion of
a u-ideal. If X is a subspace of ¥, then we say that X is a u-idenl in Y if
there is a projection @ on Y* with ker @ = X+ and || — 2Q]| = 1.

An important step in the proof of Theorem 4.5 below s to show that
K(X} is a u-ideal in L(X). We shall say that X has property (wM™*) if
whenever (x},) is a bounded net converging weak* to z* in X*, then

limsup ||z% || = limsup [|22* — x|,
o sl

Clearly if X has property (M*), then X has property (wM*). In the proof

of Theorem 4.5, we use property (wM*). First we prove some preliminary
results.
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Let m be the projection on X** with kerx = X+ and imm = X*
Following an argument by Kalton [15], we now show that if X has property
(wM™), then ||I - 27| =1,

PRrorosIToN 4.1, We have (a)=(h)==(c), where

{(a) X has property (wM*).

{(b) |/ —2m| = 1.

(¢} X* has the RNP and Bx. = ol [ (w*-str.exp. By« ).

Proof. (a)=+(b). Let y* € X* and let ¥ € X+, Then (I - 27)(y* -~ §)
= f—y*. Lel (z5) ¢ X* besuch that 27, — § weak in X" and {jy*+2%| &
l&7* -+ @] Then (&) is weak” null in X™* and by (wM™*)} and the weak™® lower
semicontinuity of the norm,

|ly* + F =l sup [Jy™ + 2
f4y
= lmsup || 2" — (4" + 2l 2 lv* — 7
(43

so ||[I — 2n]| = 1.

(b)=r(c). We can show that X* has the RNP by an argument similar to
that used in Lemma 2.6 of [20]. In fact, to prove that X* has the RNP, we
only need that |[I — M|l < a where 1 < « < A < 2. From Theorem 5.12 of
[23], it follows that By« = @av"" (w*-str.cxp. Byx~). We also have By« =
ol "(str.exp.qu. Let & = convl H(w*»str.exp. By}, Let w* € Bxw be
strongly exposed by 2** € Bxw, and let (z}) < C be such that z;, — ="
weak*. We may assume that z}, — T € X** weak™. We are going to show
that z* has & unique norm preserving extension to X**, from which we get
z* = & Thus 1 = lim, z**{z}), and |lz* — 2}|| — 0. Hence 2* € (' and
C = Bx-.

It remains to show that z* has a unique norm preserving extension
to X**. Assume 7 € X+ and that 1 = |[z* + §|}. Then since || — 27| = 1,
we get ||z* £ 7] = 1 and @** (@) = 0. Let {y}) € X* be such that yy — 7
weak® anc o + yill < 1 Then a**(y)) — 0 and 1 2> @™ (@* + ) = 1.
Thus |yl — 0,80 F=0. m

TrororeM 4.2. Consider the Jollowing staternents: _
(a) There ds o net () of t:().m]'m,ci operators on X such thal
[ =274l — 1,
|l = Thx|| — 0  foralleeX,
le* —doa*|| =0 for all * € X™.

(b) There is a net (7o) of compact operators on X such that
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|1 = 2T — 1,
F*(Tiz*)y — 1 if |z = [la*|| = 1 = =™ (&").

(¢) X has preperty (wM™) and the metric compact approzimation prop-
erty.

Then (a)<=>(bY=(c). If X is separable or reflezive, then (c)=(a).

Proof. (a)=(b) is clear.

To prove (b)=(a), we first have to show that X is an Asplund space.
Assume that it is not. Then there exists a separable subspace Z of X with
a nonseparable dual. Let ¢ > 0 and ¢ = 1 - g2/4. There are {compare the
proof of Lemma 2.6 in [20]) sequences (z,) in Z1 and (f,) in Z{ such that
(1) fm(za) = ¢ form >,

(2) |[fra(2za)| <€ form < n.

Denote still by fr, a norm preserving extension to X, and let f be a weak™*
limit point of (f.,) in X7. Let #* be a weak® limit point of (z,) in X}*.
Then

(1) Zf) = e
(29 |z (fm)] <& V¥m
Therefore

0<1-2*(f)<1-e=¢%/4
By the Bishop-Phelps-Bollobds theorem [2, p. 7] there exist ¢ € X™* and
z** € X**, both of norm 1, satisfying z**{g) = 1, ||f ~ g/l < £ and [|z** —
z**|| < . Using (b), pick T = T, in the unit ball of X(X) such that
|L— (2" ® g)(T)| < e and [T —2T| <1+ ¢. Hence
Z** (T*f) — x**(T#g) _|_ (z** . m**)(T*g) + (T**z**)(f _ g)
zl—-e—e—¢ = 1-—3e.
Since T"*2z** € X by compactness of 7" and since f is a weak* limit point
of the fin, we may assume that |(f,, — f)(T**2**)| < ¢ for large m. Thus
1= 35 < [ ) S B (0 fudl + 10— ST € 04 120 )
so 1 —4de < |(2** @ fin)(T)| for large m. But by (2') and (b),
Ltez I -20 2 (=" @ fa)(I = 2T)| = |2 (fon) — 22" (T fn)|
> 2 (1 )] — [ ()] 2 2™ (T* fun)| — € > 2 — .
Choosing € small enough gives a contradiction. Thus X is Asplund.
Now we can argue as in [10, Lemma 5.1].
(b)=>(c). From the proof of (b)=(a) it follows that X is an Asplund
space, and that we may assume ||z — Tox|| — 0 for all z € X and |z* ~
Tra*|| — 0 for all 2* ¢ X*.
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Assume (2}) is a bounded net in X* converging weak® to *. Let & > 0
and choose a compact operator T’ such that || ~ 27| € 1+ ¢ and [z* —
T*z*|| < e. Since compact operators are weak-to-norm continuocus on
bounded sets in X, we see that T™z% — T"2* in norm. Thus

(I =27z = (2 — 22%) + 2(z* — Tz*) + 2(T* 2" — T2
so that

]imfup 22" — x| < 2e+ limfup I =20"Yahl] < 26+ (1+g) lim;;up Nsll-
& [ e

Hence limsupg ||22* ~ 23| < lmsup, ||23). Since
(I =21 ) (2" — ug) = ~ay + 2(x* — T ") + 2(T*al) ~ T*u™)

we get the converse inequality, and X has property (wAf*).

(c)=>(a). We assume that X is separable. Let (A7) be a sequence in
By (xy such that Kpz — z for all £ € X. Assume u* € By« is strongly
exposed by u € Bx. Then K}u*{u) — w*(u) = 1, and hence K}u* — u*.
Since X has property (wAf*), it follows from Proposition 4.1 that By. =
zonv! | (w*-str.cxp. Bx-). Hence (K,,) is shrinking, i.e. Krz* — z* for all
e X',

Next, we show that we may assume lim,, ||[7— 2K, | = 1. Let ¢ € KX(X)*.
We show that lim,, ¢(K,) exists. Following an idea of K. John [12], we choose
subsequences (K, ) and (K,,) such that

li{n ¢ Ky, ) = limsup ¢(K,) and li}%n H( Ky, ) = liminf ¢ (X, ).
5 n e fL

Let Ty, = K,, — K, € K(X). Then
1i;5n 2 (Tre*) =0

for all z* € X and all 2** € X™**. By a result of Kalton [14], T}, — 0 weakly.
Thus lim, ¢/, ) exists for all ¢ € K{(X)*.

Let, (f) & bﬁ?)a:w*I;HI,ML(K(X),”-«. Since HT” = S'up{:r,*(Tm) : H.I‘| < 1,
fla*] < L} for all 7' ¢ £(X), from Milman’s converse to the Krein Milman
theorem we deduce that there exist ¢, = 2, W2l € By & By such that
the =+ ¢ weak™ in span(C(X), I)*. Clearly, we may aswwmne that x¥ ~ 2"
woale™.

Let & > 0 and let N be such that |
property (wM™), it follows that

Kra® - 2| €& forall n 2 N. From

L= lim @) || = Um |2 + (e, - 2| = lim 2}, - 22|
& 43 144

Thus for each n > N, since K}'g* — K*2* in norm,
? ey Ta
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[o(1 — 20,)]
= |lié11(wa @z )T — 2K,,)!

— Bim (e - 207 () + 2z — Kia)(ma) + 2(K " — Kiah) ()|

kAt
< limsup ||zf — 27| + 2||2* — K 2*|| < 1+ 2.

Hence, lim,, [¢{I — 2K,,)| < L.

Let @ = Bypank(x).ny+ and let ¢ € C. By the Choquet integral repre-
sentation theorem, there exists a regular Borel probability measure g con-
centrated on ext C and representing #. Thus by Lebesgue's bounded con-
vergence theorem we get

1mma1—2ﬁgﬂzum|f(fwzﬁﬁdu

m‘fﬁmuwszngL
T
From the Hahn-Banach theorem, it follows that
B{0,1+ 6 Nconv{l ~ 2K, :n>1} # 0

for all §>0. Hence we can find a sequence (5,) with S, € conv(K,,, Kpar, .- .)
such that lim, |7 ~ 25,| = 1.

Next, assume that X is reflexive. Let (T4) C Bx(x) be a net such that
Ty — =z for all ¥ € X. Since By(x)-~ is compact, we may assume that
limg ¢(Ty) exists for all ¢ € K(X)*. As above, Tjz* — z* for all z* € X*.
Moreover, the argument above shows that

Lm|p(I -2T)| <1 forall ¢ € amespan(,’C(X),I)""

Since X* has the RNP and contains no copy of Iy, we see [4] thai K(X)
contains no copy of ;. Thus span{X(X),I) contains no copy of I;. By a
result of Haydon [5, p. 215], Bsgan(ic(x), ry+ is the norm closed convex hull of
its extreme points. Alternatively, we can use the fact that X &, X* = KC(X)*

has the Radon-Nikodym property [6, p. 249], so that K(X) is an Asplund
space. Thus

h.;Iln |¢(I - 2Td)l <1 forall Q5 & Bﬂpan(m(x)’”*.
Now use the Hahn-Banach theorem as above. m

The next result is a generalization of Theorem 3.9 of [3] and Theoremn 8.3
of [8].

THEOREM 4.3. Consider the following statements:

(a) There is a nei (Ta) of compact operators on X such that
I =2T%] — 1, |z—Tuz| —0 forall zeX.

(b) K(X) is a u-ideal in L(X).
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{c) K(X) is a u-ideal in span((X), ).

Then (a)=(b)=+(c). If X has the RNP or Bx. = tonv) ! (w*-str.exp. Bx+),
then (c)=>(a).

Following [3], we shall say that X has the unconditionol metric compact
approzimation property if (a) in Theorem 4.3 is satisfied.

Proof of Theorem 4.3. (a)=(b). Define the projection P on £L(X)*
by the J. Johnson procedure

P($)(T) = lim (T, T).

(See [12] or [19].) This P satisfies ker P = K(X)* and [|I — 2P| = 1. See
also the prool of Theorem 8.2 in [8].

(h)=>(c). This lollows rom Proposition 3.6 of [8].

(¢)=>(a). Let P be the u~projection on span(X(X), I}*. Define

T :span(K(X), I) — K(X)™ by T(T)(duey) = (Po)(T),

there is a net {T) C £(X) such that limg Ty = 7(I) in the weak” topology
and limsupy |7 — 27yl] € 1. Let ® € Bx and ¢* € Bx.. Suppose z is
strongly exposed or that 2* iy weak® strongly exposed. Let ¢ = 2 ® 2™ €
span(K(X), )*. By Lemma 3.4, ¢ has a unigue norm preserving extension
from KX{X). Thus P(¢) = ¢ so that Tjz*(2) — T(I){¢) = ¢(I) = z*(x). If
z is strongly exposed, then Tyr — x and this holds for all # € X if X has the
RNP. If «* is weak™ strongly exposed and By« = convil | (w*-gtr.exp. Bxw«),
then as in the proof of (¢) =-(a) in Theorem 4.2, Tj2* — «* for this #*, and
hence for all #* € X*. The convex combination argument that we used in
(a)=>(Db) in Theorem 4.2 shows that we may assume Tyz — zforallz € X. =

From Theorems 4.2 and 4.3 we get the following result.

CoroLLAry 4.4, Let X be a reflecive Banach space. Then the following
staternenty are cquivalent:

(a) K(X) 48 a u-ideal in L(X).

(bY K(X) 48 o u-ideal in span{K{X), 1).

(e) X has property {wM™) and the metric compact approximation prop-
erli,

() There is a net (1) of compact operators on X such that
(I~ 27| — 1,
|l —~ Tzl =0 for all z € X,
a* = Thz|| = 0 forall " € X~
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(e) There is o net {T,) of compact operators on X such thal
I - 2Tall — 1,
e (Tae") =1 if o™ = Ja¥]| = 1= 2™ ().
{(f) There s a net (T,) of compact operators on X such that
I —2T,)| — 1, |&—Taz|| -0 forallzecX.
Proof. (f)=(d) follows from the proof of Theorem 4.2. u

We shall give a new proof of the following thecrem of Kalton and
Werner [16].

THEOREM 4.5. Let X be a separable or reflexive Banach space. Then.
K(X) is an M-ideal in L(X) if and only if

(a) X has property (M™), and
(b) X has the metric compact approzimation property.

That (a) and (b} are necessary was proved above. That they are also
sufficient is proved in Theorem 3.7 of [16]. The proof we give here is shorter
and simpler., We give the details only for separable spaces.

Proof. Let (K,) be a sequence in By xy such that K,z — z for all
z € X. As shown in the proof of Theorem 4.2, K}z* — z* in norm for
all z* € X*. Also, in the proof of (¢)=>(a) in Theorem 4.2 we showed that
limp, ¢(K,) exists for all ¢ € K(X)*. Moreover, we can find a sequence
(Sn) C conv(K,) such that lim,, [ — 28, = 1.

We can define a projection P on £{X)* by

P($)(T) = lim §(S,T).

It is easily checked that ||/ —-2P] = 1, ker P = K(X)* and im P is isometric
to K(X)*. It remains to show that P is an L-projection. This can be done
as in Kalton [15] or as in [11, p. 299]. =
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