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On algebraic solutions of algebraic Pfaff equations
by

HENRYK ZOLADEK (Warszawa)

Absgtract. We give a new proof of Jouanclou’s theorem about non-existence of alge-
Draic solutions to the system & = 2%, = 2°, £ = y°. We also present some generalizations
of the results of Darboux and Jonanolou about algebraic Pfaff forms with algebraic solu-
tions.

Introduction. In [5] Jonanolou studied the Pfaff equations with poly-
nomial coeflicients. One of his main results states that the subset Z,, of the
set V,y, of Pfaff equations of degree m > 2 on Pé consisting of equations
without algebraic solutions is dense in V,, in the usual topology (see [5, p.
158]). (Lins-Neto in [6] proved that Z,, is also open.) To show this he needs
an example of a Pfaff equation without algebraic solutions and he chooses

(1) (2™ — y™Yda -+ (™ — 2™y + (27 Yy — 2™ )dz = 0,

where m > 2 is an integer. The whole Chapter 4 of [5] is devoted to the
proof of nen-algebraicity of the solutions of {1).

Below we present a new proof of this result based on the author’s orig-
inai generalization (Theorem 3 helow) of a classical theorem of Darboux
(Theoremn 2 below) proved in the preprint [8).

Another generalization of the Darboux theorem, to higher dimensions,
was given in [5] by Jouanolou (Theorem 4 below). In Theorem 5 below we
present our generalization of Theorem 4. Our approach is different from the
ore developed by Darboux and Jouanolou. We are more interested in cases
of fow algebraic solutions of a Pfaff equation but in generic position whereas
they consider situations with many but arbitrary solutions.

We treat Theorems 3 and 5 as the main results of this paper because
the methods developed in them seem to be useful in applications (e.g. in the
center-focus problem or in the problem of integrability).

The origin of the present work comes from the question of J.-M. Strelcyn
at the seminar on dynamical systems in Warsaw in 1992. He stated the
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problem of finding a more analytic proof of the non-integrability of the
gystem

(2) d::zsa szs’ z= yﬁ'

J. Moulin-Ollagnier, A. Nowicki and J.-M. Strelcyn gave a detailed explana-
tion of Jonanolou’s proof in [7] (with some other applications of Jonanolou’s
ideas).

It turns out that there are two more proofs of Jouanolou’s Theorem
based on the analysis of the singular points of (2). They are given in [3]
and [6].

The author thanks J.-M. Strelcyn for introducing him to the problem
and for pointing out to him the book [5].

2. Definitions and the Jouanolou theorem. An algebraic Pfaff equa-
tion of degree m on F{ is an equation of the type

41

M_ZP Vdzy = 0,

where the F; are homogeneous polynomlals of degree m and w is projective,
which means that ixw =3 Piz; =0, where X = 3" 2,8,,.

The algebraic hypersurface f = 0, f homogeneous, is said to be a solution
to the equation w = 0 iff

wAdf = fa

with some 2-form . (An equivalent definition is that i*w = 0, where
i: {f =0} — PZ is the natural embedding.)

On the 2-dimensional projective plane Pé there is a natural correspon-
dence between homogeneous polynomial vector fields

V=X8,+YVd,+ 20,
and projective algebraic Pfaff equations
w = Pde + Qdy + Rdz =0,

P X T Yz2—Zy
Q=Y |Aly]|=| Z2- Xz
R Z z Xy~Yuz

(see [5, p. B]).
The algebraic curve f = 0 forms an algebraic particular solution {or is
inveriant) for the vector field V' iff

V(ifl=r-g
for some polynomial g. This agrees with the notion of a solution to the
algebraic Pfaff equaticn.
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One can easily see that the equation (1) and the system (2) correspond
to each other for s = m — 1. The main result about them is the following
(see [5, pp. 157, 158, 103]).

THEOREM 1 (Jouanolou). If s > 2 is an integer then the vector field (2)
does not have algebraic invariant curves in Pg.

"The other results of this paper are given in Sections 5 and 7.

3. Symmetries of the vector field (2). From the qualitative theory
point of view it is convenient to consider vector fields on P = {(z : v : 2)}

as polynomial vector flelds on C* = {(z : y : 1)}. The vector field (2)
transforms to

(3) T=1—2y° =gyt

LEMMA 1. The vector field (3) admits actions of the three groups Z./27,
Z/3Z and Z/(s* 4+ s + 1)Z.

Proof The generator of Z/2Z is the usual conjugation ¢ : (z,v) —
(%,7). The generator of Z/3Z is obtained from the cyclic permutation (in
reverse order) of the homogeneous coordinates in (2} and reads (z,y) —
(y/x,1/z). (After this transformation we get a rational vector field and we
have to multiply it by some polynomial, but such an operation does not
change the phase portrait.) The generator of Z/(s% -+ s + 1)Z is given by

2
. —s = .
7150 = (Cni) <o (o).
Remark 1. In [5] the semidirect product of the groups Z/3Z and Z/{s*
5+ 1)Z is studied but the conjugation operation is not taken into account.

Remark 2. Near the line at infinity I, = {z = 0} we choose other

afline charts:

(z,2) = (z : 1: 2) with the vector field # = 25 — z°™!

,2=1—2°z and

(y,2) = {1 :y: z) with the vector field § = 1 — y2°, 2 = y° — z°FL,

4. Some qualitative properties of the vector field (3)

LeMMA 2. (a) The vector field (3) has s? + s + 1 singular poinis py =
(1,1), by = Ujpﬂ7 J= 1:"'752+S-

(b) The eigenvalues of the linear parts of the vector fleld (3) af the poinds
p; are equal to Ay o = 3(—s— 2+1isv/3)(Y, i = /=1

(c) For any p; there are only twe locolly analytic curves tangent to the
vector field (3) and passing through p;; they intersect {ransversally.

(d) The line at infinity lo 5 not invariant for the vector field (2).
The trojectories of (2) cross loo transversally except the trajectory v go-
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ing through the point (1:0:0). 4 part of ¥* (the real part of v} lies in the
first quadrant A = {x,y, 2z > 0}.

(e) The only singular point of the vector field (3) in R?, po, is o stable
focus and all trajectories starting in the first quadrant tend to pg. None of
these trajectories is algebroic. If s is even then no real 1-dimensional tra-
jectory is algebraic.

Proof Statements (a), (b) and (c) are standard and were proved
in {5]. :

(d) In the (=, z)-chart we have z|;, =1 > 0. In the (y, z)-chart we have
#)1,, = y° and near the point z = y = 0 we have dz/dy = y* + ... So the
equation of the trajectory v is z = y*™/(s+ 1) + ... and ¥* N {y > 0}
is in A.

(e) The type of py follows from (b). To prove that pp attracts all points of
A we notice that at the boundary of A the vector field (3) is directed to the
inside of A. Next, the divergence of this vector field is equal to ~(s4+2)y* < 0
and any limit cycle in A is attracting (see [1]). By the Poincaré-Bendixson
theorem {see [1]), a possible non-empty limit set in A\ {pg} contains a limit
eycle whose stability type contradicts the stability type of pg. Therefore, the
trajectories in A are spirals and cannot be algebraic.

If 5 is even then all this holds for any trajectory starting in RPZ \
{(1:1:1)}. =

COROLLARY 1. Any irreducible invariant clgebraic curve S; = {f; = 0},
filz,y) o polynomial, of the vector field (3) has the following properties:

(i} dts singular points are aoll double points (transversal self-interse-
ctions) ond

(ii) S; intersects lo, transversally. (We denote the projective compactifi-
cation of S; in FE also by S;.)

If51,..., 8, are irreducible algebroic invariant curves of the vector field
(3) then:

(iii) they intersect transversally,
(iv) there are no triple intersections and
(v) they do not intersect at infinity.

Proof. Assertions (i}, (iii) and (iv) follow from Lemma 2(c). Statements
(ii) and (v) follow from assertions (d) and (e) of that lemma. =

5. The generalization of the Darboux theorem. In [4] Darboux

proved the following result, which we have adapted to the case of vector
fields.

THEOREM 2 (Darboux). If ¢ polynomial vector field V on R? of degree
n has at least p different algebraic invariant curves, where p > n(n + 1)/2,
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then it hos a Darbouz first integral

H=]]s

Proof Let f; =0,..., f, = 0 be the algebraic invariant curves. We have
V{fi)=fi-gii=1,...,p, where degg; = n — 1. If p > dim{polynomials
of degree < n — 1} then the functions g; are dependent, ) c;g; = (0. This
means that 0 =5 o fi/fi = dit nH. =

We generalize this result in the following way (part A was proved in [8]).

THEOREM 3. A. If 51,...,8,, where 5; = {f; = 0}, are irreducible al-
gebraic curves in C? satisfying the conditions (ii)~(v) from Corollary 1 and

(i") 8y =0 are smooth in C?

then any polynomial vecior field V of degree n tangent to all S; is of the
form described below.

(@) If n>3 degfi—1=k~1 then

(4) v=wllf+3n(1]5) %
J#i

where Xp = (0F/0y, —0F/0z) is a Hamiltonian vector field, the h; are
polynomials of degree < n —k + 1 and W is o polynomial vector field of
degree < n — k.

(b) If n=k—1then V = 3 i([;; £5)Xs:» o € C. In this case o
Darbour first integral exists.

{¢)Ifn<k—1thenV =0.

B. If we replace the condition (i) by (i) then the previous result requires
the following modification. Let D{z,y) be a polynomial such that the curve
D = 0 goes through the singular points of S;’s and {D = 0} N S; Nl = @.

Ifn>k—-d-—1, where d = deg D, then formula (4) holds but with
rational W and hs,

W=W'/D, h;=h}/D,
where W’ is a polynomial vector field and the hj are polynomials.
Ifn==Fkk-—d-1then V has ¢ Darbouz first integral.
Fn<k—d—1then V=0,

We see that for the integrability we do not need many particular alge-
braic integrals; it is enough that the sum of their degrees is large and that
they are in generic position.

Remark 3. An analog of Theorem 3 holds even in the case when as-
sumptions (i), (iii) and (iv) fail. W and h; are rational with common de-
nominator I depending on the resolutions of singular points and intersection
points of S;’s. This denominator can be chosen in the form D =[] di(z, y),
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where d; == 0 are the equations of exceptional divisors obtained in the reso-
lutions. We do not formulate the precise result.
Notice also that the denominator D in Theorem 3.B is not fixed.

In Section 7 we generalize Theorem 3.A to Pfaff forms on C” ("Theo-
rem 5). The proof of Theorem 3 follows the proof of Theorem 5 when we
take into account Remark 4 below,

6. Proof of Theorem 1. Suppose that Sy = {f = 0} is an irre-
ducible algebraic invariant curve of the vector field (3), Of course, the curves
ot(Sy) = 08y and gotSy are also invariant. (It may happen that ¢Sy = Sy
or gotSy = ¢iSy.)

Let us estimate the total number of intersections of these curves with
loo- If ag € SoN iy, then we get the points ofay and gotag, i =1,...,8% + s
If ag = (2o : yo : 0), woyg # 0, then olag = ofgg iff PG+ = 1. oth-
erwise ag = (1 : 0: Q) or ap = (0 : 1 : 0). The first case happens when
(i—4)(s+1) =0 (mods? +s+ 1), where s+ 1 and 5% + s+ 1 are relatively
prime; so i = j and the points otag are distinct. The remaining cases do not
occur, otherwise the trajectory of oy would go through the first gquadrant
and could not be algebraic (see Lemma 2(e)). Next, it is possible that the set
{oo'ag}i=o,1,.. intersects the set {o'ag}. But then it includes a real point,
which cannot occur for s even (see Lemma 2(e)).

Let 83,51, ... be all irreducible algebraic invariant curves for the vector
field (3), JotSo U JeoiSs < |JSi. The sum of their degrees is bounded
from below by the number of their intersections with the line at infinity.

Therefore k =3 deg S; > s?++ s+ 1 for s odd and k > 25% + 25 + 2 for
s even,

By Corollary 1 the assumptions of Theorem 3.B hold. We apply it with
D = a(l~zy®) +b(z® —y**!) for suitable constants ¢ and b (a combination
of components of V). We get d = degD = s+ 1, n = degV = s+ 1 and
hence n < k —d -~ 1 for s > 2. Therefore V = 0.

This contradiction completes the proof of Theorem 1. w

7. Generalization of Jouanolou’s generatization of the Darboux
theorem. In Chapter 2 of his book [5] Jouanolou investigated Pfaff equa-
tions with algebraic solutions. Let us formulate his main result (see
[5, p. 115]). ‘

Let w = E:_i_'ll Pedw; € 0Qp(Clzy,...,znp1]) be a projective (ie.
> Pz = 0) 1-form of degree m (ie. the P; are homogeneous polynomi-
als of degree m) on Pf.

TrEeorEM 4 (Jouanolou). If the algebraic Pfaff equation w == 0 only has
a finite number p of irreducible algebraic solutions f; =0, 1==1,.. .5, then
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this number is bounded by

1 m+r—1
= —mlm — 1 + 2.
¢ 2 ( )( -2 )

Ifp>qg—1 then

. df;
(5) (zai%)w:o
for some constants oy. If this equation has an nfinity of algebraic solutions
then it has a first integral which is a rational function.

The identity (5) means that J] f;** is a first integral of the Pfaff equation
w =0,

Notice also that for r = 2 we have the situation from Theorem 2 (where
n=m-—1).

Before formulating our generalization of Thecrem 4 we make some as-
sumptions about algebraic solutions. Let $; = {fi = 0}, i = 1,...,p, be
algebraic hypersurfaces in C7 = {(z; : ... : z, : 1)} C P{ given by irre-
ducible polynomials f;. We assume that:

(i) the S; have no singular points;

(i) all intersections S, N...N Sy, £ < 7, are transversal (i.e. the forms
dfiy. ..., dfi, are independent along these intersections and hence there are
no (r + 1)-ple intersections);

(iii) the intersections at infinity Se N Si, M ... N S;, are transversal,
1<t <r—~1. (Here Seo = {2r+1 = 0} is the hyperplane at infinity. )

THEOREM b5. Let S; = {fi = 0}, ¢ = 1,...,p, be irreducible algebraic
hypersurfaces in C" satisfying the conditions (i), (1) and (iii) obove. Then
any algebraic 1-form w of degree m with the property that the hypersurfaces
S, ore solutions of the Pfaff equation w =0 i of the form described below.

(a) If m> 3 degfi—1=k—1 then

(6) w=ﬂHfi+Zgi(Hfj)dfn
i i

where n is a 1-form of degree m — k and the g; are polynomials of degree
m—k- 1

W) If m=k—1thenw =2 ou([1;4; fy) dfis cs € €. In this case a
Darbouz first integral exists. '

(c) If m <k —1 then w = 0.

Proof. First, we prove the representation (6) using induction with re-
spect to p, the number of algebraic solutions.

Let p = 1 and the surface Sy = {fi = 0} be a solution of the equa-
tion w = 0. The forms w|s, .€ I'(S1,21(C")) and dfi|s, # 0 have the same
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kernel and hence they are proportional. Therefore § = (w|g,)/(df]s,) is a
regular function on 5. The space of such functions forms the quotient ring
Og, = Tlz1, ..., 2] /(f1), where ( fi) is the ideal generated by fi. From this
the representation

(7) w= fim + g1dfr
follows.

Remark 4. The representation (7) with rational n and g; appears in
3] and [6]. When i and g; are polynomials then we say that w has the
property of relative division {see [6]).

Let us look what changes in (7) when §7 has a non-degenerate (Morse)
critical point ». Then df; vanishes at 2 and the coefficients of df, form a
regular system of coordinates near z. Since the kernel of w at z contains all
lines which are limits of the lines from Kerw(z') as 2’ - z and these lines
span the whole space we have Ker w(z) = C" and w(z) = 0. So, the function
g = {w/df)|s, is regular on each local component of §; near z.

However, the function § can take different values at different local com-
ponents and hence § may not be regular on the whole curve Sy.

In the proof of Theorem 3.B we allow the Morse singularities for the
curve S1 (and S;). {There we worked with vector fields V but the case of
1-forms w is the same.) We encounter the problem of different values of the
function g on different local components of 51 (or S,). We solve this prob-
lem by multiplying w (or V) by a function D, where D = 0 is sotne curve
going through z. Then the function § is replaced with the function ?: D3.
The latter is zero at singular points of S; and thus is regular on 9;. We
obtain the representation (7) (and then also (6)) for the form Dw. In the
representation (7) for w we get the form # and the function g, rational.

Let p = 2 and the hypersurfaces S1 and 52 = {f; = 0} be algebraic
solutions to w = 0. By assumption they intersect transversally. Take a point
of such intersection, where we can assume that in some local analytic coor-
dinates f; = @, fa = y. From the case p = 1 we have

w = z7 + gdz = yo + hdy,
where 77 does not contain de and p does not contain dy. Writing n = edy+n1,
9= gy +g2 ¢ =vdr+ 01, h = hax + ha, 8g2/By = Ohs/Bz = 0, we gel
¢ = hiz+ hay, 1y + g2 = y¥, 2m = yo1. S0, by = 0, g» = 0, ¢ = hy,
¥=g1, &1 =€, m = y¢ and
' w = ghidy + yg1dz + xyt.
Therefore, the representation (6) holds near the intersection 3NS5, To prove

it globally we reason as follows. Let w = fin--gdfy = f;0+Adfs. From the lo-
cal analysis it follows that gjg, = 0 and his, =0 (see go = 0,hy = 0), or g =
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Jag1, k= fihy globally. So, w = fin+ fagudf; and restricting it to Sp we see
that 7 has the surface fo = 0 as a solution or that n = ¢dfz+n2 f2. Therefore

w = ¢fidfs + g1 f2dfL +12fs fa-

If w = 0 has solutions §, eeySpr1, p = 2, then by the induction as-
swmption applied to Sy,...,5; and So,..., .1 we get

N - : pt1 Pl
o= (I18) - Sn] = (115) e+ 2 af]

7=1 ) i=1 ' =2 i=2 i
P - » ’

= (H f:i) A+ hadfy + Eflhia%}
o e

= (Hfj) fp+1g+gp+1dfp+l_'_pr—i-lg’i?]-
=2 ; i=1 i

We get two representations (6) for Sy,..., Sp. The difference between them
is described in the following.

Levmma 3. The general solution of the equation

df;
(9) (Hfi) {774-291‘?"_-] =0
i 9i = fighy m = — 22 gidfi-
Proof. The restriction of the equation (9) to S; gives (g; [1,..; f;)]s, = 0,

where the equations f; = 0 have only regular solutions on S;. So g; = figl.
Now the formula for the 1-form 7 is obvious. w

Therefore fih; = fpy19: (mod fi), or by = kifpr1 +fs, gs = ki fr+ i fi
(here the regularity of mutual intersections of 9; is used). The same holds
for hy and gpy1, b1 = k1fpr1 + @1f1, Gpr1 = Kpya1f1 + pya fop1 (becanse
of symmetry between f;). We obtain the identity

fun’ + B fppidfs = for1€ + Bpr frdfpra,
where ' =1 -+ 3 ¢:df; and ¢’ = g+ 3 vudf; (see (8)). Restricting this to
Sp+1 we find that Sy is a solution to 1 and hence ' = fp1an” + ¢dfpar.
From this the representation (6)
P P df;
w= ( 11 fj) [Jﬁ Fort” 4 ki forrdfs + @ Frdfprn + 3 kaefifor T]
Fm=32 f=2 ¢

for p replaced with p + 1 follows.

It remains to estimate the degrees of g; and n in (6). We have w|p—0 =
[9:(T1;.4: f5)dfi]lsi=0- Because S; intersects Seo transversally we have |df;|(z)
~ |w|deg Fiml as £ € §; and 2 — S, along a generic ray. Similarly, from the
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assumption (iii) we get |f;|(z) ~ |=|%°8%. Since w|g, is of order m we see
that g:|s,is of order m — )" deg f; + 1. The latter means that g, can be
written as g; = figl + ¢/, deggy <m—k+ 1L _

Indeed, as the highest order homogeneous part f; of f; is irreducible (for
p > 2) or has only simple zeroes (on So, = P} for p = 2) the highest order
homogeneous part g; of g; vanishes on ﬁ = 0. So, f; divides g, §s = &/s
and g; = xf; + gi1 with gy of smaller degree than deg g;. Then we apply the
same to g ete.

Hence,

w= (Hf;) [W+Zg£df;] + w’=zgil(nfj)dfi,
bES

' is of degree < m and the form 7+ ¥, gidf; has degree m — k.
If m = k — 1 then deg g; = 0, g; = c; =const. Because deg [[ f; 2 m+1
we have n = 0. Therefore w = M~ 1dH, where H =[] ff" is a Darboux first

integral and M =] ff i~ ig an integrating factor.
Ifm<k—1thenwefind g; =0and p=0. Thusw=0. n
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Averages of unitary representations
and weak mixing of random walks

by
MICHAEL LIN (Beer-Sheva) and RAINER WITTMANN {Gottingen)

Abstract. Let S be a locally compact (o-compact) group or semigroup, and let
T(t) be a continuous representation of & by contractions in a Banach space X. For a
reguiar probability 4 on S, we study the convergence of the powers of the p-average
Uz = [T(t)z du(t). Our main results for random walks en a group G are:

(1} The following are equivalent for an adapted regular probability on G: p is strictly
aperiodic; U™ converges weakly for every continuous usitary representation of G I is
weakly mixing for any ergodic group action in a probability space.

(i) If p is ergodic on G metrizable, and U™ converges strongly for every unitary
representation, then the random walk is weakly mixing: n =1 57, [{(u* + f, g} — 0 for
9 € Loo(G) and f € L1(G) with [ fdx = 0.

(iii) Let & be metrizable, and assume that it is nilpotent, or that it has equivalent
left and right uniform- structures. Then p is ergodic and strictly aperiodic if and only if
the random walk is weakly mixing.

(iv) Weak mixing is characterized by the asymptotic behaviour of p™ on UCB; ().

1. Introduction. Let & be a locally compact (o-compact) semigroup
(always assumed Hausdorff). For a regular probability 4 on S, the convolu-
tion operator p* f(t) = [ f(ts)du(s) is a Markov operator on C(S), which
is the average of the translation operators §,# f(t) = f(ts). When S =G isa
locally compact group with right Haar measure A, the regular representation
8 — 6, is continuous in LIp(G,A), 1 < p < oo, Cy(G) and UCB(G).

Let X be a Banach space, and let 7 : § — B{X) be a bounded operator
representation of § (ie., T(st) = T(s)T(t), and sup, [T(s}| < oo). The
representation is called comtinuous if ¢ — T(f)z is continuous for every
z € X, and weakly continuous if f(¢) = (z*, T'(¢)x} is continuous for » € X~
and 2 € X. For groups, this implies (strong) continuity [HRo, p. 340]. For a
regular probability 4 on S, the p-average U,z = [ T(t)z dp is defined in the
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