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The Cauchy problem and self-similar solutions
for a nonlinear parabolic equation
by

PIOTR BILER (Wrocltaw)

Abstract. The existence of solutions to the Cauchy problem for a nonlinear parabolic
equation describing the gravitational interaction of particles is studied under minimal
regularity assumptions on the initial conditions. Self-similar solutions are constructed for
some homogeneous initial data.

1. Introduction. Our aim in this paper is to construct local and global-
in-time solutions to the Cauchy problem for the parabolic equation

(1) w = Au+ V- (uV),
in R™ x R*, where the coeffcient Vi is determined from wu via the potential
(2) w = By *u,

E, being the fundamental solution of the Lapla(;ian in R™. Since Ap = u,
the equation (1) can be rewritten as a parabolic equation with a nonlocal
coefficient Ve

(11 w = Au+u? + Vu - V.

The physical interpretations of the equation (1) with an initial (nonneg-
ative) condition
(3) w(z,0) = uy(x)
come {rom nonequilibrium statistical mechanics. In particular, (1)-(3) is
an evolution version of the Chandrasekhar equation for the gravitational
equilibrivm of polytropic stars. Here u is the density of particles in R"™
interacting with themsclves throngh the gravitational potential ¢. Another
motivation for studying the above system is presented in the intreduction
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to [6], where this equation is considered in a bounded domain of R™ and
the problem {1)~(3) is supplemented with appropriate (nonlinear, no-flux)
boundary conditions.

The local-in-time weak solutions of the initial-boundary value problem
have been constructed in [6, Th. 2(i)-(iv)] for the densities 2 > 0 in L?({2),
p > n/2. They enjoy some regularity properties, the crucial one being u €
L5, ((0,T); L*=(42)).

On the other hand, for the semilinear parabolic equation

(4) ug = Au + u*

in an open subset 2 of R™ the authors of [1-2] proved that local nonneg-
ative solutions exist if and only if up satisfles a certain regularity assunp-
tion ag well as a size condition. The above-mentioned regularity assumption
is satisfied when ug € L™2(£2), and necessarily ug belongs to the Mor-
rey space M™/2((2). In fact, Proposition 3.2 in [2] concerning the equa-
tion ue = Au + u”¥ is formulated in terms of capacities assoclated with the
Sobolev space W2/7' | so for v = 4/ = 2 the condition (74) for ug in [2}
coincides with that in the definition of the M™/2 norm which will be given in
Section 2.

The equation (L'} is slightly more complicated than (4); it contains a
quasilinear term V- V. Nevertheless, nonlinear terms in (1) are of degree
2 and (formally) of order 0 like in {4). However, the methods introduced
in [1-2] cannot be applied to (1°) because the semilinear structure of the
nonlinearity uw? was heavily used there.

This suggested the question: What are minimal regularity assumptions
on ug guaranteeing the local-in-time existence of solutions to the problem
(1)-(3) (and their instantaneous regularization: u(t) € L>{2) for t > 0)7

It was conjectured in [6] that the optimal hypothesis on the injtial con-
dition is that ug belongs to a subspace of M™?(02) containing L"/2(12),
and wug satisfles a size condition in the Morrey norm. This conjecture has
been strongly supported by an analysis of the existence and regularity of
stationary solutions to (1)--(2) in [6, Th. 1], and by results on the nonglohal
existence (i.e. blow-up ii a finite time) of solutions caused by high concen-
tration phenomena as announced in [6, Th. 2(v)] and described in more
detail in [4].

Here the system (1)~(3) is studied in the whole space B™, but the results
in Section 2 hold true also for the problem (1}-(3) with homogeneous bonnd-
ary conditions imposed for « on 842, Sufficient conditions for the existence
(both local and global in time) are regularity assumptions like belonging of
up to a Morrey space, and suitable size conditions. The methods used are
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some modifications and adaptations to the Morrey space framework of ideas
in Kato’s papers [16-17] for the Navier-Stokes equations, and in Weissler’s
abstract parabolic semilinear equation approach in [25).

For n = 3 the equations (1)~(2) have a singular stationary solution

(5) U(z) = 2(n — 2)|z| 2

(a structure result for some other singular (homogeneous) stationary solu-
tions to a renormalized version of (1)-(2) is given in [3]). This shows that
the regularizing effoct of the Laplacian in (1) alluded to in [6, Th. 2(ii}] is
too weak in order to smooth out the singularity of (5) for ¢ > 0.

In Seetion 3 there is shown the existence of solutions defined globally in
time and satisfying the self-similarity relation

(6) u(z, ) = ANulz, \*t)

for all A > 0, which emanate from small initial data homogeneous of degree
-2, hence having singularities like (5): elz| =2, but of smaller size: £ & 1,

The methods and techniques applied in Section 3 are motivated by those
recently used by Y. Meyer and his collaborators {[8-11]) who solved a long
standing problem of J. Leray concerning the existence of self-similar solu-
tions to the Navier-Stokes system. The importance of such solutions, pointed
out e.g. by C, Folag and R. Temam, is connected with the problem of the
determination of long time asymptotics of arbitrary solutions to the Navier--
Stokes system, hence the description of turbulence phenomena.

Likewise, the self-similar solutions to (1)-(2) describe the main term
of an asymptotic expansion for global-in-time solutions, since the limit
Iy oo Au( Az, A%E) (of course, if it exists) is necessarily a self-similar so-
lution. They are sought for in some “exotic” (from the point of view of
claggical P.D.E. theory) spaces like homogeneous Besov spaces B ,, symbol
spaces E4™ and the {ad hoc introduced for n = 2,3) spaces Aj.

Recently there appeared several papers devoted to the analysis of evo-
lution equations of paraholic type (inainly Navier-Stokes) where the func-
tional framework is hased on Besov and Morrey spaces. These spaces seem
to be well adapted to such purposes thanks to possibilities of performing
a frequency analysis and using local geometric norms. The list [811], [12],
(141, [15], [t6-17], [18], [19], [22] is by no means exhaustive, but this gives a
Havour of recent advances in P.D.E. theory connected with harmonic anal-
ysis and function spaces approach (which has been so successful for elliptic
operators).

2. The Cauchy problem. As was explained in the introduction, we
are looking for solutions of (1) (2) with nonsmooth initial data (3). The
case of the whole space 2 = R™, n > 2, is chosen here in crder to simplify
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the notation. Actually, the same methods apply to the problem (1)-(3) with
some homogeneous boundary conditions imposed on u and/or ¢ on 842, 50
that a semigroup of linear operators associated with the heat equation can
be defined. In fact, the existence results are interesting even if the local
regularity with respect to the space variable z is studied, since they out-
line a threshold for the regularizing effect for (1) to take place (compare
again (5)).

A generalization of the Lebesgue and Sobolev spaces framework, usual
for parabolic initial value problems, can be given within the scale of
Morrey(-Campanato) spaces. Such a generalization is motivated by results
in [6, Th. 1, 2], [4, the end of the proof of Th. 1}, where regular station-
ary solutions were characterized as those with small Morrey space M™2(62)
norm, and large values of A™/2 norm were obstructions for the continunation
of solutions in time.

As a standard practice we will work with the integral formulation of
(1)-(2),

b
(7) ult) = ePup + [ (Vel=94) . (uVe)(s) ds,
0

obtained from the variation of parameter formula, using an obvious com-
mutation property Vetd = !4V, Here ¢ = E, x u and e i the heat
semigroup on R" defined (for tempered distributions) by the convolution
with the Gauss—Weierstrass kernel

(8) pe(z) = (4mt) ™/ exp(—|2|*/(48)) = FH (exp(~ti€]"}).

The solutions of (7) are called mild solutions. It can be checked that mild
solutions constructed in Proposition 1 and Theorems 1, 2 below are weak so-
lutions in the sense of [6]. In particular, they enjoy the parabolic regnlarizing
effect, becoming locally bounded in z, ¢ for ¢ > 0.

Now we recall the definition of the Morrey spaces and some properties
of the heat semigroup which are collected in [22], [14], [17], [21], [23 24].

We denote by M? = MP(R") the Morrey space of locally integrable
functions such that the norm

I|f; MP|l = sup
weln, g R<1

Rn(l/p-—l) f ‘f|

Bp(a)

is finite. M? = M’P(R") is the homogeneous Morrey spoce, where in the
definition the supremum is taken over all 0 < R < oo. Several authors also
considered Morrey spaces of measures p with an obvious generalization of
the above definition when f is replaced by du.
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More general Morrey spaces include

O MP= MR ={fe L (R

toe

11fs J\I,f}]q = sup
weRn, da R<1

: -1
Rlefe-1) f Fl9 < oo},
Br(r)
where 1 < g < p € oo, and its homogeneous version

(10) '["[:5, = ]‘n[&’("@”) ==l {f G Lf} (]‘Rﬂ.) :

low

Hf;]\-'ffl’H"’ = sup
weRT, D R<m

prla/p=1; f |f[q < OO}
B g ()

The M}}’(R"") norm has the same type of scaling as the L¥(R"™) norm, namely
[FO); MPI| = A="/2|| f; MPY|, which explains the adjective “homogeneous”.
{Caution: the notation for the homogeneous Morrey spaces used in [22] is
ME instead of MP. Another convention for the parameters p, g can be found
clsewhere, e.g. in [17].)

It is well known that the Morrey spaces contain not only the usual
Lebesgue spaces L? but also the Marcinkiewicz weak L? spaces. We also
note the inclusions

(11) LV = My M} c M? (L2 © Lol
and an equivalent characterization of MP in terms of the heat kernel:
(12) feMP o et f| < crm/ i)

for 0 <t <1 (see [22, Ch. 3]).

We will use in the sequel the estimates for the heat semigroup e*4 and
for the operator Ve'? which can be found in [22, Th. 3.8, (3.71}-(3.75),
(4.18)] :

(13) ot s M2 < G Wm=blmd 2] A2
valid for 1 < py < pg < oo, gg < pu/p1, and
(14) [Wet fyAale || < G- nloem /vl 2 pprin |

when Lo« pp < py <2 00, ¢p > Land gu/q0 = pa/p provided p1 < m,
/g < pa/pr otherwise.

An analogues of the Sobolev inequality for Morrey spaces reads (cf. [22,
Th, 3801 o=, * [, 1/pL— L/p2 = 1/n, then

(15) |V M22]| < CI| 3 3 |

it i
with ¢u/¢ = pa/pr if also py £ n, and ga/ gy < pa/p1 otherwise.

The limit case py = py i (13) also holds true: etd . MP — MI s
a bounded operator. However, ¢ iy not a strongly continuous semigroup
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on MP; cf. [17, Ex. 3.4]. This prevents us from applying directly the scheine
of the existence proof in [25], which uses spaces of vector-valued functions
continuous with respect to time. A remedy for this is either to weaken the
usual definition of mild solution to the equation (7), or to consider a subspace
of M¥ on which 2t forms a strongly continuous semigroup.

The first way (similar to that in [22], [8-9]) to circumvent this technical
problem is to replace the space C([0, T]; B) of (norm) continuous functions
with values in a Banach space B of tempered distributions on R™ by the
space C([0,7]; B) which is defined as the subgpace of C'([0, T; 8" (R™)) such
that u{t) € B foreach t € [0, 7] and {u(t) : ¢ € [0, 7]} is bounded in B. Hence
C([0,T}; B) is the space of weakly continuous (in the sense of distributions)
functions which are bounded in the norm of B. Note that if B = X" is
the dual of a Banach space X, then C([0,T}; B) coincides with the space
of B-valued functions which are continuous in the weak* topology o (B, X)
of B; <f. [8, I, Déf. 2.2].

The second manner is to consider {following [17, (1.1h), Ch. 3]) the space

(16) MP = {fe MF:|lnf— f; M| - 0as |y| — 0},

y e R", 7, f(z) = flz —y). M’g is the maximal closed subspace of MP on
which the family of translations 7, forms a strongly continuous group and,
at the same time, the maximal closed subspace on which e*® is a strongly
continuous semigroup. It is of interest to note that L¥ C Mé’ C ]\td)[é’ C MP,
where

(17) ]\/D:fé’ = {f € ]\{[g :li:gjgp Re/p-1) f i 0}
' Br(r)
(see [17, Ch. 3, Cor. 3.3] and [22, (4.14)]).

‘We begin with a simple result on the solvability of the Cauchy problem in
MP with p > n/2 whose proof will show the elementary estimates (13)-(15)
in action.

PROPOSITION 1. Givenug € M} withn > 2,n/2 <p<n,2—-p/n < ¢ <
p, there exists T == T{ug) > 0 and a unigue solution of the integral equation
(7) with © given by (2) in the space X = C([0,T}; M),

Proof. Here and in the sequel the constants independent of Minctions
in M7 spaces will be denoted by the same letter C, even if they may vary
from line to line, and may depend inessentially on T' (i.e. supgepep € < 0
for each T > 0). -

Define for v € & and 0 < ¢ < T the nonlinear operator

N@)(t) = eug+ [ (Vet=92). (uVyp)(s) ds.
0
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It is easy to estimate N{u) in A"

[N ()l = sup [[N(u)(t); M|
0<tLT

< Cllug; M7 ||

;
+ ' sup f (t — s)*‘(l"'”‘”’r”/”)/ﬂl|(thp)(s); ME| ds
0<tsT E)

i
< Clluo; M|+ C sup [ (&~ )70 fjuls); MP|* ds
===t

< gy MPY 4+ CT /B0 )13,

where 1/py = 1/py — 1/p = 1/p = 1/n, g2/9 = pa/p, L/a + 1/@z = 1/qs;
(13) (14) have been used with p; = p, gy = g, and |uVp; ME || < Clju; M2|*
followed from the Holder inequality.
Next, for w,v € X, ¢ = E, u, ¢ = B, #v, the local Lipschitz property
of N is shown:
t
IN(uw) = N(w)||la < C sup f (t — )/ (2m

ugIgT
% ({w ~ )V, ME|| + [[0(Vip — Veb); ME|) ds
t
< sup f (t — )77/ (20
0KEST

0
x (lus); MPY + [lu(s); MFIDI(u — v)(s); ME|| ds
< OV (|lullx + [loll ) llw = vllx-

It is clear that for r sufficiently large (e.g. 7 > 2C|up; MF!)) and T > 0 small
enongh (so that 20T -"/2) < 1), the operator N is a contraction in the
ball B,(ug) in {u € & : u(0) = ug} of radius 7 centered at the constant
function w{t) = w. The fixed point w = N (u) of the operator N in B, {uq)
solves (7), and this is the (locally in time) unique solution of (7) in A"

Note that for p == ¢ > n/2 we recover an analogue of the local exis-
tence result from |6, Th. 2] proved for the problem (1)-(3) with the no-flux
howndary condition imposed on 1w, since u(t) € L™ for ¢ > 0 by {6, Th.
2(11)].

Now we state the main result (Theorem 1) in this section, namely the
existence of local and global-in-time solutions to (7) with the initial data
ug in the Morrey space M{7?, n 2 3, satisfying some additional size and/or
regularity assumptions. The idea of looking for solutions in a space of vector-
vatued Functions endowed with two norms, the first being a rough one, the
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second controlling the balance of smoothing property of the semigroup gt
against the formation of singularities by the nonlinear term, goes back to H.
Fujita and T. Kato. They applied it in the early sixties to the Navier- Stokes
system, but an elegant abstract form of this idea was given by I'. Weissler
in [25]. Variations of this method can be found in [8-9], [16-17], [22], where
sophisticated (maore involved than simple contraction arguments) iteration
schemes are also used. The choice of function spaces is, of course, crucial in
order to apply [25, Th. 2] to our equation (7). The same technigue will he
used to obtain the solvability of (7) for n = 2 with «g being a measure with
finite total mass in Theorem 2. The results below are in a sense parallel to
those in [6, Th. 2(ii), {iii)] for the initial-boundary value problem for the
system (1)-(2).

THEOREM 1. Let up € IL*L?/Q, n>3,3/2<g< n/2. There esists & > 0

such that if {ug) = limsup,_ /4] e"®ug; J\fj%ﬂ] < g, then there ewist
T > 0 and a local-in-time solution w of (7), 0 £t < T, which is unique in
the space

X = C([0, T]; M3

N{u:[0,T] — ]\/L;L/Z osup £V u(t); MEE < ool

deg /3
0<t<T uf

: /3 : .
Moreover, if sup;sq#'/*l|le®ug; ]'M[,in/3 | < &, then this selution can be ex-

tended to o global one.
Proof. We begin with an estimate of the nonlinear term uVe in (7)

for u € M;”/; The mequahty (15) gives Vip € M i}*, and by the Holder

inequality uVe € ﬂ[ % with

(18) [u¥; MP2| < Ol MEriE |12,

Similarly, if ¢ > 3/2, u € Mj/* implies uVe € M™% ¢ LL_ which enables
us to apply the heat kernel to uVe.
Define for w € &, as in the proof of Proposition 1, the nonlinear operator

3
Nu)(t) = emuo—l—f (Velt=04Y . (uVip)(s) ds
0
We keep the previous notation X for spaces of vector-valued functions, but

now our space A is endowed with the norm

Jullze = mas( sup fu(®) M/2, sup ¢4 huge); ME).

For w,v & & such that supgc,cp|u(t); ”/QH T, SUPgeicr £ u();
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< 2e {where & > linisup,_, t1/4||etAygy; M3

AIZ"/;H p
a/

4q/3
= [, =0, we have, from the estimate (18),

3H)andgme * U,

t
IN (0 M2 < Ol Mp2 ) +C [ (2= 5)™ 2 u(s)s M22|2
0

. i
< Cllus M| + ¢ f (8- 5)"H25712(22)2 d,
0

which, for small T > 0, is hounded from above by C|jug; MP?|| + Ce2.
Moreover, woe obtain

[N Q) ()~ N (o) (0); 372
< j‘ (b= ) "2 2 4e (51 ¥ u(s) — u(s); Min/s ) ds < Ce2.
{}

Here we used the fact that
t.
(19) [ (= 5)7 12712 g — const (= I'(1/2)° = =),
0
For the second ingredient of the norm in & we calculate
N (u) ()5 M)

t
S e g My B+ G4 [ (= )T R A u(s); My |2 ds,
0

which, for small 7' > 0, is less than ¢ - Ce? since
L

20y [
a

Similarly we arrive at

PN Cu) (k) - N (o)) A

das
"l
St [ (1 s)

- )4V g = const (= I'(1/4)1(1/2)1(3/4)

A W () — u(s) Mj;/;n ds < Cg?.

‘Taking » 2 20||ug; ALY Il and a svitably small £ > O we see that N
leaves juvariant the hox
= {u & X (1), MpP2| S v}
x {ueX:

sup Y4 u(t); A 2”/3” < 2}
O<itgd
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and N is a strict contraction on By, N {u € X : u(0) = ug}. Hence the local
existence of solutions follows.
Concerning the global existence observe that under the assumption

sup £1/4] et ug; I\Jf{:ﬁ]l < e,

>0
the Lipschitz constant of the operator N is at most Ce with C independent
of T (a specific property of the heat semigroup on R"). Therefore the local-
in-time construction from the proof above can be repeated for each T' > 0
and this gives a global-in-time solution.

We note that among the conditions defining the space A’ in Theorem 1
the second is more important. In particular, the proof via the contraction.
argument is not sensitive to the length » of the N-invariant box By, C A

Remarks. For n = 3 the results above concern only the usual Lebesgue
space L3/2 while for n > 4 a variety of Morrey spaces is admitted.

The assumptions on ug can be interpreted as a sort of (weak) supple-
mentary regularity of an element of Mg 2 Namely, for an interpretation
of the hypothesis I{up) < £ note that for ug € L2, or more gencrally

for ug € J\Z’T; & I(ug) = 0. The proof follows from a reasoning leading to
the characterization (12) (ses [22, (3.4) and the proof of Th. 4.3] or
[17, Cor. 3.3]). So the assumption wug € ]\2’(}1 /% vields the local existence of
solution independently of the size of |jug; My’ *|.

The sufficient condition for the global existence, sup,.q¢'/4||e"*uo;
Mff;//s | < &, is satisfied e.g. when the (homogeneous!) norm ||ug; el
ig small enough.

All these remarks explain that lor local/global existence of solutions to
(7) it suffices that ug is regular enough and satisfies a size condition imposed
on the Morrey norm. The example of the Chandrasekhar solution (5) shows
that the results in Theorem 1 are qualitatively optimal; % from () is not
smoothed out like %'s in Theorem 1 which satisfy the condition u(t) & M>"/*
for ¢ > 0. In fact, & € M™2 but T & L™?, 7 ¢ MY, p > n/2.

For n = 2 the initial condition can be taken as a finite Borel meagure
ug € M(R?) satisfying a weak additional regularity condition. Global exis-
tence is obtained when the total mass of ug is sufficiently small, which is a
counterpart for the Cauchy problem of the result in {6, Th. 2(iv)).

Below, | - |, denotes the usual norm in the Lebesgue space LP(R?).

THEOREM 2. There exists € > 0 such that given ug € M(R?) satisfying
the condition (uo) = limsup, o t"/*|e"Augly/s < &, there emists a local-in-
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time solution u of (T) belonging to (and unique in) the space
X = C([0, T MR*N N 0,7] — M{R*) : sup t1/4|u(t)]4/3 < oo},
D<t<T

recver. if g 1/4) 04, : -
Moreover, if sup,sqt4/4)e uplags < €, then the solution can be continued
to o global one.

Proof The schieme of the demonstration is similar to that of Theorem 1.
The counterparts of the inequalities (13) (15) read
le* by < [l aa, Vet @ flays < CEV2 £y,
|Vipla € C|flags  if @ = Ez = f.
The crucial points in the proof include the estimate [uVip|; < Clul? /3> and
again (19) (20). The remaining part is standaxd.

Remarks, If vy is an integrable function then for the functional I in
Theorem 2, {{un) = 0, hence a local selution emanating from ug can be
constructed.

The global existence of solutions is assured when the initial measure ug is
sufficiently simall. Recall that global solutions for the initial-boundary value
problem in [6, Th. 2(iv)] exist for nonnegative ug, ugly < 4n, [, uglogug
< oc; the last condition is necessary for the finiteness of a (physically moti-
vated) Liyapunov funetion, We retirn to this question in the Remark after
Proposition 8(i).

3. Self-simijlar solutions. Due to homogeneity properties of {1)~(2),
if 2 solves this system, then the rescaled function uy(z,t) = A2u(Az, A%¢),
A > 0, s alse a solution of (1)-(2). So it is natural to consider solutions
which satisfy the scaling property (6): u) = u. They are called forward self-
similar solutions. By this definition they are global in time, and heuristically
they deseribe large time behavior of general solutions to (1)-(2) (as was
explained in the introduction). Indeed, if Mmoo A2u{Az, A?t) = U(z,t) in
an appropriate sense, then tu(wt'/?,4) — Uz, 1) as t — oo (bake ¢ = 1,
A= 19 and U salisfios (6). Hence this is a forward self-similar solution,
and

(21) U, ) = ¢~ (et H21)

I8 determined by a finetion of novariables U (y) = U(y, 1), via the Boltzmann
substitution y = wt /% Note that hackward self-similar solutions of the
forw (T &) W(x(T - 1)"Y?) (arve cxpected to) describe solutions blowing
up i Anite time 7' Radial self-similar solutions which blow up are mentioned
in [5). |

Observe that il wg(a) = lmye.g ™ (w'[:”“l/ %) exists, then ug is necessarily
Lowmogeneous of degree ~2. Such ug 2 0 defined on R®, n > 3, cannot have
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finite mass. Similarly, for the Navier-Stokes system gelf-similar solutions are
of the form u(z,¢) = ¢t Y/2U (zt="/?), hence the corresponding wug(x)’s are
homogeneous of degree —1, and their energy is infinite ([14], [10]).

The usual functional framework for finite mass (resp. energy) solutions
to {1)-(2) (vesp. Navier-Stokes) deals with spaces that do not contain seli-
similar solutions. A direct approach to these solutions via an elliptic equation
obtained from (1) by substituting the particular form (21) seems to be very
hard. The same difficulty appears for the Navier-Stokes system which also
contains derivatives in the nonlinearities. This is in oppeosition to the case
of semilinear parabolic equations and their self-similar solutions, which can
be well understood by P.D.E./O.D.E. techniques.

Self-similar solutions to (1)-(2) can be obtained from Theorem 1 iu
Section 2 with suitably small ug homogeneous of degree -2 (the Morrey
space Mc?/g, 1 £ g < n/2, does contain such g} and from Theorem 2 with
ug = M6&—a small multiple of the Dirac measure; cf. [14, Ch. 5], where an
analogous construction is explained for the Navier—Stokes system. However,
we are also interested in function spaces other than the Morrey ones, e.g.
Besov or symbol spaces. The purpose of such a generalization is that suffi-
cient conditions (imposed on the size of ug) for the existence of self-similar
solutions might be weaker than those for the global existence part of the con-
clusions of Theorems | and 2. The idea of converting (1)-(2) (interpreted as
the equation (7)) with the particular form (21) of u inte an integral equation
is that used by the authors of [8], [10], [11] for the Navier-Stokes systemn.

Let B ¢ &'(R™) be a Banach space of tempered distributions and let
v € X = C([0, c0); B). Define the nonlinear operator A : & — X by

1
(22) N)(t) = [ (Vet™9) - (vT)(s) ds,

G
where $(t) = E, = v(t) at time . We are looking for self-similar solutions of
(7), i.e. U of the form (21) satisfying the equation

(23) U=V + N, where Vj = e"uy,

We begin with the observation that the equation {23) is well adapted to
a study of self-similar solutions via an iterative algorithm.

LemMA. 1. (i) If ug € S'(R™) is homogeneous of degree —, i.e. up(Ax) =
A Vug(z), then Vi = e*Pug = =7/ 20 (wt—1/2),

(i) If U is of the form (21), t.e. U = ¢ U (2t~ %) and N (I} € S/(R™)
is well defined, then N(U) 48 again of the form (21): N{U) = i~V (wt™ /)
for some V.

Proof. We use a Fourier transform argument. However, a direct one
based on the representation {8) for the heat kernel is alsc possible.
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(i) Passing to the Fourier transforms we have

Vole,t) = oxp(—H£ |2l () = oxp(—| /2 2 )=/ 24 455 (11/2¢)
= f“("f;”szU(mt—lﬂ)) for Uy = e®uy.

(ii) Observe that the gradient of the potential associated with the self-
similar density I7 is of the form ¢~1/2(V$)(xt~1/2) for some (vector-valued)
function V@, Then UV = ¢~*/2Q(zt~1/2), and therefore

i
(24)  FWNUNE) =i [ €oxp(—(t ~ s)|e[})sH2E(s1/2%¢) ds
[t

)

2)'6(”""3)/2.X(71—3)/2

I
— j £exp(—(1 —~ A€
0

x GOM28 726 )t da

1
,Lf ex13(m(l_)\)|t1/2§‘2)t‘n./2—1A(TL—B)/Q(tI/Qg)
0

% GAV/241/2¢) g\
= L) = Fe H @),

Lewnpa 1 implies that it suffices to consider the equation (23) in X for
L= 1, so this reduces the study of (23) to the space B.
If we wanted to solve (23) by the iterative application of A

(25) Vigr = Vo + N (Vo);

then for wy homogeneous of degree —2 all V,,'s would be of the self-similar
form (21). Hence the iterative algorithin is entrapped in the set of self~similar
funetions. If we showed the convergence of this algorithm, the limit would
antomatically be a selfsimilar solution of (7).

Next we prove the existence of sohutions to (23) under natural assump-
tions on A (of. [8, L, Lemme 2.3, 1V, Lemme 2.9}).

Tsmma 20 Suppose that N2 B —s B is a nonlinear operator defined on o
Banwael spoce (8, ||+ 1)) by N(U) = B(U,U) with o bilincar continuous form
BB x B - B such that | B{U,V)|| € K| U |[V] for some constant K. If
(Vull < VAR, then the equation (23) s a solution which can be obtained
s the limil of Vi, defined by the vecursive algorithm (25).

Proof. The simplest case B = R suggests the idea of the proof, and
shows that this solution, in general; is not unique (but this is the only one
which is stable).
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It is easy to verify that the operator N(U) = Vo +N(U) leaves invariant
the ball {U € B: [|U| £ r} for

r e [(1— (1 —4K|[Val)*?)/(2K), (1 + (1 - 4K V|)'2)/(2K)]-
Since
IN@) = NV = |BUU) - BV, V)|
<IBW = V, D)l + | B, U - V)|
SE({UE+1IVIDIY = v,
the operator ¥V is a contraction for each

r e [(1-(1—4K|[Vol)'/?)/(2K),1/(2K
s0 it has a unique fixed point in this ball.

The above lemmas show that a good functional framework to study (23)
should satisfy the following conditions:

(i) ug € B is a distribution homogeneous of degree —2 (for n = 2 and
positive ug this means that ug is a multiple of the Dirac measure §),

(it) M defined by (22) and represented by (24) for ¢ = 1 is a continuous
quadratic form on B.

In particular, for n > 3, ug cannot be of finite mass unless u, = 0.

Below, we give a choice of function spaces (necessarily different from
usual L? or Sobolev spaces) which satisfy these conditions. Besides homo-
geneous Besov spaces and spaces containing functions related to symbols
of classical pseudodifferential operators which have been used in (8-11] for
the Navier-Stokes system, the X, spaces in Proposition 2 are specifically
adapted to our problem for n = 2, 3.

Concerning the interpretation of limy .o ¢~ U{zt~4/2) note that solutions
of (23) enjoy the same continuity properties as those considered in Section 2.
Therefore the initial condition in (23) is attained in the sense of distributions,
and the curve ¢ — U in (21) is bounded in B. Moreover, if B is a dual space,
then continuity is meant with respect to the weak® topology of B.

We can interpret Vg in (23) as the main (tendency) term and A (I) as
a fluctuation around the drift of ug described by the heat equation.

Here we collect the definition and some basic facts concerning homoge-
neous Besov spaces which will be used in the proof of Theorem 3 giving
the first solvability result for (23) with n > 4. We begin with the analy-
sis in Besov spaces defined via the Littlewood Paley theory because then
the calculations leading to the proof of continuity of the quadratic opet-
ator A are relatively simple. The advantage of Besov spaces is an easy
frequency analysis since their abstract definition using a dyadic decompo-
sition is particularly well suited for convolution and potential estimates of
Hardy-Littlewood-Sobolev type, (see [7], [13], [15], [20], [23-24]).
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Let 8 = S(R™), Z = {v e §: D*VU(0) = 0 for every multiindex o} and
Dy={ves:0e PR {O1)}. Since Dy is dense in Z and Z is a closed
subspace of &, the inclusion Z ¢ § induces a surjective map « : &' — 2’
such that ker 7 = P, the space of polynomials, so Z' = &'/P.

Let ¢ € Cpo(R™) satisfy 0 < 4 < 1, 9(£) = 1 for |£] < 1, %(€) = O for
|€] = 2, and deline for any & € Z,

(&) = (27 7E) - p(2 ey,

Evidently snpp i © Ap = €5 2071 < ¢ < 28H1}, T, Gu(8) = 1 for any
£ 5 0, with at most two nonzero tering in the series. The convolutions ¢y *v
are weaningful not only for v € &' but also for all v € 2. The homogeneous

Besov space Bm7 < Z' iy defined for s € R, 1 € p,¢ < oo, by the condition

o 1/q
(26) o Byl = (D020t wwid) < oo
h

with obvious modification if g = co

vy BE | = sup 288y % v, < oo,
pea S P

where | - [, is the LP(R") norn,

Of course, Fgy x v) = $7, s0 the Besov norms control the size of the
Fourier transform 9 over the dyadic annuli 4y, and the parameter s measures
the smoothness of the function v.

We will be mainly interested in the (nonseparable) Banach spaces B, ==

"/ S 2R™M), m > 4, whose clements can be realized as tempered distri-
butlom (hence simpler to interpret than elements of Z' = §'/P); see [7],
[15, Appendix] and [20, p. 181]. It is easy to verify that |@|~? € By, (since
Flle] "2y = 20 220 (n /2 - 1)|£]2-"), and functions homogeneous of de-
gree - 2 belong to B,, provided they are smooth enough on the unit sphere
of R™ (ef. related results in [8, IV, Th, 2.1], [9]).

THE om M3 If g € 1;’:',",(; % iy homogencons of degree ~2 and the norm
o BM, || is small enough, then there arists a solution U of the equa-

tion (23). This solulion is unique in the class of distributions solisfying
(U7 i 'J'H 2, r o given at the end of the proof of Lemma 2.

dno
IProol. According to Lemma 2 it suffices to prove that the operator A

in (24) is defined by a bounded bilinear form on By % B,. By the Plancherel

- 22) ~
formula the norm in B, s equivalent to |[v] = supy 2“”‘/ \%’-’J\z
supy 280221 o g,
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Let U, V € B,, and &, ¥ be the corresponding potentials. Due to the
regularizing effect of the heat semigroup expressed for (24) as

1
€] [ exp(—(1 = M) A = |€]7* exp(~[€]*)(exp(l€]*) - 1)
0
< min(J¢], |74,

it suffices to show that
(27) sup 2R {2RVER g« (UVE) |3} < O|U|| V).
k

Indeed, applying the dilations with A € [0, 1] we obtain, for each m & Z,

I IG Al/Z 52 df
Am
=AM 8P d e~ ATy UV
)\1/2Am

if AV/29m 9k and ATn/4kB-n/2) o Z\B-n)/2gm-n/2) 4o the factor
AB=m)/2 will cancel out the one in the integrand of (24).
Passing to convolutions in (27) we should show

sup 242~ (¢ (2 f (&~ ol V() dn)|, < Clo v,

|G (UVEY (A 26)3

To do this we decompose the sum 3 ; into three pieces:

k+2

Z Z Z =hL+hL+1

F<k=3  j=he2  jrh+s
and estimate them separately.
For the first term, by the Young inequality we obtain

D Ry < 20| ey uauae O 1P pray
j<k
< 2'!\"(”/2_3}|ﬁ1L2(Ak_1UA‘;¢UAk,~|..1) Z 2,’}'(?:,/2»1)”7’142(11 )
Fgk-3
< Oz—k{‘?k(wz—g)|U[L2(A;«m1UAMUA&—\--O}
% { 3 2j(ﬂ/2—2)2j‘ViL3(Aj)}
i<k-3
< cr R Ul v < clu| V.
For the second term note that Ay - Ar_3 C U:,‘:M 1A Ag—Aggs C
Uj<nys As» 80 again by the Young inequality we can write
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k2
Ll > 3 WlnianVmnl e

Jenke2 k-8
b2

s Z 2 I’V|HA) Z 0| L2an2/?

J»-—‘.’\ -2 i<kl 3
< (‘1( i\(ll/l J

k2

x{zk(n./’z- 23 E n’)mw)}{ Z imm(m)z@(n./zmz)zmz}

Jek A& k-3
< (1 k-kin/e 2)»{\‘2&“[‘”1 HVH — szi.:(fi-wnfﬂ)HUH ”VH

For the last term we begin with a pointwise estimate for £ & Ag:

TAGIES NI

r2e-an2 7V gaa,

JE ke
< z 14 LE(AJ“IUAJUAJ-I1‘)2mj!V|L2(AJ)
FEhs
< Z {Zj(n/‘z -E)\f}“‘g }{23 (nf2-2 ‘Vle AJ)}Z -G (n-3)
pELES

< C2 RNV since -3 > 0.
After integrating the square of this expression over A, we have
2A:(n/2~3)|]3|2 < C‘Jrzk('ﬂ,/Qa»:})2%:(:%—?1)2&11‘/2”UH ”VH < OHU“ Hvu

These estimates put together imply for I/ = V the bound |N (I)]| € K[ U|I?
for some K 2 0, as clalmed,

Observe that this does not work when n = 3 and B; is the Besov space
of negative order [3‘2 ;ﬂ ") me, the latter space being perhaps a better
candidate for solving (23) in this situation. '

The uniqueness of solutions constructed in Theorem 3 can be inferred
from the prool of Loemea 2,

Remarlks, It can bo casily proved that ¥y € LP(R™) for each p > n/2
it Vi ¢ L/20R™) unless Vi) = 0.

Tt is of inferest to pote that the potential @ associated with U is an
alement of BY2 ¢ BMO (see [7, p. 53]).

Another class of spaces suitable to study the equation (23) is the scale
of spaces B considered in [8], [L0]. These spaces consist of functions
from ¢ (IR™) satisfying natnurval decay estimates at infinity, and for their
homogeneous counterparts £2, estimates of the singularity at the origin
(like symbols of classical pseudo-differential operators).
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For ¢ > 0 and m & N define the following Banach spaces of functions
on R™:
(28) E®™ = E®™(R")
= {v e C™(R") : [D%u(z)| < C(L+]ey7?7", lo| < m}
and
(29) Eg,m - E’g,m(Rn)
= {v e C™(R™\ {0}) : |D"v(z)| £ Cla|" ¢, o] £ m},
with the norms of v defined as the least constants C' in (28}, (29) respectively.

Evidently, for o < n, E&™ C Li ., since the singularity at the origin is
integrable.

We look for solutions to (23) of the form U = Vi + Ny e E2 with
up € E*™, and m + 2 < n in order to avoid nonintegrable singnlar 1t105 in
further analysis. Note that for the three-dimensional Navier-Stokes system
in [8], [10], U € E*™, ug € EY™ has a weaker singularity than in our case
but the nonlinearity is more difficult to study.

The spaces E®™ are more natural (in their interpretation) to study (23)
than Besov spaces, but the estimates (30) (see below) of (24) (without the
use of Fourier transforms) are slightly more subtle than the frequency bound
(27) particularly well adapted to the Littlewood-Paley decomposition of
functions.

THEOREM 4. Letn > 3, and m < n — 3 be an integer. If uy & L2
is homogeneous of degree —2 and has o sufficiently small norm, then there
exists a self-similar solution t—'U(xt~Y?) with U € E»™ and N(U) €
Ee™ o< 3. Such a solution is unique among those satisfying ||U; E*™| <
r, with r from the end of the proof of Lemma 2.

Proof. First we verify that Vy = e'®uy € E¥™, ¢ > 0, The crucial
point is, of course, the estimate for m = 0. We can represent ug as uy(y) =
Fly)|yl~* with a function f € C(R™) N L*™®(R™), and using (8) we write

|2*(e" uo)(w) = (4mt) 2 (af* [ exp(~[a = y[*/(48)) W)yl 2 dy
=C [ exp(=|X = YP/4)| XY |2 (t1/%Y) dY.
This integral is bounded, which can be scen by decomposing the integral
over R™ into [p + fun \g,* In other words, we use the rapid decay of the
Gauss-Weierstrass kernel and the fact that |V|~2 € L»/2-e o [n/24e o
each £ > 0.

It is easy to verify that if U,V € E&™ then V¥ € Fe-bortl (¢ =

UV € E2%~L™ and V. (UV¥) € E2le-1)m~ 1, However, to retrieve deriva-

tives of order m we should take into account the regularizing effect of the
heat kernel in (24}
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To estimate the %™ norm of AN (U) we caleulate, for |of < m <n—2,

F
D;([’vnf* *FG( Uz)m)
¢

!

b 2
. ¥ x| <1
< [ syt 'Ivlexp(ﬁﬁ)(lmmz/\"'”+|yl"”"")
{)

i7" ff & 'U
)

The derivatives of (7 == UV can be bounded by a multiple of [|I7]]* by
recalling the definition (28).

After a change of variables in convolutions (@ = ¢/2(1 — NYEX
y o= 1R MRY, s = L), the fist integral in (30) is majorized by

e o lil+3 nfa-1 ~fe — yI"
J < ”] ] it — ] )T exp 3 s)

q‘:'ma/r‘l*‘hnvg
X
1+ I?/-’.'T 1/2||4\5\.‘|.‘;;

- ; I | e e PRI A VA M)
MM}!flmwm - (1~ A) PN mi = A

TR 1rt!/2/\-~3/2»—|(ﬂ/2[r
X 1+ |gjt"""/9‘)\ ~~1/2||n:]+3

1 - 9,
p —|X ~Y
= [ f (X~ Y|l axp (———-————-—-~l ] | )

0
(1) (Tl 1)/ 2y (fex]+3) /2

L+ {y(]“_, )1/3)\ 1/,4|m|u, d
2
w0 [ 1% =yl gy [ X Y
=N [ J | X — ¥ exp( 1

b}

(30) ‘wt\ly\.‘}wg

s g e diy ds = Jy + Jo.

dy ds

dy dx

Y da

(| )(](kH Ly/2
x
Al ] /.& |'}f"( e A)i/.@l\nil R
[or /\': : |rv| 43 < nowe have |[YRIN2(L - HE-D2 GNF2
[Y|M(1 - A2, Hence

dY dA.

|
‘“ﬁc’f*””UmAr”%m
0

xjmmm%mpwaWmn“Wng
compare (19) and |Y|t% € L1 + L
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The estimates for the second integral are similar to the preceding ones:

: _ o ay—nfe-1 x :;._m‘_.;.
JQSCOIIIx yl(t -5 ep(mus))

8—3/2_1Q|/2lyllo‘|+2
1+ !y5—1/2|m|+3

t D
— _ tmﬂ/?wl o f21 :i{l'_mwidm
Cofflx vl (L= A7 e {5
t—-3/2—|o¢|/2A—3/2-—-[a\/2.’5|y‘|u|“\-2
1+ [yt~ 72\~ 1/2]lal+3 dy

jf |X — Yl]exp (——]}-(—:;—}I)
(1-

)(\ml+1)/2,\(|ﬂ|+3)/2|Y|lﬂ=|+2

dyds

TTE Y - ARAL2] el Y dA
1
— X — Y[Q
J f | {exp( - )
1 - N el /2y lel+2
( ) 1 dY dA.

X NTAF3E Y (1= Nl

Finally, by an estimate analogous to that for Jy we obtain

1
Jo<C [ ATV - XTV2AN [ X - Y]exp(—]X - Y}/4) dY < co.
0

C'oncerning the decay and regularity of the fluctuation term A (U) for the
solution U € E2™ of (23) observe that for ¢ < 3 and m = 0, ||a|2A () (z)
can be estimated as above by

1
C|1U||2t9/2_1 f,\(é—S)/Q(l
0

X f(lX ~ YV 4 [ X ~ Y|} exp(=|X ~ Y|} /4) dY

This implies that A'{U) € B¢ for each p < 3. The case m < 5 — 3 is similar,
which ends the proof of Theorem 4.

— A2 4

The remaining case n = 2 will be treated with the use of spaces A,
which appear to be also suitable for an alternative approach for n = 3.
Define for n = 2, 3 the Banach space

={v e L*(R"): 8(¢)/|¢| € L) (R™)}
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endowed with the vor lu]] 2= oy, = wax( i, A[B(€)/€11) with a
constant A > 0 to be choson 1.L1<‘ Sinee Jwl., 5 (2w) "], we have
X, C {v e llh: Vi ¢ L™}, whoere o o0 fo, # b, 50 we will worl with
gufficiently regular solutions to (23).

PROPOSITION 2. (1) If w = 2, 1< p = 2, and wy = M8 wilth A 5 0 srnedd
enough, then thore cwisls o ‘.rlj sinilar solulion obtained by application of
Lemma 2 to (23).

(1) If no= 3, 3/2 < p 2 and wg 1 o sufficiently small funelion
homogeneeus of degree 2, .’Ja.r n the conelusion of (1) holds true,

Proof. For 7, V ¢ A, the hilinear formn I reads

,\)"/2 H ) b

1
BU, V) = (dry 2 [
()

Thercfore we can write (cf. the L? annlogues of (13) (15))

1
1(471,) -11/2( ]‘ (1 A) 1/2’\ -3/2/\1!‘/(211)({}\)

o

x ([ lalexp(-Jal /) da) U A~ (2m) V]

"
w AVB(1/ 2,0/ (2p) - 1/2)2 ! B BE

[
% (o [ oo e ap) U1V
4]

= A e UV

where B(a,b) = U'(a) (D) (a4 b)) ! ix the Fuler Beta function.
For the second Lerin dlelining the norm in Ay, we recall (24) and estimate
{nsing the Hansdortl Ymm,u.,qunmly, Up s 1/ =k, Dra Ve 1w LYo 1)

|BULV)|, < 2

MFW@MUMthﬁAIMMW

t} !

¢ (07 % Ty (A

B /\)IEIE)IT'A(H /4

,1/'-2(;-“.", A

I
A f (1 -\ nilap) \in- By n/ 0 A\

&}

x (f explple i) am)r U pULA -V

e
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= B(1— n/{2p),n/(2p))(2m) 4P
R NV
x (0 [ ov e dop™?) U] V)
Y

= ol U V]
The above inequalities imply that | B(U,V)|| < K||U|[|[V] with K =
max(A~le, co) showing Proposition 2.
Remark. In the two-dimensional case we can produce a1 explicit bound
for M. Namely, for uo = M$, Volz,1) = Me?b = M{4r) ! oxp(~—lz|*/4),
50

=] 1/ .
[Volp = M (47r)‘1(27r f pe™ " clg) T2 ppAie = My,
0

oo
ATo() /el = AM [ exp(—|¢%)|¢| ™" de = AM2m [ &7 do= AMd,,
B2 0
Now the solvability condition in Lemma 2 reads
M < (4max(A ey, eg) max(dy, Adg)) ™ = (4max(cydy, eady)) !
after the optimization of A > 0.

Note that the fluctuation term N{U} is uniformly bounded in R*,
n = 2,3, which can be easily proved by a repeated use of estimates of
B(U,V) at the beginning of the proof.

Forward self-similar solutions which are radial can also he studied by
O.D.E. techniques. If a positive solution « is radial, then passing to the
integrated density Q{(r,t) = on fg " Yu(p,t)do, r = |z}, we obtain the
equation (cf. [5, (6)])

(31) Qt = Qr"r - (’i’L - 1)T~1Qr -+ U;lrlanQT..

For a positive self-similar U of the form (21), Q(r,t) = g,t™/2~1¢(r? /1),

where the nondecreasing function ¢ = {(y), ¥ = r?/t, satisfles the equation

1 n— 2 n— 2 1

32 i’ - ! . i — ! e

(32) ¢ € = B = T g =0,

with the prime standing for d/dy, together with the condition ¢(0) = 0

(cf. an analogous problem for backward self-similar solutions in [5, (23)]).
The Chandrasekhar solution (5) corresponds to ({y) == 2y"/2-1, n > 3.
Moreover, if we change the variables y = e and z(s) = ((y), theu

L n 1 - 2 1 .
33 ) PRI 3 2l /s
(33) Z 2z—l—zlez 3 ez+ze 2z =10,
with the dot standing for d/ds, and z(—o0) = 0, z nondecreasing, is a nseful
form of the problem (32).
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The following simple result describes how big the total mass of a radial
self-similar solution can be.

is o nondeereasing solulion of the equation

(34) ¢ A (2y) = 0

(i.c. (82) for m = 2) such that ((0) = 0 and limy .o ((y) = M/ (2x). For
M > 8 there 4s no such solution.

() If n = 3, then for each nondecrensing solution ¢ # 0 of (32),
liny—sne C(3) = 00.

Proof (i) Drop the torm e*2/4 on the left-hand séc‘le of (338) and r‘mte
that for any nondecreasing solution 2z we have (2~ z+42%/4) < (0. Therefore,
by #(~00) = 0, we obtain & € z(1 — 2/4). Since # is negative for z € [0,4],
the nonexistence part of (i) follows.

Now we consider the initial value problem for (32) with ¢{0) = 0 a.n.d
¢'(0) = a 2 0. From the concavity of { we have ((y) < min(ay,4). This
upper bound put into the equation (34) leads to a lower bound for the
derivative ¢":

Cly) 2 aexp(~(1/d+a/2)y) for0<y<4/a
and
Y
¢'(y) 2 {'(4/a) exp ( J (/a+2/n) dn)
4/u
> 160" te~2e~! /™% fory > 4/a.
After an integration we obtain
Cly) = a(l/d + aj2) (L — e~Ho2) 4 180~ e eV M@/ - 1Y),

and (taking y = a~1/% and a — o0o) sup, , ((y) = 2(1 + e™3).

(ii) Suppose that for a solution ¢ 2 0, ¢ "> 0, ¢ #0, there is a cgnsta.nt
A such that ¢(y) < A Then for € = ¢/ + (/4= e~u/4(g¥/4¢)!, (32) implies
the differential inocuality

, n-—2 A
¢ T gt 20,
i,
(yl-—n/2 exp(——-/l(n - 2)—1yllwn/2)£)l > 0.

After two integrations we have

) Y
Cly) 2 Clyo)e /¢ [ /2t dn — o0,
Yo
ag y — 00, a contradiction. .
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Remark. Note that for n = 2 the solution of the Cauchy problem
(1)—(2) with ug = M§ is a radial self-similar solution. Therefore Proposition
3(i) expresses an improved explicit sufficient condition for the global-in-tite
solvability of a particular case of the problem studied in Theorem 2 and in
Proposition 2(i).
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Addendum. The result in Proposition 3(i) can be improved: Solutions
of (34) exist if and only if M € [0, 8). The proof of this will appear in the
paper Growth and cecretion of mass in an ostrophysical model, accopted for
publication in Applicationes Math.
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