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constant function on each X with 1 < k < n, and thus by (10) we have the
same inequality (13) for this f. It follows that liminfy, | M, s < co.
But (11) gives, for f = 1p with B = {(k,1)},

bp—1
1 3

1 i
ol 2 Y

and hence we have sup,, || M, (T)| pg = co.

= (k)51 < S WD) >

pg

Remark. A slight modification of the above example shows that if
(2, q) # (oo, 00), then we may have lim, | My (T)||pq = oo for T" which satis-
fies the pointwise ergodic theorem from L{p,¢) to itsell. It follows that the
converse of Theorem 2 does not hold.

References

[1] T Assani, Quelgues rdsultals sur les opérateurs positifs & moyennes bornées
dans Lp, Ann. Sci. Univ. Clermont-Ferrand IT Probab. Appl. 3 (1985}, 65-72.

[2] L Assaniandl. Wos, An equivalent measure for some nonsingular transformations
and application, Studia Math. 97 (1990), 112

[3] N. Dunford and J. T. 8chwartz, Linear Operators, Part I General Theory,
Interscience, New York, 1958,

[4] 8. Gtadysz, BErgodische Funktionale und individueller ergodischer Setz, Studia
Math. 19 (1960), 177-185.

[6] R. A Hunt, On L{p,q) spaces, Enseign. Maih, 12 (1968), 177-185.

[6] ¥.Ito, Uniform integrability and the poinfwise ergodic theorem, Proc. Amer. Math.
Soe. 16 (1965), 222-297.

[7l U Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1685.

[8] P.Ortega Salvador, Weights for the ergodic mazimal operator and a.e. conver-
gence of the ergodic averages for functions in Lerentz spaces, Tohoku Math. J, 45
(1593), 437—448.

(9 H.L.Royden, Real Analysis, Macmillan, New York, 1088.

[10] C.Ryll-Nardzewski, On the ergodic thesrems. I, {Generalized ergodic theorems),
Studia Math. 12 (1951}, 65-73.

[11] R. Sato, Pointwise ergodic theorems for fumctions in Lorentz spaces Lpy with
p # oo, Studia Math. 109 (1994), 206-216.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

Received April 19, 1993 {3007)
Revised version December 10, 1998

icm

STUDIA MATHEMATICA 114 (3) (1895)

Automatic extensions of functional calculi

by

RALPH DELAUBENFELS (Athens, Ohio)

Abstract, Given a Banach algebra F of complex-valued functions and a closed, linear
{possibly unhounded) densely defined operator 4, on a Banach space, with an F functional
caleulug we present two ways of extending this functional caleulus to a much larger class of
functions with little or no growth conditions. We apply this to spectral operators of scalar
type, generators of hounded strongly continuous groups and operators whose resolvent set
contains a half-line. For f in this larger class, one construction measures how far f{A) is
from generating a strongly continuous semigroup, while the other construction measures
how far f{A) is from being bounded. We apply our constructions to eveolution equations.

I. Introduction and preliminaries. Suppose F is a Banach algebra
of complex-valued functions on a subset of the complex plane. If 4 is in
B(X), the space of bounded linear operators from the Banach space X into
itself, and F contains both fu(z) = 1 and f1(2) = 2, then an F functional
calculus for A is a continnous algebra homomorphism, f — f{4), from F
into B(X), such that fy(A) = I, the identity operator, and f1{4) = A.

When A is unbounded, then we cannot have f1 € F. Something more
indirect is required to involve A in its functional calculus. We will essentially
use the definition of a functional calculus given in [8], except that we will
also consider Banach algebras F that may not contain fo; thus in (3) of
Definition 1.2 we stipulate that functions z ++ (A — z)~™ are mapped where
one would expect,

It is convenient to introduce terminology and important concepts before
proceeding further.

TERMINOLOGY ANT HyPoTHESES 1.1. All operators considered are lin-
ear. Throughot, we will assume that A is a closed, densely defined operator
on a Banach space X. We will write D(A) for the domain of A, p{A) for the
rosolvent set of A4, B(X) for the Banach space of bounded operators from
X to itself. We will write Im(B) for the image of an operator B. The space
F will always be a Banach algebra of complex-valued functions on a subset
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238 R. deLauhenfels

of the complex plane. We will write fo(2) = 1, fi(z) = 2, ga(z) = (A —2)"!,
for complex M.

Throughout this paper, we will use the following sort of informal ter-
minology for cur functional calculi: (e**)(A) will be a shorthand for f;(4),
fi(2) = e**. In general, we will use z for the dependent variable for analytic
functions, s for the dependent variable for functions defined only on the real
line.

DerFiNrTIoN 1.2, An F functional caleulus for A is a continuous algebra
homomorphism, f = f{A4), from F into B{X), such that

(1) whenever both f and ffi are in F, then Im{f(A4)) € D(4), with
FA)AC Af(A) = (FH)(A)

{2) whenever fy € F, then fy(A) =I; and
(3) whenever g7 € F, for some m & N, complex A, then A— 4 is injective
and g*(A) = (A - A)™™,

Note that, when g € F, for 0 < k < m, then (3) follows automatically
from (1) and (2), and, conversely, (2) follows automatically from (1) and (3).

The following, introduced in {2], will be fundamental to our construc-
tions. A general reference for regularized semigroups is [5].

DEFINITION 1.3. The strongly continucus family of bounded opera-
tors {W(t)}i>0 is a C-regularized semigroup it W{0) = C is injective, and
W(@)W(s) = W(t + s)C, for all s,t > 0. The generator is defined by

Bx=0C! (}111(1) %(W(t)m - C’m)) ,

with maximal domain, that is, the domain of B equals the set of all = for
which the limit exists and is in the image of C.

The generator is automatically closed, and, although it may not he
densely defined, the image of ' is contained in the closure of the domain
of B.

In this paper, we show that, when A has an F functional caleulus, then
there exist much larger classes of functions, which we call EXT;(F) (j =
1,2), such that A has an unbounded EXT,(F) functional calculus, that is,
a map from EXT,(F) into the set of all closed operators on X, that extends
the F functional calculus for A4, and is an algebra homomorphism, in some
sense that must be specified; since f(A4) will be unbounded in general, it is
not always clear what analogue of the multiplicative property f{A4)g{4) =
(fg)(A) is reasonable to expect. In many cases, all growth restrictions on
the functions in F may be removed in passing to EXT,(F). For example,
when F equals the space of bounded Borel measurable functions on the real
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line, EXT;(F) equals the space of all Borel measurable functions on the real
line.

“EXT” stands for “extension”.

In Gonstruction One, for f € EXT(F), we will define F(A) indirectly,
by using the 7 functional calculus to define {(etf RY(A)} >0, a regularized

semigroup, and then defining f{4) to be the generator. Essential to this
construction is the following.

Lemma L4 ([5, Propositions 3.10 and 3.11]). Suppose {W(} iz 15 a
C-regularized semigroup generated by 3. -

(a) If Cy is an injective operator that commattes with W (1), forall t > 0,
then {CHW (t)}ezo ds o CCy-regularized semigroup generated by B.
(b) B = C1BC.

Lemma 1.4(a) guarantees that no matter how much regularizing we do,
the generator (which will be f(A)) will be the same.

There are two types of “good” behavior an operator can have: it can
be bounded or it can generate a strongly continuous semigroup of bounded
operators. From the point of view of applications, the latter is more impor-~
tant. Although the generator is usually unbounded, generating a strongly
continnous semigroup of bounded operators corresponds to the many phys-
ical problems that may be modeled as an abstract Cauchy problem

d

(1.3) (—]—tu(t,x) = Bu(t,z) (t>90), wu(0,2)= g,

being well-posed.
By a maild solution of (1.5) we mean that ¢ — u(Z,2) € C([0, 00}, X) and
f{;; u(s, ) ds € D(B), for all £ > 0, with
;

u(t,m)=B(fu(s,m)ds)+m (t > 0.
0

By a strong solution we mean that ¢ — u(t,z) € CY([0, 00}, X) N C(]0, co),
D{B)) and u satisfies (1.5).

When an operator, B, is not bounded, one can measure its “unbound-
edness™ by finding ¢ such that BC is bounded. Similarly, generating a
C-regularized semigroup measures its “ill-posedness”, that is, how far from
woll-posedness the alwtract Cauchy problem corresponding to that operator
Iy, ay iy indicated by the following.

LErmMA 1.6 ([5, Theorems 3.5, 3.13, 4,13 and 5.16]). Suppose B generates
a C-regularized semigroup {W () }izo. Then

(1) (1.5) has a unique mald solution, for all z € Im(C);
(2) (1.5) has o unique strong solution, for oll z € C(D(B));
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(3) (1.5} has a mild solution if and only if W(t)z € Im(C), for alit 2 0,
and t— CAW(t)z € C([0,00), X); and
(4) there emists a Fréchet space Z such that

Im(C)] = Z — X

and Bz generates a strongly continuous semigroup. If {W(t)}izo is empo-
nentially bounded, then Z may be chosen to be a Banach space.

Thus Construction One addresses the second sort of “good” behavior,
since f(A) is defined as the generator of a regularized semigroup. Construc-
tion Two addresses the first kind of “good” behavior, in the following way.
Given f in EXTq(F), we choose h € F so that h(A) is injective and fh & F;
f(A) is then defined to be (A(A))~*(fA)(A). Thus, although f(A) may he
unbounded, f(A)R(A) is bounded.

‘We apply these general constructions to specific classes of operators, with
specific choices of F, in Section IV. For spectral operators of scalar type, we
may choose F to be the space of bounded Borel measurable functions on the
real line, so that, as mentioned earlier, the closed operator f(A) is defined
for any Borel measurable function f. For generators of bounded strongly
continuous groups, F may be chosen to include continuously differentiable
functions that decay sufficiently rapidly at infinity, so that EXT;(F) in-
cludes all continuously differentiable functions, that is, the closed operator
f(A) is defined whenever f' exists and is continuous, on the real line. In
both these examples, f(A) will be densely defined, for all f € EXT;(F).

For operators whose resolvent set contains a half-line, F may be chosen
to be functions holomorphic on a neighborhood of the spectrum of A that
decay sufficiently rapidly at infinity, and EXT;(F) then includes all func-
tions holomorphic on a neighborhood of the spectrum of A, whose image
omits a half-line. There are no conditions involving the behavior of the fune-
tion at infinity. In general, these functions may not even be polynomially
bounded, or meromorphic at infinity.

For both constructions, we will need injective operators, h(A4), for ap-
propriate i € F. One way to obtain such operators is the following.

Lemma 1.7. Suppose {W(t)}i>0 18 @ regularized semigroup anclytic in a
neighborhood of (0,b]. Then W (b) is injective. If, in addition, Im(W(0)} is
dense, then so is Im(W(h)).

Proof. Let B be the generator of {W{t)}:>0. As with strongly contin-
uous semigroups, (d/dfY"W (£)y=s = B"W(b) € B(X), for any n ¢ N,

I W(b)z = 0, then for any n € N, (d/dt)"W ()x/4=p, = B"W (b)z = 0.
Since t -+ W (t)z is analytic in a neighborhood of (0, %], and continuous on
[0,8], it follows that W(0)z = 0. Since W(0) is injective, this implies that
£ = 0. Thus W(b) is injective.
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Now suppose Im(W(0)) is dense. Suppose z* € Im(W(b))t. Then
(W(byz*, &) =0, for all z € X, so, as in the previous paragraph, we have,
forall € > 0,

(5) e,

go that by analyticity,
(z*, W(0)*z) = lin"é(W*(D)m*, Wi(e)z) =0,
&—

W(e)z)e=s = ((B")" b)*:ﬂ* W(e)z) =0,

for all z € X. Since Im(W(0)), hence Im(W (0)?), is dense, this implies that
x* =0, ag desired. =

In Section V, we apply our constructions to evolution equations, that is,
to the abstract Cauchy problem (1.5). In particular, we show how one can
make literal sense out of the formal solution u(t,z) = e*®x, even when B
does not generate a strongly continucus semigroup.

It is interesting that, in Construction Two, we gain information about
the original F functional calculus by our extension. We show (Theorem
3.7(7)) that, when both f and 1/f are in EXTy(F), then f(A4) is injective.
In particular, when f € F but 1/f € F, our construction is useful. This is
applied to all our examples in Section I'V.

II. Construction One. In this section, we will ask that F satisfy the
following hypotheses.

HyrOTHESES 2.1. For any f € F, there exists h € F such that hy{z) =
et n(z) e F, for any ¢ > 0, with
t v+ hy € C{[0,00), F),

and A(A) is injective whenever A is an operator with an F functional cal-
culus.

LEMMA 2.2. Suppose that 8 — ks € C([0, 00),F) and A has an F func-
tional caloulus. Then for any t = 0,

j'ks(A)ds: ( fk ds)(A
0 0

Proof. Fix t > 0. Note that s ++ ks{A) € C([0,00), B(X)), thus the
first integral is defined as a limit of Riemann sums converging in B(X).
The second integral is the limit of Riemann sums converging in F, thus
( fo k, ds) € F, so that ( fD ks ds)(A) € B{X) is defined by the F functional
calculus for A.
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Tor any n € N, define the Riemann sum

Then, by the linearity and continuity of the map f — f(A), and the conti-
nuity of the integrands,

4 n
¢
ko(A)ds= lim =3 kyuy(A
J s(4)ds n].il:[;onj=lk_;f,/n( )

= lim R (A) = (lim R.)(4) = ( j Byds ) (4). =
0

n—+00 1T~ O

COROLLARY 2.3. Suppose A has an F functionel caleulus and h, f are
as in Hypotheses 2.1. Then {hy(A)h>o is o regularized semigroup generated

by f(A).

Proof. Since f — f(A) is an algebra homomorphism and h( A} is injec-
tive, {h1(A)}¢»0 is a regularized semigroup. By Lemma 2.2,fort >0,

S ) F()ds = [ (raf)ayds = [ hifds)(a)
0 o] 0

= (h; — h)(A4) = h(A) ~ h(A).
Differentiating at ¢ = 0 gives us the result. m

DEFINITION 2.4. Let EXT; (F) be the set of all complex-valued functions
g for which there exists A € F such that hi(z) = e h(2) € F, for t > 0,
with '
L hy € C([0,00), F),
and h(A) is injective whenever 4 has an F functional calculus.

ExaMPLE 2.5. (a) Suppose m € N, V is an open set in the complex plane,
w.hose boundary is a finite union of smooth (possibly unbounded) curves,
with a half-line contained in the complement of V', For A €V, define

HZV)={fe H2(V)|w— (A - w)™ f(u) € H*(V)},
with
£ llzrge ¢y = sup{|(A — w)™ f(w)] | w € V}.

By choosing A(z) = (A — 2)=™, it is clear that EXT(H2(V)) includes
all functions holomorphic on V' whose real part is bounded above.

Note that EXT; {(H22(V)) may include functions that are not polynomi-
ally bounded. For example, if V = H., the horizontal strip {z | [Tm(2)] < ¢},
then exponentials z — —e¥* (0 < w < m/(2€), are in EXT; (H(H,)).
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(b) If F is chosen to be Cy{R), then EXT; (Co(R)) includes C(R). For f €
C(R), this may be seen by choosing, for Definition 2.4, h(s) = e~ e~ If()1*,
The operator h(A) is injective by Lemma 1.7, since

—a2 —z|F(a)|® . — —5t
e e O A) @~ ) om0 = {(67e O 0y () ey
is a holomorphic regularized semigroup.
(¢) If B(R) is defined to be the set of all bounded Borel measurable
functions en the real line, with the supremum norm, then the same argument

as in (b) shows that EXT;(B(R)) includes all Borel measurable functions
on the real line.

(d) Let F be the set of Fourier transforms of L! functions on the real
line, that is, functions f of the form

fsy= [ e F(t) at,

R
where F ¢ L'(R), with

£l = [1#]2-

Let C*(R) be the set of all continuously differentiable functions on the real
line.

We claim that C*(R) C EXTi(F).

It is well known that there exists a constant M, independent of f, such
that (see [10])

10 < ML+ 1),

This implies that F contains all functions g that are continuously differen-
tiable, with (1 + |s|)g(s) and (1 + |s|)g'(s) bounded on the real line, and
there exists a constant K so that

(d1) lgll7 < K (sup((1+ |s))|g(s)]) +sup((1 + [sDlg"(s)])),
s€R agR

for all g € CY(R).
Fix g € C'(R). Define
H(s)= sup (g@)*+d' (@)%,

G| <4
then define

h(s) = Sl - S)e_yzf_ﬂty) dy (s20),
VTN s-we Ve HWdy (s<o).

Then, since H is nondecreasing on [0, o0) and nonincreasing on {—oo, 0],

there exists a constant K so that
2

h(s) < Kie ) < Kpe WO, vs e R,
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whence
(a2) e (L Ish(s) 3o € G0, 00), ColR))
Similarly, there exists a constant K4 so that
B +| Sh(s)| < Kae s
thus
(a3) s (14 [sl) 2 (h(s)et9) € O((0,00), Co(R)),
and
(d4) ti— (14 |8))e!"* n(s) € C([0,00), Co(R)).

By (d1)—(d4), t = e*h € C([0,00), F).

All that remains is to show that h(A) is injective, whenever A has an F
functional calculus. This follows from the fact that A and b’ are real, positive
and bounded, and &' converges monotonically to zero at £oo, since we may
then write A = ¢'°8" and use (d1) to show that

{(71°8 M (L + i) " )(A) }oenmp
defines a holomorphic strongly continuous (1+44) ~!-regularized semigroup.
By Lemma 1.7, h(A)(1 + 1A)~ = ("8 MO (1 + is)"1)(A), hence h(4), is
injective. .
Before we define f(A), for f € EXT1(F), we will worry about possible
ambiguities in cur definition,

LEMMA 2.6. Suppose A has an F functional caleulus, g € EXT(F) and,
for j =1,2, h; is as in Definition 2.4, that is, h;(2) = ¥ h;(2) € F,
for t >0, h;(A) is injective, and

f— ]’Lj’t S O([O,OO>,-F) (7 = 152)'

Then {h;(A)}izo is an hi(A)-regularized semigroup (j = 1,2), and the
generator of {h1.(A)}i>0 equals the generator of {hy i (A)}iso.

Proof. Since A has an F functional calculus, {h 7.6{A) }izo has the alge-
braic properties of an h;{A)-regularized semigroup. The continuity follows
from Definition 2.4. Let us write g(j, A) for the generator of {Ay;(A4)}imu.
By Lemma 1.4(a), for j = 1,2, g(j, A) is the generator of the h(A)hy(A)-
regularized semigroup {hi(A)he+(A) hso = {ha(A)h1,1(A4)}iz0. Thus g(1, A)
= g(2,A4), as desired. m

DEFINITION 2.7. Suppose A has an F functional calculus. For g €
EXT1(F), let h and h; be as in Definition 2.4, Then g(4) is defined to be
the generator of the h(A)-regularized semigroup {h+(4)}:>0.
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By Lemma 2.6, this definition is independent, of which A is chosen.

By [5, Theorem 3.4], D(g(A)) is dense whenever Im(h(A)}) is dense.

THEOREM 2.8. Suppose A has an F functional calculus. Then the map
= f(A) from Definition 2.7 is a map from EXT(F) into the space of all
closed operators on X, extending the F Sfunctional caleulus, sueh that

(1) if fo € EXT1{F), then fo(A) =I;

(2) if gx € EXTL(F), then A — A is injective and g, (A) 15 an infective
extension of (A~ A)™Y, with

ga(A) = (h(A)7 (A = A) " h(A),

where h is as in Definition 2.4 for gy;

(3) if f€F and g € EXT,(F), then

F(A)g(A) € g(A)F(AY;
(4) if f.9f € F and g € EXT1(F), then
gAY f(4) = (g£)(A);
and
(6) if f,foe F and 1/f € EXT((F), then f(A) is injective.

Proof. By Corollary 2.3, Definition 2.7 extends the F functional calcu-
lus for A.

(1) Let A and h: be as in Definition 2.4, for g = fy. That is, h € F, and
fo( A} is the generator of {e*h(A)}izo. For any z € X, (d/dt)ly=ohi(A)z =
h({A)z, thus o € D(fa(A4)), with fo(Ad)z = z.

(2) Let W{t) = (e'*h)(4) {t 2 0), C = W(0). For t > 0, by Lemma 2.2,
(A— f)(e" — 1)k € F, with

S Wisyds = ([ erhas)(4) = (3~ fi)(e — R)(A)
0 o

this implies (see Definition 1.2(1)) that, for any z € X, (W(t) — Clz =
((e'9 — 1)h)(A)x € D(A), with

(2.9) (A~ AW(E) - Cz= [ W(s)zds;
D
and for @ € D(A),

:
(2.10) [ W(s)pds = (W(t) - C)A — A)a.
0
Thus, differentiating both sides of (2.10) at ¢ = 0 tells us that (A — A)z €
D(ga(A)), with
o= gy(A)(A - Az (z € D(A).
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This implies that A — A is injective, and ga(A) is an extension of (A — 4) -t
By Lemma 1.4(b}, gr(4) = C1g,(4)C. Thus g)(A} is an extension of
C YA - Ay C.

To show equality, suppose @ € D{gx(A)). Since A is closed, we may
differentiate both sides of (2.9) at ¢ = 0, to obtain

(2.11) (A — A)Cgr(A)z = Cx,
so that z € D(C~1(A — 4)~1 (), with
ga(A)z = C7HA ~ 4)7'C,

as desired. By (2.11), ga(A4) is injective.
For the proof of (3) and (4), let h be as in Definition 2.4 for g, and

W) = (e9h)(4) (#=0), C=W(0).
{3) Suppose = € D(g{A)). Then for t > 0,

Lws - 0)p()e = 1(4) (F0R (e - C) ),
thus since f (A) is bounded, we may take the limit as ¢ —~ 0, as follows:
tim L w8) - 01100 = 1)1 TV - )

= f(A)Cg(A)z = Cf(A)g(A)x.

This implies that f(A)z € D(g(A)), with g(A}f(A)z = f(A)g(4)z, as de-
sired. '
(4) Suppose © € X. For any ¢t > 0, we may use Lemma 2.2 as follows:

J W) af)(Azds= [ (e7hgf){A)zds = ( [ eohgs ds) (A)z
0 0 0
= (et f)(A)z ~ (hf)(A)e = W () f(A)z - CF(A)e.
This implies that f(4)z € D(g(A)), with g(A) f(A)x = (gf)}{A)z, as desired.
(5) follows from (4) and (1). m

III. Construction Two. In Construction One, when ¢t — e*¥h is in
C*([0,00),F), then it is not hard to show that gh € F and g(4d) =
(h(A)~1(gh)(A). In general, if gh & F and h{A) is injective, this defini-
tion is simpler.

HvPoTHESIS 3.1. We will assume throughout this section that there ex-
ists h € F such that h(A) is injective whenever 4 has an F functional
calculus.
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DEFINITION 3.2. Let EXT,(F) be the set of all g for which there exists

h € F such that gh & F, and h(A) is injective whenever A4 has an JF
functional calculus.

Note that EXT3(F) is an algebra.

EXAMPLE 3.3. (a) Let V and H3(V) be as in Example 2.5(a).

Let H(V) be the set of all functions holomorphic on V whose image,
F(V), omits a half-line,

We claim that H(V) C EXTy(H(V)). To show this, we will use the
results of Section IL.

Let H(V)1 be the set of all £ € H(V) such that {Re(f(z)) | z € V} is
bounded above. Then it is not hard to see, by choosing h{z) = (A — )™
{(Ag V), that H(V); C EXTy(F).

Suppose now that g € H{V). There exist complex a, 8 such that the
image of ag -+ 8, (ag + B)(V), does not include (—o0,1). Let

k(z) = /ag(z)+ B,
where the square root is chosen to map C—(—oo0, 0] into the right half-plane.
Note that 1/k € H*®(V), so that (1/k){gx)™ € HX(V).
By (2) and (4) of Theorem 2.8, for A & V,

0= 4 = () (o™ ) (4)
This implies that ((1/k)(gA)™)(4) is injective. Thus, if

2
h= (%(g)‘)m) H

then h satisfies the hypotheses of Definition 3.2 for g, and thus ¢ £

EXT,(HZ2(V)) as desired. '

For particular choices of V, EXT3(V) includes much more than H(V).

For example, suppose, for some ¢ > 0, that V equals the horizon-
tal strip He = {z + 4y | 2,y € R, |y < e}. Then, for any polyno—
mial p and for ¢ real, p(z) and e'(*) are in EXTy(H.), since p(z)e -
and €@ e=#"" where n is the degree of p, are in H(H.). The operator
(e""m)(fl) is shown to be injective by using Lemma 1.7 and the fact that
{(e=%"" (28 + 2)~™)(A) }eno extends to a (2ei + A)~"-regularized analytic
semigroup.

For V equal to the sector Sy = {re'® |r >0, |¢| < 8}, with 0 < 8 < 7/2,
the functions z and &%, for t real, are in EXT5(Ss), since, for af < 7r/2
with @ > 1, ze==" and e**e™*" are in H(Sg). If nf < w/2 and p is a
polynomial of degree n, then a similar argument shows that p(z), e*®) g
EXT2(S0).
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(b) The same argument as in Example 2.5(b) shows that EXT5(Cy(R))
includes C'(R). Or, given continuous g, we could have used h(s) = (1 +
lg(s))= (L~ |s])~ ! in Definition 3.2.

(c) As in (b), EXT4(B(R)) includes all Borel measurable functions.

(d) As in Example 2.5(d), let F be the set of Fourier transforms of
L' functions. Then the same argument as in Example 2.5(d) shows that
CH(R) € EXTy(F).

DErFINITION 3.4. Suppose A has an F functional calculus. For g €
EXTa(F), let h be as in Definition 3.2. Then g(A4) = (h(A))~1(gh)(A)

To see that this is well defined, that is, independent of which b is chosen,
note that, for any k € F such that k{A) is injective,

((kR)(A)) ™ (gkh)(A) = (A(A))7H(k(4)) " k(4)(gh)(4)
= (h(A)) ™ {gh)(A).

It is clear from Hypotheses 3.1 that this definition of f(A4) extends the
F functional calculus.

Remark 3.5. This definition does not appear to involve regularized
semigroups, except by analogy. However, in practice, the difficult part of
applying this construction is in verifying that h{A4) is injective. Both Lemma
1.7 and the construction of the previous section will provide many such h,
including our choices in the examples in the next section.

Before going further, we should verify that this construction agrees with
the construction of the previous section, when they are both defined.

PROPOSITION 3.6. Suppose A has an F functional calcubus, F sotisfies
Hypotheses 2.1 and g € EXT,(F) N EXTy{F). Then the g(A) of Construc-
tion One equals the g(A) of Construction Two.

Proof For j =1,2, let g(4, A) be the g(A) of Construction 5. Suppose
h1 is as in Definition 2. 4 and hg is as in Definition 3.2. Let A = hyha, t > 0,
Wi(t) = (9h1)(A),  W(t) = ("h)(4) = Wi(t)ha(A).
By Lemma 1.4(a), g(1,A) is the generator of the regularized semigroup
{W(t)}ez0.

Since g(2, A)hy(4) =

(gha)(4) € B(X), we have, by Lemma. 2.2, for
120,

t

f (e®8gh)(A
= (e"9h)(A) — h(4) = W (1) ~ W(0).

J Wi(s)g(2, A)ha(A) ds

o
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Differentiating at t = 0 gives us
hi(A)g(2, Aha(A) = (1, A}h(A),
thus, by Lemma 1.4(b),
91, 4) = (h(A4)) ™ g(1, A)R(A) = (ha(4)) " 9(2, A)ha(A) = g(2, A). n

THEOREM 3.7, Suppose A has an F functional calculus. Then the map
[ f{A) from Definition 3.4 is a map from EXT2(F) into the space of all
closed operators on X, extending the F functional coleulus, such that

(1) fo € EXT2(F) and fo(A4) = I;

(2) if gy € EXTQ(F) then X — A s injective and g5(A) is an injective
extension of (A — A)™*, with

gr(4) = (A(4)) (X — A) h(A),
where h is as in Definition 3.2 for g,;
(3} if f€F and g € EXT4(F), then fg e EXTs(F), with
F(A)g(4) C g(A)f(4) = (f9)(A);
(4) if f,g9 € EXTa(F), then fg € EXTo(F), and
F{A)g(4) C (fg)(A),
with
D(7(A)g(4)) = D((f9)(A)) N D(g(A));
(6) if f,g € EXTa(F), then (f + g) € EXTo(F), and
FlA) +g(4) C(f+9)(4),

where D(f(A) -+ g(4)) = D(f(4)) ND(g(A));

(6) suppose p(s) = E;J;Vmo ars® € EXTo(F) and there exists a complex
A such that, if A1,...,Ax ave the roots of A — p, then for 1 < k < N,
Ay € o(A) and gx, € EXTo(F); under these assumptions,

N
=S as
k=0

and D(p(A)) = D(AN);
(7) 4f both f and 1/f are in EXTo(F), then f(A) is injective and
Im{f(A)) = D((1/F)(4))
an

(8) if f e EXTy(F) and X is a complez number such that (A~ f)~! € F,
then A € o(F(A)), with

(A= F(A))™ = (A= £ )(4).
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Proof. For (1), choose any h € F such that h(A) is injective (such an
h is guaranteed by Hypothesis 3.1).

(2) There exists h € F such that h(A) is injective and gph € F. This
implies (see Definition 1.2(1)) that, for all z € X, (gxh)(4)x € D(A) with
(A= A)(gah)(A)e = h(A)z,

and for z € D{4),
B(A)e = (Gh) () - A)a,
80 that A — A is injective. For o € D{g(4)), we have
g (A)z = (MA) " (gah)(A)e = (h(4)) (A - 4) " A(A)e,
an extension of (A — A)~!. Thus
(A= A)71 Cga(4) € (A(A) A - A) 7 h(A);
the first inclusion implies that
(RANTI (A~ A) T A(A) C (R(A)Mgn
(see the comments after Definition 3.4).
Thus ga(A) = (R(4))7(X ~ A)"1h(4). Since h(A) and (A — A)~! are
injective, so is g, (4).

(3) Let & be as in Definition 3.2 for g. For the containment, suppose
z € D(g(A)). Then

R(A)(f(A)g(A)x) = F(A)R(A)(R(A)) " (gh)(A)z
= f(A)(gh)(A )’ﬂ = (gh)(A)(f(A)z).
This implies that f(A)z € D(g(A)}), with g(A)f(A)x = F(A)g(A)z, as de-
sired,
It is clear that fg ¢ EXT,, since (fg)h € F. For the equality, suppose
z € D({(fg)(A)); then

(AYR(A) = gr(A)

(@h)(A)f(A)z = (ghf)(A)z = (Fo)(A)R(A)z = R(A)((fg)(A)x).
This implies that f{A)z € D(g(A)), with g(A)f(A)z = (fg)(4)z.
Thus (f9)(A) C g(A)f(A). Conversely, suppose & € D(g(A) f(A)). Then
(19)(Ah(A)z = (fh)(A)z = (gh)(A)F(A)s = h(A) (g(A) f(A)z)

This implies that g(A)f(A4) C (fg)(A).

(4) Let hy be as in Definition 3.2 for f, let hg be as in Definition 3.2 for
g, and let b = hyhy. Then h(A) is injective whenever 4 has an F functional
calculus, and (fg}h € F. Thus fg € EXT,.

Suppose € D(f(A)g(4)). By (3), (F9h)(4) = F(A)(gh)(A), thus

(FQ)(Ah(A)z = (fgh)(A)x = f(A)(gh)(A)x
= f(A)h(A)g(A)e = h(A)F(A)g(4)z.
This implies that = € D((fg)(4)), with (fo)(A)x = flA)g{A)z.
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Thus F{A)g(A) C (f9)(A) and D(f(A)a(4)) € D((fg)(4)) N D(g(A)).
Conversely, if @ € D((fg)(4)) N D(g(A4)), then using the fact that = €
D(g(A)), (3) of this theorem, and the fact that = & D((fg)(A)), in that

order, we have
(FR)(A)g(A)z) = f(A)R(A)(g(A)z)
= f(A)(gh)(A)e = (fhg)(A)z = h(A)((Fg)(A)z).
This implies that g(A)z € D(f(A)), that is, z € D(f(A)g (A).

Thus D(f(A)g(4)) = D((fg)(4) N D(g(A)), as desired.

(5) Let i, hy and A be as in the proof of (4). Then h{A) is injective
whenever A4 has an F functional calculus, and (f + g)he F. Thus (f+g) €
EXTy(F).

Suppose = € D(f(4)) N

(fh
and since & € D(g(A4

( (A)). Then since z € D(f(A)),
Fh)(A)z = ha(A)(fhi)(A)z € Im((A)),
I
(gh)(A)z = h1(A)(gh2)(A)z € Im(h(A

thus ((f+g)h)(A)z € Im( h( )) which implies that ¢ ¢ D((f+g)(A)), with

(/ + 9)(A)e = ((A) ™ + a)h)(A)a |

= (MA)NH( R (A)z + (gh)(A)z) = fF(A)z + g(A)z,

as desired.

(6) Without loss of generality, suppose the leading coefficient of p is one.
Let p, (A) be the series definition.
Since

N
A-p(A)=JTw— 4)
k=1
by (2), A € a(p1(4)), with
N
A-—pm(A)" = H (M~ 4 Hg,\k(A.
Pl

For 2 € D(p(A)}, by (1), (4) and (2),

N
[TOw ~ 471 = p(A))z =z,
foasl
30 .
N
(A= p(A))z = [[ (e — Az = (A~ p1(4))z,
k=l
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thus A — p1 (A4) is an extension of A — p(4). But by (4),

A—plA) [JOe -4 =1,

k=1
30 A—p(A) is surjective; since A~ p1{A) is injective, it follows that A — p(A)
and A~ p1(.A) must be equal.
(7) follows from (4) and (1).
(8) Let B = ((A— £)71)(A). By (1), (3) and (5),
B\~ f{(A) S (A= f(A)B=1I. =

IV. Examples

ExampLE 4.1. Here we will consider operators whose resolvent set con-
tains a half-line, and whose norm is polynomially bounded. We will construct
an unbounded analogue of the Riesz-Dunford functional calculus.

DEFINITION. Suppose V is an open set in the complex plane, whose
boundary is a finite union of smooth (possibly unbounded) curves, with a
half-line contained in the complement of V. We will say that an operator,
A, is of a-type V if the spectrum of A is contained in V, with

Iz~ A) T < M1+ [2])%, V=gV,
for some constant M, o > ~1.
FaAgV letm=[a]+2, BZ(V)={flz A—2)"f(z) € H*(V}}.

Then it may be shown (see [4]) that A has an A2 (V) functional calculus,
given by

HOE ff -1 2

2mi

DErinrrioN. Let H(V) be the set of all functions holomorphic on V
whose image f(V') omits a half-line.

PrOPOSITION. Construction Two defines a map, f w— f(A), from

EXTy(H (V) into the set of all closed operators on X, such that H(V) C
EXTo(H2(V)) and

(1) fo(A) =

(2) for any A€V, ga(A) = (A — 4)"Y

(3) for [ € HR(V), g € EXTa(H2(V)),
F(A)g(A) C g(A) f(A) = (f9)(A);

(4) for f,g € EXTo(HS(V)),

F{A)g(4) C (f9)(4),
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with

D(f(A)g(A4)) = D({fg)(4)) N D(g(4));
(5) if f, 9 € EXTo(HP(V)), then (f + g) € EXTo(H2(V)), and

FA) +9(A) C (F + 9)(4),
where D(f(A) + g(A)) = D(f(A)) N D(g(A));
(6) if p(s) = 2;{,‘\;0 aks® € H(V), then

N
= ZakAk
fo=0
and D(p(A)) = D(AN);
(7) if h is holomorphic on V and for all z € V, h(2) € (—o0,0], then
h{A) is injective; and
(8) if f € H(V) and there exists a positive constant c so that
|A— flw)] = el + [w]™), VYweV,
then A € g(f(A)).

Proof We have shown in Example 3.3(a) that H(V) € EXT(HZ(V)),
thus we may apply Theorem 3.7.

For (6}, choose complex A € p(V). Let Ay,..., An be the zeroes of p— A.
Then for 1 <k < N, A is outside V, thus by (2) of this Proposition and
(6) of Theorem 3.7, the result follows.

For (7), note that 1/h € H(V), since it also avoids (—oo,0]. =

Remarks. SupposeiAd generates a strongly continuous group. Then A
is of 0-type H,, for some & > 0 (choose £ greater than the exponential type
of e®*4), where H, is the horizontal strip {z+1iy | z,y € R, |y| < &}. For any
polynomial p and for ¢ real, the functions p(z) and e*?(*) are in EXT2(H,)
(see Example 3.3(a)), thus we may use Construction Two to define p(A) and
etP(A) = (etP)(A). .

Similarly, when —A generates a strongly continuous holomorphic semi-
group, then there exists a real w, and § < 7 /2, so that A —w is of {—1)-type
Sg, where Sp is the sector {re*® | r > 0, [¢] < 8}, so that we may use our
construction to define e*4, for t real. If nf < 7/2 and p is a polynomial of
degree 1, then we may define p(A) and e'*'4) = (&'P)(4) by our construction
(see Example 3.3(a)).

Perhaps of particular interest in this comstruction is the case when V
is the disjoint union of two (both possibly unbounded) open sets £2; and
£2;. Then 1g,(4), j = 1,2, define unbounded projections, analogous to
spectral prOJectlons For example when A is the generator of translation
on L! of the unit circle, we may choose 2, = {z | Re(z) > —1/2}, 5 =
{z | Re(z) < —1/2}; then 1, (A) is an unbounded analogue of a spectral
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projection onto H* of the unit disc (it is well known that there is no such
bounded projection).

EXAMPLE 4.2. Let A be a spectral operator of scalar type (see [6], [T]).
This includes, but is not limited to, self-adjoint operators on a Hilbert space.
We may choose F = B(R), the space of bounded Borel measurable functions
on the real line with the supremum norm. The B(R) functional calculus for
A is given by

Az = [ f(s)dB(s)z (2 € X)),

where E is the projection-valued measure for A.

We have shown in Example 3.3(c) that EXT3(B(R)) contains all Borel
measurable functions on the real line. Thus Theorem 3.7 gives us the fol-
lowing,

ProOPOSITION. Construction Two defines a map, f — f(A), from the
space of Borel measurable functions on the real line, into the set of oll closed,
densely defined operators on X, such that

(1) folA) =1

(2) for any AE R, ga(A) = (A —A)7h
(3) for f € B(R), g Borel measurable,

F(A)g(A) € g(A)F(A) = (fg)(A);
(4) for f,g Borel measurable,
F(A)g(4) € (fg)(4),
with,
D(f(A)g(4)) = D({fg)(A)} N D(g(A));

(5) of f and g are Borel measurable, then

F(A) +9{4) € (f +9)(4),
where D(f(A) + g(A )) (f(A)) ND(g(A));
(6) if PI(S) Zk o aks®, then

N
= Za;CAk

k=0
and D(p(4)) = D(A);
(7) if f is Borel measurable and never zero, then f(A) is injective and
has dense range; and
(8) if f is Borel measurable and A & F(R), then X € o(f(A)).

Proof. This is primarily a consequence of Theorem 3.7 and Example
3.3(c). For (6), choose complex ) outside of p(R), then apply Theorem 3.7(6).
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The density of D(f(A)}, for all Borel measurable £, follows from Lemma
1.7, since, given Borel measurable f, if h(s) = e /I then Im(h(A)) C

D{f(A)), and {(3*5”(5” A )}Re (z)>0 18 a strongly continuous holomorphic
semigroup.

The density of Im(f(A4)), in (7), now follows from (7) of Theorem 3.7. =

Remark For Borel measurable functions that are bounded on bounded

sets, one may also use the projection-valued measure E, for A, to define the
functional calculus of this example:

N
fl)z= Jim [ f(s)dE(s)e,
—N

with maximal domain, that is,

N
D(f(A))z{zex} Jim [ f(s)dB(s
~N

JE exists} .

We emphasize that, in our construction, f may not even be locally bounded.

EXaMPLE 4.3. Suppose {A generates a bounded strongly continuous
group, {4 }ier.

As in Example 2.5(d), let F be the set of Fourier transforms of L' func-
tions. Then it is well known (see [3]) that A has an F-functional calculus,
given by

Fd)a = [ e ™aF() dt,
R

By Example 3.3(d), CY{R) C EXT5(F). Thus Theorem 3.7 gives us the
following.

Ve € X.

PROPOSITION. Construction Two defines a map, f — f(4), from C1(R)
in{o the set of all closed, densely defined operators on X, such that

(1) fa(A
(2} for any )\ QE R, ga(A) =
(3) for [ € F, g € C'{R),

f(A)g(A) € g(A)f(A) = (fg)(A)
(4) for [,g € CM(R),

(A-4)7

F(A)g(A) € (fa)(A),
with
D(f(A)g(4)) =D
(5) if f,9 € CYR), then
F(A) +g(4) € (f +9)(A),
=D(f(ANNDg(A))

((f9)(A)) " D(g(A});

where D(f(4) +g(4))
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(6) if p(s) = Zi\;O aps®, then
N
p(A) = Za;ﬂAk,
k=0

and D(p(4)) = D(AV)
(7) if f € CYR) is never zero then f(A) is injective and has dense
range; and

(8) if f e CHR) and X & f(R), then A € o( f(A)).

Proof. This is primarily a consequence of Theorem 3.7 and Example
3.3(d). For (6), choose complex A outside p(R), then apply Theorem 3.7(6).

The density of D(f(A)), for all f € CH{R), follows from Lemma 1.7. Let
h be as in Example 2.4{d). Then Im(h(A)) C D(f(A4)), and the argument
given in Definition 2.4(d) to show that h(A) is injective also shows that
Im{h(A)) is dense.

The density of Im{f(A)), in (7), now follows from (7) of Theorem 3.7. m

More generally, we could consider i4 to be a spectral distribution of
degree k (see [1]; this includes, for example, the Laplacian on Cu(R™) or
C(42), for appropriate 2 C R"). Then EXTy(F) would include all (k- 1)-
tires continuously differentiable functions on the real line.

This could also be generalized to functions of n commuting generators
. of bounded strongly continuous groups (see [5, Chapter XII|).

V. Exponentials and evolution equations. Consider the abstract
Cauchy problem

(5.) Ltt2) = plault,a) (:20)

where p is a polynomial of degree n, p(s) = Y p_,ars®, and

uw(0,2) = z,

(A = iakflka:, D(p(A4)) = D(A™).

k=0
As in Section I, by a mild solution of (5.1) we mean that ¢ — u{t,z) €
C([0,00), X) and [ u(s, z) ds € D(p(A)), for all ¢ > 0, with

alt,2) = p(4)( j“ u(s,a)ds) +o  (£20).
0

By a strong solution we mean that ¢ — u(¢,z) € C*([0, c0), X) N G([0,00),
D(p(A))) and u satisfies (5.1).

THEOREM 5.2. Suppose A is of a-type V (see BEzample 4.1), A€ V and
there exists h such that z 1~ e h(z) € H®(V), for all t > 0, and either
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{a) R(V) N (—00,0] is empty, or

(b} h = €*, for some holomorphic k such that k(V) C w — Sy, for some
< nm/2, weR. .

Let m= (o + 2. Then

(1) the family of operators {(e®hg?)(A) }ino s an (hgT)(A)-reqularized
semigroup generated by p(A);

(2) (5.1) has a unique strong solution whenever x € (h(A))(D(A™F™));

(3) (5.1) has a unique mild solution whenever z € (R(A))(D{4A™)); and

(4) the set of all mild solutions of (5.1) equals the set of all = in
ﬂtgoD{E“’M)) such that t — et Ay is continuous.

The mild solution of (5.1) then egquals
u(t, z) = P,
where P4 = (e!)( A) is defined by Construction Two.

Proof. Since h € H*(V), h{A) is defined by Construction Two, as in
Example 4.1. By (7) of the Proposition for Example 4.1 (for (a))}, or Lernma
1.7 (for (b)), h(A) is injective. For any ¢ > 0, since e®?h € H>*(V), it follows
that ePhg € HZ(V) (see Example 4.1). Thus e € EXTy(H3(V)), so
that (e®?)(A) is defined by Construction Two.

For f € H?(V), we have

— ~1dw
)= I s -4 5

(see Example 4.1).

It is clear from this representation of W (t) = (e'?hgy")(4), and domi-
nated convergence, that t — W(¢) € C([0,00), B(X)). The fact that f —
F(A), from HZ(V) into B(X), is an algebra homomorphism, implies that
{W(t)}:»0 is a C-regularized semigroup, where C' = (hg7")(4).

By Lemma 2.2, for any £ > 0,

¢ t
f W{s)ds = ( f e*Phgl ds) (A).
0 0

Since
+

p( [ ePhgl dS) = ' hg — hgl,
0

by Definition 1.2(1), it follows that, for any € X and # > 0, fﬂt W{s)zds €
D(p(A)) = DA, with

. p(A4) f W(s)zds = W(t)z —Cz.
0



icm

258 R. deLaubenfels

Since p(A) is closed and Cp(A) C p(A)C, it follows that an extension of
p(A) generates {W(i)}i»0. By [5, Proposition 3.9], with G = (A - 4)™,
p(A) itself is the generator.

This proves (1). Assertions (2)-(4) now follow from (1) and Proposition
1.6, since (e®)(A4) = (W(0})~1W(t). m

OPEN QUESTION 5.3. It is clear from the proof of Theorem 5.2 that,
whenever ef?h ¢ H®(V), and z € Im(h({A)), then (5.1) has a mild solution.
Does the set of all z for which (5.1) has a mild solution equal

| {Im(h(4)) | 2 — ePFp(z) € HZ(V)}?

Remark 5.4. Suppose iA generates a strongly continuous group. Then
A is of O-type H, = {z +iy | 2,y € R, ly| < e}, for all € > 0; thus for any
polynomial p, by choosing h(z) = e"z%, where n is the degree of p, we may
apply Theorem 5.2, with m = 2.

Similarly, when —A generates a strongly continuous holomorphic semi-
group of angle /2, then there exists a real w such that A—uw is of (—1)-type
Sg = {re'? | |¢| < 8,7 > 0}, for all § > 0, so that we may apply Theorem
5.2, with m = 1 (use the same f as in the previous paragraph).

In both these cases, by Lemma 1.7, Im(A(4)), hence (h(A))(D(A™+")),
is dense. Thus (5.1) has a strong solution for all initial data 2 in & dense set.
With this approach we could obtain, for example, solutions of the backwards
heat equation (see [9]) for all initial data in a dense set.

Remark 5.5 We could similarly treat the second order abstract Cau-
chy problem

9

(?j—t)du(t) =p(Au(t) (£>0), v0) =z v(0)=y,

by replacing e with cos(it,/p).

Or, we could treat the time dependent abstract Cauchy problem

d
Sut) =) (Aut) 25, uls)=qz,
for 2 0, {p(t)}i>, a family of polynomials, by defining

ult) = (exp( f p(r)dr‘))(A):c.
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