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On weakly A-harmonic tensors

by

BIANCA STROFFOLINT (Napoli)

Abstract, We slidy very wenk dsolutions of an A-harmonie equation to show that
they are T fael Wie nsial solubions,

0. Introduction, Let A* = A*(R") denote the linear space of I-covectors
in 7, 1= Lo, This s an inner product space of dimension (Tf) A
dilferential form of degree 1 on 2 C R is simply a function cr Schwarz

distribution on £2 with valnes in AY. We shall consider a nonlinear mapping
A2 x AYRY) — AHR™)

sueh thad

(1) |AGe, &) - Al Q)] < b€ = CI(I€] + €)%, ,

(H2) (Al &) Al ) [ €~ ) 2 alé = CI*(18] + [CF5,

(U3} A, AC) = JA[? 2ANALe, &),

for almost every @ € £2, A¢ R, and all §, € AE(IR'”'). The exponent p > 1

will determine Lhe natiral Soboley clags, denoted by WJ(£2, AV in which

to consider Lhe A-hannonie equation

(0.1) d* A(e, du) = 0
(veo §1 Jor Lhe definition of W (2, A' 1) and other Sobolev classes of differ-
ential {foruw), This equadion mweans that
(0.2) f (A, du) | dep) = 0
I

for evory ¢ ¢ W22, A1) with compact support. Such differential forms u
will be roforred Lo as A-harmonic tensors,
o VY L . Lol - ]
DEANITION 0.0, A differential form uw € W0 (@471, 8 2 max{l,
p - L}, is ealled o weakly A-harmonic lensor if it satisfies equation (0.1)
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in the distributional sense, that is, the integral identity (0.2) holds for all
S I’V;/(‘Q_I’H)(Q, A1) with compact support.

Our main result is the following regularity theorem:

THEOREM 1. There exist exponents py = p1(n,p) < p and py = pa(n, p)
> p such that if u € W (12, A s weakly A-harmonic, then w €
W23 (2, A1), In particular, w € W}
usual sense.

loe

Partial differential equations for differential forins are of growing in-
terest due to the recent developments in nonlinear elasticity theory and
quasiconformal mappings. Many elasticity results involving detorwinants
are better understood if they are formulated in terms of differential forms.
The key tools are the Hodge decomposition and a Poincaré-type inequal-
ity as developed in [IL]. The p-harmonic equation d*(|du|?"?du) = 0 plays
an important role in this study. For example, to every conformal mapping
f={f"..., f*) : 2 — R™ there corresponds a p-harmonic tensor u defined
by

n
du=df*An...Adff, p= 7

A systematic study of nonlinear equations for differential forms has orig-
inated from the work by L. M. Sibner and R. B. Sibner [$S] and K. Ullen-
beck [U]. Just to mention that, using the well known technique of Nash De
Giorgi~Moser, K. Uhlenbeck derived the C'®-regularity for p-harmonic ten-
sors.

Our study has arisen from the following general question: what is the
minimal degree of integrability of the gradient of a very weak solution of an
elliptic equation which still guarantees that the solution is in fact the usual
one? Theorem 1 can be regarded as dual to the higher integrability result of
F. W. Gebring [G] and Elcrat-Meyers [EM]. In the scalar case, this problem
has been previously solved by T. Iwaniec and C. Shordone [I8] and later by
J. Lewis [L].

Our result for differential forms is particularly applicable to quasiconfor-
mal mappings (see [I2], [13], [IM1], IM2] and [IMNS)).

1. Notation and preliminary results. Throughout we use the nota-
tion of [IL]. For the sake of completeness we list basic notions of exterior
calculus. Denote by A = AYR") the space of I-covectors in R™, For | = 0
we put A°(R™) = R". Also, A' = AYR™) = 0if ] < 0 or | > m. Then the
direct sum A(R™) = @5;_, AY(R") is an exterior algebra with respect to the
wedge product A. We denote the Hodge star operator by *,

*:AE(RT!’) __)Aﬂvl(R'ﬂ,)'

(£2,A'7Y) is A-harmonic in the
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By deliuttion, #1 equals the wsual volume element in B*. It induces, in a
standard way, a scalar product between forms of the same degree, namely
w1{ee | #B) o ov Axf Then # hecomes an isometry between Al and Am—,

Let £2 ¢ IR" be an open subset with smooth boundary. A differential
[-form w on (2 1s a locally integrable function or a Schwarz distribution on
£2 with valnes i A(R™). Tf w@y,..., 2, denote the coordinate functions in
IR, then the natural generators for the algebra of differential forms are the
difforentials diny, . oo diey,, Thus each o : 2 — AY(R™?) can be written as

aa) oo }:

ey

iy, iy, AL Adag,
Al
where a4
There 1s o linear operator d : D' (2, A — D/(2, A" (called the exte-
rior dertoative) wuignely determined by the following conditions:

(1} Tor p == 0, df is the differential of f,

(i) for o ¢ D2, A and B € D'(02, A%, we have

dlar A BY = da A F 4+ (=1)'a A dB,

(iil) dfdev) = 0.

The clements of the kernel of d @ D/(12, A — D'(22, A1) are (;alled
closad L-forms and those in the image of d : D'(2, A1) — D'(2, A) are
the exael -forms.

The formal adjoint operator, also known as the Hodge codifferential, is
given by

A = (D)L e D0, AT — D02, AD).
The forms in the image of ¢* : D/(02, AT — D2, A") are called coewact
I-forms.

We denuste by (2, A the class of infinitely differentiable [-forms on
£ C IR". Since £2 is o smootl domain, near a boundary point of 2 we can
congider a local coordinate system such that @, = 0 on 942 'fmd the .-
ewrve i orthogonal o the remaining @g-curves. In these coordinates every
dilTorential fomm w € €™ (63, A) can be expressed as w() = wr(v) +wn(2),

whore
iy
o) = >

I €dq e, wiig<n
)
wy (@) = L
R RS E EN)
These Torms are called, respoctively, the tangential part and the normal pfl’rt
of w. Now, the duality between d and d* is established by the following,

Wiy oo )R A A diy

Wiyt (J“)(iitf“ Ao A (l:ib'i“
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identity:
[loldu = [ (@v]u) Vue Co(T A, ve C™(@ 4™
2 n

provided wr =0 or uxy = 0.
We make a brief list of spaces of differential forms:

o [7((2, AY) — the space of differential forms with coefficients in L¥(£2);

e LP(02, AY) — the space of differential forms w such that Vw is a regular
distribution of class LP(2, A%);

o WhP(§2, A1) - the Sobolev space of l-forms defined by L¥(£2, AN
I3 (0, Ab;

o WP(£2, A)) — the space of [-forms w such that dw € LP(£2, A"+!);

o WE, (12, A') — the space of I-forms w such that d*w € LP(£2, A" 1);

o W} o(£2, A') — the completion of C* (12, A%) in W} with respect to the
norm

lw|lp,e2 -+ Hd‘*"“:ua

The I-forms v € Wé’o(ﬂ AY) are said to have vanishing tangential com-
ponent at the boundary of 12 in the distributional sense. Analogously, we
‘define W1, ,(12, A) to be the class of [-forms with vanishing normal compo-
nent on thé boundary of {2.

Now, we can extend the duality between d and d*. For p, ¢ Holder conju-
gate and u € W[ (2, A ue Wi (2, A", by an approximation argument,
we have

[ wlduy= [ (d*v]u.
2 2

Let D be a convex bounded domain in R™. Suppose w € LIOL(D,AE) is
such that dw € L (D, A1), 1 < p < oo, =1,...,n Then it is possible
to construct an integral operator T such that d(Tw) is a regular distribution
of class LY (D, AY) and w = T(dw) + d(Tw). For more details concerning
the homotopy operators we refer to [IL]. It turns out that 7" : LP{D, A!) —
WL2(D, A"~ is a bounded operator whose norm is estimated by

(1.1) [Twllwrzpy < Ap(n)p(D)|wlp,n,

where the constant 4(D) measures the flatness of the domain D. In partic-
ular,

p(AD) = p(D)  for all positive A

In order to formulate an analogue of the Poincaré-Sobolev inequality for
differential forms we define an i-form wp € D'(D, A') by

|D|~* fwiy)dy ifl=0
wo = { d{Tw) ifl=1,...,n
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Clearly wy) is a closed form and for I > , wp is an exact form. Furthermore,
ag a conseduence of (1.1), we have:

PROPOSITION 1. Let w € D'(D,AY) be such that dw € LP(D, AFY),
1<p <o Then w -~ wp is in WHP(D, AY) and
{1.2) |w - wplwinpy € Ap(n)]|dw]p,0
Jor ID o eube or o bell in R™.

Now, a Poincard-type inequality for differential forms reads as follows:

Corovnary 1 ([IL]). Suppose that w € D'(D, AY) and dw € LF(D, A'+),
Lo O0h o noand 1< p <, Then w —wp 48 in L/ (DAY and we
have the following undform estimate:

(1.3 ( f I WIJVW/(” -y;))('“.n"TJ}/(nIi) < cp(ﬂ)( f {dw\?’) 1/p
D

n
Jor ) o cube or o ball in R™,

COROLLARY 2. Let w € D'(D, A" be such that d*w € LP(D, A1), 1 =
0,1,..., 0. Then there exists o coclosed form wh € LP(D, A1) such that

(1) (o whir/en) (n=p)/(nr)

1

< c,,(n)( _f Id*wIT’)W, 1< p<n.
D

Note that w}, is in fuct a coezact form if 1 < n.

Proof. We nse the fact that the Hodge star operator is an isometry. In
particular, we have

Hw - w?;)”np/ (n-p} = “(*w) - *(W?D “7113/ n—p)t
Here, the I-form w}, is defined by w(wh) = (w)p. Accordingly,
d(x(wh)) = d{(*w)pn) = 0.

Henee, d*(w},) = (- 1) s d s w] =0,
Finally, applying Corollary 1 with #w in place of w yields

|| (#w) - (+w) IJ||u;u/(n~»=p) & O('”'sp)Hd(*w)”P = CO(n) Hd*pr.

COROLLARY 3. Let D be a cube or a ball, and v € L*(D, AY) with du €
LD, AMY), Then

(L5) dmmf)( J | - ~un|) e(n, 3 ( f\du|’”“””’ =1

{We denote hy f ;y the integral mean over D.)

)(n-i-aml.)/('n,a)
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Proof. We consider two cases:

Case 1: Suppose 1 < s < n/(n~—1). We notice that

ne > max S-*ﬂ—'
n-1 "n—=1]"

so we can apply Holder’s inequality and then Corollary 1 to obtain
1/s Ly (=1 (ne)
( f |11,—uD|s) < ( f l,u'__uD‘n.b/(n 1))
D D

< c(diamD)( f\durw/(n—rsm])
D

) {(nopa—1)/{na)

Case 2: Suppose s > n/(n - 1). Then, by Corollary 1,

(f lumuol) " <ol [ iaareromea)™
D D

= c{diam D)(”“’)/S( f Ldu|'ll-‘:'/('n+s})
D

< c(diamD)(n“)/s( f Idu|m/(n+sm”)
D

(nts)/(ns)

(rofa—1)/{ns)

The assertion is now immediate.

COROLLARY 4. Let D be a cube or a ball, and w € L*(D, A) with d*u €
L5(D, A1), Then

d1&11nD ( If |’LL - UE‘S)US < G(n, S)( bf M*ulns/(n-ks—l

From now on, {2 stands for a cube or a ball which is a regular domain
(see [I8] for the definition and properties).

Given w € LP(2, AH{R™)), there exist differential forms o € Kerd* N LY
and 8 € Kerdn LY such that
(1.6) w=da+d'B, ap=0
The forms o and § are unique and satisfy the uniform estimato
(1.7) ledize ey + 18l ey < ep(n)llwllp

(see [[1-3], [IM1-2] and references there). This is what we call the Hodge
decomposition of w. In what follows we will be concerned with the question
of stability in the Hodge decomposition.

Given v € W 5(£2, A=Y, consider a nonlinear perturbation of the exact
form dv € L*(2, A}, say w = |dv|®dv. With the aid of the Hodge decompo-

)) {rits—1 )/(fn‘.-:)-
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sition we split w as w = dé + d*y, where ¢ = 0. We wish to establish a
precise relation between du, de and d*y as € tends to zero.

An estimate for @1 in terms of dv was presented in [12], using maximal
inequalitios and properties of harmonic functions. More recently, T. Iwaniec
aud C. Shordone {I5] have found a new approach to this problem by using
complex inberpolation technique. They have obtained the following result.

Lot (X, 1) he a measare space and let £ be a separable complex Hilbert
spaca. Cousider a bounded linear operator T L (X, B) — L7(X, E) for all
G 1)y where 1< ey <y € oo, Denote its norm by |7,

Tiwowsm 20 Suppose thel v/ry < 1L¢e < v/rq. Then

FECUSE P pprsey S Kell £l
forcach e L'(X, K)NKer T, where
2r(ry — 1

o 22 1)
K = s (T b + 1)

This result can be viewed as a part of a general theory of interpolation
and nonlinear commutators due to R. Rochberg and G. Weiss [RW] (see also
IML 2], [MS], and [CLMS], [JRW], [R]).

2. The nonhomogeneous A-harmonic equation. Let 2 be a ball
or a cube ju R, Given g € LY(82, AD and § € L¥/=1{(2, A)) where s >
wax{Ll,p - I}, we cousider the nonhomngeneous equation

(2.1) d*(Alz, g+ dv))=d*f forve W;VD(Q,Al"l).

This equation, referred to as the A-harmonic equation, has to be understood
in the digiribntional sense, that is,

f (A(x, g+ dv) | dep) = ‘f (f | d¢y for cach ¢ € Wigﬁ“p"'l)(ﬂ,/ll”l).

(2 7
We cuipliagize that the “natural” space in which to consider the A-harmonic
equation is W&’”, where the Scholev exponent p is the one appearing in
(H1) {H13). Tn this case & = p and one could apply Browder's methods
of monatone operators, However, we are interested in weakly A-harmonic
bensors of class W4, with s bolow the natural exponent, s < p. The trouble
with weakly A-harinonic fensors is that the standard choice of test functions
& Lails. This technique, wied hy Stampacchia (8] in the linear case, has also
Deen extonded Lo nonlinear equations (BGL-2), but only with the natural
axponent (sec also [BMS], [St] for the nonisotropic case).

fn owr approach the key tools are the Hodge decomposition {applied o

a nonjinear pertirbation of an exact form) and the Poincaré-Sobolev type
inequality. We start with a lemama:
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LEMMA 1. Given the A-harmonic equation (2.1) there exists £ =
e(n,p,a,b) € (0,p — 1) such thai

(2.2) [ ldvf <e f (gl +1177)
o) fe)
forp—e<s<p+e.
Proof Let us begin with the Hodge decomposition
ldvu|*Pdy = d¢ -+ h.

We apply Theorem 2 to the measure space (f2,dx) and B = AR, The
operator T is then defined by Tw = d*f, where w = da + d*f (see the
Hodge decomposition (1.6)). In view of (1.7), T': L"(£2,4) - L"{{2,4) is a
bounded linear operator for all 1 < r < oc.

It follows from the uniqueness of the Hodge decomposition that the ker-

nel of 7' consists of the exact forms from dW] (12, A7), while the range of

T consists of the coexact forms. In view of Theorem 2, we have
(2.3} [Bllejis—prry = 170" Pav){lsjs—pr1y < Kls = p| [E2ant
We can use d¢ = h — |dv|[*"Pdv as a test form for equation (2.1) to get
[ Az, g+ dv) | |dv]*Pdv — h) = [ (F11dv|*~Pdv — h),
I¢] ie]
[ Az, dv) | |dvlo=2dv) = [ (Alw,dv) ~ Ale,g +dv) | [do]"7dv)
7 fe)

+ [ (Ale,g+dv) | R+ [ (f ] dé).
2 2

Using the monotonicity inequality (H2) a,nd the Lipschitz type inequality
(H1), we obtain

e f |dv|®

< [ fol(a] =l ol 4 g +dvl=l + [ 1711dg]
§2 £2

<b [ lgl(ldvi+]g + dv)*~
17

+ b( f lg +dv|s)(p
0

ilis/(s—pry + N Filssco-1) 1401|816 mppet)-
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Now, incquality (2.3) yields

a [y <o f I.rJI'”)l/H[ f (muw|g+dfuj)s](““”/“
£2 £

£
p—1)/¢
8- pll(flg"{"d’l)"g)(p e
£

O a1y (14 Kls - |} ||du|| 2P
Henee, we arrive ad the estimate

I 1ol < Callally + ¢
7]

1-bKjs - p

allalldulls™" + Cyls = pll gy |dolis=*!

| Chibs - plldl + Collf g ol

Wo now determine e small enough to ensure that Cyls—pl < 1/2for p—e <
s < p -+ £. This, together with a routine use of Young’s inequality, yields
J laul” < Culglls + Corlldolls + Ca(rllgl;
1
+ Cyls = plnildv]l; + Cs(mls = pllglls
) “ 1
Oy o+ Ca DI ISy
where 7, 9, y are arbitrary positive nunbers. It is clear that one can choose
o and v Lo satisly the inequality
1

Cyr -+ 2Cn + Gy < 3,

which uplios the desired estimate.

LisMMA 2. Let & = g,(n) > 0 be as in Lemma 1. Suppose that u €
i 1oe (52, A1y s weakly A-harmonic for some s € (p — &, p). Then
Jor any concendric eubes Q C 2@ ¢ 2 we have

(2.4) ( f |d*n,|”) < C.?'(n,p)( f ;dur‘)”
o

3
where

. T ny
(2.5) o IaX , )
gL np-n--s—pil

Here: the consbandt CH(n,p) does not depend on s and v and r < s.

Prool, Under the hypotheses above, we have

[ (Al du) | d) =0

$2
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for all ¢ € LY"PYD(0, A) with compact support in £2. In view of the
hormogeneity of A(x, £) (see condition (H3) in the Introduction}, we can write
d* Ale,pp/ PV dy) = d* f, where f = nP Az, du), for every nonnegative cut-
off function 7 € C2°(2Q) such that 7 = 1 on a cube @ C 2Q C {2 aud
[V} < e(n)/diam &

Put v = 7%(u — uzg), where ¢ = p/(p — 1), uog = d(T'w) and 1" is the
homotopy operator for D = 2Q introduced in §1. Clearly, dv = nidu +
d(n?) A (u — uag) and nidu = dv + g with g = —d(n?) A (v — vag). In this
way, we arrive at a nonhomogeneous A-harmonic equation

d*Alz, g+ dv) =d*f =d"(f — p).

Here 1 can be any coexact form, that is, d*p = 0.
Applying Lemma 1 to §2 = 2(), we obtain

Jider < e [ lgl*+1f = /@0,
2Q

2Q

¢ e
f IduISScf dv|® < p f|u—u2Q|3-|—cf|f_M|b/(P 1,
@ 2Q 2Q 2Q

where ¢ = diam ¢. Hence
(flaur)" < fru-uaol) " +e( fif-uro) " =1
Q 2Q 2Q

To estimate the first integral, we apply Corollary 3:
I< c(n,s)( f Idu[ns/(n-i-s—l)

2Q
To estimate the second integral, we apply Corcllary 4 with w = f and

wp = w. This yields

z_l_ L sfp-1) (p~1)/s~ 1/(p-1)
. {[22{ f = p } }

)(n+s—1)/(n8)

Qn/s
< :/ (np-mpa—pt 1}/ (ns)
—— Q & "

(f ld(*f)l“”(”f’“”Jrﬂwm«l))
2Q

Recall that d*f = d*A(z,n%du). By the homogeneity property of A, £),
we obtain

d*f = & (nP Az, du)) = nPd* Alz, du) + (~ 1" s (dpP A %Az, du)).

This implies a pointwise inequality |d* f| < b|V(n?)||du|P~!. Hence, we have
the following estimate:

icm
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- & d wni d o (np—nt-s—p4-1)/(ns)
S w( |(f’u:|”'”/(”’f’ ?Hw-"p—l-i‘))
STy e vl W L

g (e 1 .,]

&

. r'( /' Muiuu/(ww n-{w»~jn+1))(1";’“"L+“‘“7’+1)/(7l3)-

4
In conelusion,

( ‘[' |(',:,|,_{’ln)}/'q < (:( J’ ‘(}:‘H’Pl‘-"/(ﬁ-i-n --1))(‘34-”‘.1)/(”8)

¥ 2¢)
N “_( [ i‘im,,,,},/(?,,,,,,‘..,,4,,“., M,ﬂ_H)) (n?:--n.-{-s-—PJrl)/(nH).
o)
This is o reverse Hilder isequality for du. For 7 as defined in (2.5), we obtain
(2.1).
TieoreM 1, 7’](«{!’.f'<‘1‘r::13'i:.‘-":': arponents 1 < p; = mn,p) < p < p2 =
Paltyp) < o0 such that if w ¢ W (02, A7) is o weakly A-harmonic ten-

sor, thenw ¢ W (82, A1), Thus w is an A-harmonic tensor in the usual
Hqense,

Prooll, Let g == gy{n,q,b) > 0 be as in Lemmas 1 and 2. We define
P p e gg(n) amd py = pg,(n). Then we find that

( [ \”"“"PL)]/M < (r( ] d’u,l'")m
o i
with some v <7 pyoand ¢ = e(n,p, a,b). The exponent r < py is defined by
(2.0) where 8 = py.
We are now in a position to use Gehring’s lemma (see [BI], [Gi}, [GM],
[Me]} to improve the dogree of integrability of du. Accordingly, there exists
ra > ey o= pyosuch that w e W3, (02, 4.

Repoating the ahove arguments leads to another reverse Hélder inequal-
ity

1/r
H

et f 1)

( ], Jri,fu.""-')”“
r:) ' 26 .
where ¢ I8 Ll sivoe constant as before, This, in tuen, allows us to increase
the exponont ry even further, say vy > g, ete. The polut is that the constant
e ol Py ) will not change ns long as v < ry < 1y < ... stay in the
interval (py, py), compleling the proof of Theorem L.
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