Topologies on the space of ideals of a Banach algebra þу #### FERDINAND BECKHOFF (Münster) Abstract. Some topologies on the space $\mathrm{Id}(A)$ of two-sided and closed ideals of a Banach algebra are introduced and investigated. One of the topologies, namely τ_{∞} , coincides with the so-called strong topology if A is a C^* -algebra. We prove that for a separable Banach algebra τ_{∞} coincides with a weaker topology when restricted to the space Min-Primal(A) of minimal closed primal ideals and that Min-Primal(A) is a Polish space if τ_{∞} is Hausdorff; this generalizes results from [1] and [5]. All subspaces of $\mathrm{Id}(A)$ with the relative hull kernel topology turn out to be separable Lindelöf spaces if A is separable, which improves results from [14]. 1. Introduction. In [14] D. W. B. Somerset has started the investigation of the space Min-Primal(A) of minimal primal closed ideals of a general Banach algebra. He proved, among other things, that if A is a separable Banach algebra, then the space $\operatorname{Prime}(A)$ of closed prime ideals with the hull kernel topology (or weak topology $\tau_{\mathbf{w}}$) is separable, and if additionally A is topologically semiprimal, then $\operatorname{Min-Primal}(A)$ is also separable. We will prove the much stronger result that all subspaces of the space $\operatorname{Id}(A)$ of closed two-sided ideals of A are separable Lindelöf spaces if A is separable. On page 50 of [14] the author left open the question whether $\operatorname{Min-Primal}(A)$ is second countable if A is separable. We will give an example of a unital separable subalgebra A of a commutative C^* -algebra such that $\operatorname{Min-Primal}(A)$ is not even first countable. The methods used here are rather different from those of [14]. Here we try to generalize the idea of the strong topology τ_s in $\mathrm{Id}(A)$ (see [1] for this or next paragraph). If A is a C^* -algebra, then this topology makes $\mathrm{Id}(A)$ a compact Hausdorff space. This useful topology has been investigated and applied in the theory of C^* -algebras (see e.g. [1]–[6]). If $(A, \|\cdot\|)$ is a Banach algebra, then τ_s is by definition the weak topology of all maps $$\operatorname{Id}(A) \to \mathbb{R}_0^+, \quad I \mapsto ||x + I||, \quad x \in A.$$ ¹⁹⁹¹ Mathematics Subject Classification: 46H10, 46J20. For a general Banach algebra τ_s need not be compact, and obviously τ_s depends on the special norm on A. Indeed, it is easy to find equivalent algebra norms on the C^* -algebra of convergent sequences such that the τ_s topology defined by this new norm is not compact. We will define another topology τ_{∞} on $\mathrm{Id}(A)$ with the following properties: - (i) $(\mathrm{Id}(A), \tau_{\infty})$ is compact (not Hausdorff in general). - (ii) $\tau_{\rm w} \subset \tau_{\infty} \subset \tau_{\rm s}$. - (iii) τ_{∞} only depends on the norm topology of A, not on the special norm. - (iv) $\tau_{\infty} = \tau_{\rm s}$ if A is a C*-algebra. - (v) If A is a commutative Banach algebra with a bounded approximate identity then on the Gelfand space τ_{∞} coincides with the Gelfand topology. This topology can be used to answer the above mentioned questions. Further properties and examples are given in the following sections. ### 2. An example EXAMPLE 1. Let D be the closed unit disc in the plane, 2D the disc with radius 2. Let $A(\mathbb{D})$ be the disc algebra, i.e. the Banach algebra of continuous functions $\mathbb{D} \to \mathbb{C}$ that are holomorphic in the interior of \mathbb{D} . Let $\mathcal{C}(2\mathbb{D})$ be the commutative C^* -algebra of continuous functions on 2D. Define $$A := \{ f \in \mathcal{C}(2\mathbb{D}) : f | \mathbb{D} \in A(\mathbb{D}) \}.$$ For $M \subset 2\mathbb{D}$ let I_M be the ideal of functions in A vanishing on M. Then it is not difficult to prove that $$Min-Primal(A) = \{I_{\{z\}} : z \in 2\mathbb{D} \setminus \mathbb{D}\} \cup \{I_{\mathbb{D}}\}.$$ ASSERTION. $I_{\mathbb{D}}$ is in the $\tau_{\mathbf{w}}$ -closure of $M_0 := \{I_{\{z\}} : z \in 2\mathbb{D} \setminus \mathbb{D}\}$ but no sequence in M_0 $\tau_{\mathbf{w}}$ -converges to $I_{\mathbb{D}}$. Proof. Let U be an open $\tau_{\rm w}$ -neighbourhood of $I_{\mathbb{D}}$. Then U contains a neighbourhood of the form $$V := \{ I \in \text{Min-Primal}(A) : f_1 \notin I, \dots, f_n \notin I \}, \quad f_1, \dots, f_n \in A, \ n \in \mathbb{N}.$$ Since $I_{\mathbb{D}} \in V$ we have $f_i|\mathbb{D} \neq 0$. Since $A(\mathbb{D})$ is an integral domain we have $f_1 \dots f_n \neq 0$, and by the maximum modulus principle there is a point $t \in \partial \mathbb{D}$ such that $f_1(t) \dots f_n(t) \neq 0$. By the continuity of the f_i we can conclude that there is a point $s \in 2\mathbb{D} \setminus \mathbb{D}$ such that $f_1(s) \dots f_n(s) \neq 0$, and this means $I_{\{s\}} \in V \subset U$. Hence $I_{\mathbb{D}}$ is in the $\tau_{\mathbf{w}}$ -closure of M_0 . Now assume that there were a sequence $(t_n)_n$ in $2\mathbb{D}\setminus\mathbb{D}$ such that $I_{\{t_n\}}$ converges to $I_{\mathbb{D}}$. Since $2\mathbb{D}$ is compact we may assume that $t_n \to t \in 2\mathbb{D}$. Then $F := \mathbb{D} \cup \{t_n : n \in \mathbb{N}\} \cup \{t\}$ is a closed subset of $2\mathbb{D}$. Define $$f: F \to \mathbb{C}, \quad f(z) := \left\{ egin{aligned} z-t & \text{if } z \in \mathbb{D}, \\ 0 & \text{if } z \in F \setminus \mathbb{D}. \end{aligned} ight.$$ Topologies on the space of ideals This clearly is continuous and by the Tietze extension theorem it can be extended to an element $g \in \mathcal{C}(2\mathbb{D})$, and obviously $g \in A$. Since $g \not\in I_{\mathbb{D}}$ we must have $g \notin I_{t_n}$ for large n by the assumed τ_{w} -convergence, but this is not the case. This contradiction finishes the proof of the assertion. Hence $I_{\mathbb{D}} \in \text{Min-Primal}(A)$ cannot have a countable neighbourhood base, and so Min-Primal(A) is not a first countable space in the relative $\tau_{\rm w}$ -topology. This answers a question on page 50 of [14] in the negative. 3. Construction of the topology and simple properties. Let (A. $\|\cdot\|$) be a Banach algebra. For $k\in\mathbb{N}$ let $\mathcal{S}_k(A,\|\cdot\|)$ be the set of all algebra seminorms bounded by k, i.e. the set of seminorms $p:A\to\mathbb{R}_0^+$ such that $p(ab) \le p(a)p(b)$ and $p(a) \le k||a||$ for all $a, b \in A$. Write only S_k if $(A, ||\cdot||)$ is clear. We have in the obvious manner $$\mathcal{S}_k(A,\|\cdot\|)\subset\prod_{a\in A}[0,k\|a\|].$$ Since the conditions for a real-valued function to be an element of S_k are pointwise conditions, S_k is a closed, hence compact subspace of the product space, i.e. S_k is compact with respect to the topology of pointwise convergence. LEMMA 2. If A is separable, then S_k is metrizable. Proof. If $(a_n)_n$ is a dense sequence in A then the injection $$\mathcal{S}_k \hookrightarrow \prod_{n \in \mathbb{N}} [0, k || a_n ||]$$ defines the same topology on \mathcal{S}_k . Indeed, if $(p_i)_i$ is a net in \mathcal{S}_k , $p \in \mathcal{S}_k$, and if $p_i(a_n) \to p(a_n)$ for all n, then for $a \in A$, $$|p_i(a) - p(a)| \le p_i(a - a_n) + |p_i(a_n) - p(a_n)| + p(a_n - a)$$ $$\le 2k||a - a_n|| + |p_i(a_n) - p(a_n)|,$$ and this is small for large i if n is chosen appropriately. Now define $$\kappa_k : \mathcal{S}_k(A, \|\cdot\|) \to \operatorname{Id}(A), \quad p \mapsto \ker(p).$$ This map is surjective since if $I \in Id(A)$ then the corresponding quotient seminorm $$q_I(a) := ||a+I||, \quad a \in A,$$ obviously is in $S_1 \subset S_k$. Let $\tau_k(A, \|\cdot\|)$ be the quotient topology of this map on $\mathrm{Id}(A)$, and finally $\tau_{\infty}(A, \|\cdot\|) := \bigcap_k \tau_k(A, \|\cdot\|)$. Simply write τ_k or τ_{∞} if no confusion can arise. τ_{∞} may alternatively be described as follows: Equip $\bigcup_k S_k$ with the inductive topology; then τ_{∞} is the quotient topology of the map $p \mapsto \ker(p)$. LEMMA 3. For any Banach algebra $(A, \|\cdot\|)$ the topologies τ_k , $k \in \mathbb{N}_{\infty}$, are compact (in general not Hausdorff) and $$\tau_{\mathbf{w}} \subset \tau_{\infty} \subset \ldots \subset \tau_{k+1} \subset \tau_k \subset \ldots \subset \tau_1 \subset \tau_{\mathbf{s}}.$$ Proof. Since the S_k are compact, it is clear that the topologies τ_k and hence τ_{∞} are also compact. Let $I_i \to I$ in $(\mathrm{Id}(A), \tau_s)$, i.e. $q_{I_i} \to q_I$ in S_1 . This implies $I_i \to I$ with respect to τ_1 , thus proving the inclusion $\tau_1 \subset \tau_s$. Since $\kappa_{k+1}: \mathcal{S}_{k+1} \to (\mathrm{Id}(A), \tau_{k+1})$ is continuous, so is the restriction $$\kappa_k = \kappa_{k+1} | \mathcal{S}_k : \mathcal{S}_k \to (\mathrm{Id}(A), \tau_{k+1}).$$ By definition τ_k is the finest topology on $\mathrm{Id}(A)$ making this map continuous, and this implies $\tau_{k+1} \subset \tau_k$. The only thing left to show is $\tau_{\mathbf{w}} \subset \tau_k$ for all $k \in \mathbb{N}$. If $p_i \to p$ in \mathcal{S}_k and $x \notin \ker(p)$, then $p_i(x) \to p(x) \neq 0$ and therefore $x \notin \ker(p_i)$ for large i. This proves the $\tau_{\mathbf{w}}$ -convergence $\kappa_k(p_i) \to \kappa_k(p)$, and again by the definition of the quotient topology τ_k we conclude $\tau_{\mathbf{w}} \subset \tau_k$. The topologies τ_k seem to depend on the special norm chosen on A although I do not know any example for this. But we have the following PROPOSITION 4. Let $(A, \|\cdot\|)$ is a Banach algebra. The topology $\tau_{\infty}(A, \|\cdot\|)$ on $\mathrm{Id}(A)$ is compact, $\tau_{\mathrm{w}} \subset \tau_{\infty} \subset \tau_{\mathrm{s}}$, and if $\|\cdot\|_0$ is another equivalent algebra norm then $\tau_{\infty}(A, \|\cdot\|) = \tau_{\infty}(A, \|\cdot\|_0)$. Proof. We only have to show the independence on the special norm. There are constants $\alpha, \beta > 0$ such that $\alpha \| \cdot \|_0 \le \| \cdot \| \le \beta \| \cdot \|_0$. For $k \in \mathbb{N}$ let $l \in \mathbb{N}$ be such that $l \ge \beta k$. Then $\mathcal{S}_k(A, \| \cdot \|) \subset \mathcal{S}_l(A, \| \cdot \|_0)$. Since the restriction $$\kappa_l: \mathcal{S}_k(A, \|\cdot\|) \to (\operatorname{Id}(A), \tau_l(A, \|\cdot\|_0))$$ is continuous we have $\tau_k(A, \|\cdot\|) \supset \tau_l(A, \|\cdot\|_0) \supset \tau_\infty(A, \|\cdot\|_0)$ by the definition of the quotient topologies. As k was arbitrary we see $\tau_\infty(A, \|\cdot\|) \supset \tau_\infty(A, \|\cdot\|_0)$; the reverse inclusion is similar. PROPOSITION 5. Let $\varphi: A \to B$ be a continuous homomorphism between Banach algebras and define $$\widetilde{\varphi}: \mathrm{Id}(B) \to \mathrm{Id}(A), \quad I \mapsto \varphi^{-1}(I).$$ Then $\widetilde{\varphi}$ is τ_{∞} -continuous. If φ is surjective then $\widetilde{\varphi}$ is a homeomorphism onto its image. Proof. Since φ is continuous, $\widetilde{\varphi}$ maps closed ideals to closed ideals. For $k \in \mathbb{N}$ let $l \in \mathbb{N}$ be such that $l \geq k \|\varphi\|$. Then we have a map $$\overline{\varphi}: \mathcal{S}_k(B) \to \mathcal{S}_l(A), \quad p \mapsto p \circ \varphi,$$ and the diagram $$\begin{array}{ccc} \mathcal{S}_k(B) & \stackrel{\bar{\varphi}}{\to} & \mathcal{S}_l(A) \\ \kappa_k \downarrow & & \downarrow \kappa_l \\ \mathrm{Id}(B) & \stackrel{\bar{\varphi}}{\to} & \mathrm{Id}(A) \end{array}$$ is obviously commutative. Since $\widetilde{\varphi} \circ \kappa_k = \kappa_l \circ \overline{\varphi}$ is continuous, we deduce the τ_k - τ_l -continuity of $\widetilde{\varphi}$, and hence the τ_k - τ_∞ -continuity. As k was arbitrary the first assertion follows. Now let φ be surjective. By Proposition 4 we may assume that B=A/J for $J=\ker(\varphi)$ and that φ is the quotient map. Then $$\operatorname{im}(\widetilde{\varphi}) = \{ I \in \operatorname{Id}(A) : I \supset J \} \subset \operatorname{Id}(A)$$ is $\tau_{\mathbf{w}}$ -closed, hence τ_k -closed for all $k \in \mathbb{N}$. Then the restricted topology $\tau_k | \operatorname{im}(\widetilde{\varphi})$ coincides with the quotient topology of the map $$\kappa_k : \kappa_k^{-1}(\operatorname{im}(\widetilde{\varphi})) \to \operatorname{im}(\widetilde{\varphi}).$$ Therefore it is enough to show that $$\widetilde{\varphi}^{-1} \circ \kappa_k : \kappa_k^{-1}(\operatorname{im}(\widetilde{\varphi})) \to \operatorname{Id}(A/J, \tau_{\infty})$$ is continuous. To this end let $p_i \to p$ in $\kappa_k^{-1}(\operatorname{im}(\widetilde{\varphi}))$. Then $\ker(p_i), \ker(p) \supset J$, $$\overline{p}_i(a+J) := p_i(a), \quad \overline{p}(a+J) := p(a)$$ are well-defined elements of $S_k(A/J)$ and we have $\overline{p}_i \to \overline{p}$; moreover, $$\widetilde{\varphi}^{-1} \circ \kappa_k(p_i) = \widetilde{\varphi}^{-1}(\ker(p_i)) = \ker(p_i)/J = \ker(\overline{p}_i)$$ $\to \ker(\overline{p}) = \dots = \widetilde{\varphi}^{-1} \circ \kappa_k(p),$ and this finishes the proof of the second assertion. PROPOSITION 6. Let I be a two-sided closed ideal in a Banach algebra A. Then - (i) The intersection map $i: Id(A) \to Id(I)$, $J \mapsto J \cap I$, is τ_{∞} -continuous. - (ii) If I has an approximate identity then $Id(I) \subset Id(A)$. - (iii) If I has a bounded approximate identity then $(\mathrm{Id}(I), \tau_{\infty}(I))$ carries the subspace topology from $(\mathrm{Id}(A), \tau_{\infty}(A))$. Proof. Let $r: \mathcal{S}_k(A) \to \mathcal{S}_k(I)$ be the restriction map. Then the diagram $$\begin{array}{ccc} \mathcal{S}_k(A) & \xrightarrow{r} & \mathcal{S}_k(I) \\ \kappa_k \downarrow & & \downarrow \kappa_k \\ \operatorname{Id}(A) & \xrightarrow{i} & \operatorname{Id}(I) \end{array}$$ is obviously commutative, and the τ_k -continuity is easily deduced from this. Since k was arbitrary this proves (i). (ii) is easy. 194 (iii) Let $(e_i)_i$ be an approximate identity with bound $c \geq 1$. For $k \in \mathbb{N}$ let $l \in \mathbb{N}$ be such that $l \geq ck$. First let us prove $$(*) \qquad \forall p \in \mathcal{S}_k(I) : \exists \widetilde{p} \in \mathcal{S}_l(A) : \quad p \leq \widetilde{p}|_I \leq ckp.$$ Define $\widehat{p}(a) := \sup\{p(ax) : x \in I, \|x\| \le 1\}$. Then \widehat{p} obviously is a seminorm on A, and for $a, b \in A$, $x \in I$, $||x|| \le 1$ we have $$p(abx) = \lim_{j} p(ae_{j}bx) \leq \lim_{j} p(ae_{j})p(bx) \leq c\widehat{p}(a)\widehat{p}(b).$$ Hence $\widehat{p}(ab) \leq c\widehat{p}(a)\widehat{p}(b)$ and this implies that $\widetilde{p} := c\widehat{p}$ is an algebra seminorm on A. It is easily seen that this \tilde{p} satisfies (*). Let $\iota: \mathrm{Id}(I) \subset \mathrm{Id}(A)$ be the inclusion, and let $p_i \to p$ be any convergent net in $\mathcal{S}_k(I)$. Given any subnet $(p_i)_i$ choose \widetilde{p}_i as in (*), and find a convergent subnet $(\widetilde{p}_m)_m$ by compactness of $\mathcal{S}_l(A)$, $\widetilde{p}_m \to q$ say. For $x \in I$ we have $p_m(x) \leq \widetilde{p}_m(x) \leq ckp_m(x)$, and this yields $p(x) \leq q(x) \leq ckp(x)$. This implies $\ker(\widetilde{p}_m) \cap I = \ker(p_m)$ and $\ker(q) \cap I = \ker(p)$. Then we see $$\iota(\kappa_k(p_m)) = \ker(\widetilde{p}_m) \cap I \xrightarrow{m} \ker(q) \cap I \quad \text{by (i)}$$ $$= \iota(\ker(p)) = \iota(\kappa_k(p)).$$ Therefore $\iota \circ \kappa_k : \mathcal{S}_k(I) \to (\mathrm{Id}(A), \tau_\infty)$ is continuous for all k, and this implies the au_{∞} -continuity of ι . Together with (i) this proves the claim since the intersection map i is obviously the continuous inverse of ι . Without proof I would like to mention the following Proposition 7. Let $(A_n)_n$ be a sequence of Banach algebras having approximate identities and let A be the c_0 -sum of the A_n . For $I \in Id(A)$ and $n \in \mathbb{N}$ let $I(n) \subset A_n$ be the nth projection of I. Then $$(\mathrm{Id}(A), \tau_{\infty}) \to \prod_{n \in \mathbb{N}} (\mathrm{Id}(A_n), \tau_{\infty}), \quad I \mapsto (I(n))_{n \in \mathbb{N}},$$ is a continuous bijection. ## 4. Comparison with other topologies PROPOSITION 8. Let A be a C*-algebra. Then $\tau_8 = \tau_k$ for all $k \in \mathbb{N}$, in particular $\tau_{\infty} = \tau_{8}$. Proof. We have to prove $\tau_s \subset \tau_k$ for all positive integers k. To this end, let $p_i \to p$ in S_k . The claim is $$||a + \ker(p_i)|| \xrightarrow{i} ||a + \ker(p)|| \quad \forall a \in A.$$ Since $||a + I||^2 = ||a^*a + I||$ for all $I \in Id(A)$ we may assume that a is selfadjoint. By an old theorem of Kaplansky (see [13], Th. I.2.4) we have $$||a + \ker(q)|| \le q(a)$$ for all seminorms $q \in \mathcal{S}_k$, because $a + \ker(q)$ generates a commutative C^* -algebra in $A/\ker(q)$. By the definition of S_k we have $$||a + \ker(q)|| \le q(a) \le k||a + \ker(q)||$$ for all $q \in \mathcal{S}_k$, $a \in A$ selfadjoint. Therefore for all $n \in \mathbb{N}$ we see $||a + \ker(q)||^n = ||a^n + \ker(q)|| \le q(a^n) \le k||a^n + \ker(q)|| \le k||a + \ker(q)||^n$ and from this by taking the nth root (1) $$||a + \ker(q)|| \le q(a^n)^{1/n} \le k^{1/n} ||a + \ker(q)||$$ for all selfadjoint $a \in A$ and all seminorms $a \in S_k$. Back to our convergent net $p_i \to p$. For $\varepsilon > 0$ find $n \in \mathbb{N}$ such that $|k^{1/n}-1||a||<\varepsilon$. There is an index i_0 such that $|p_i(a^n)^{1/n}-p(a^n)^{1/n}|<\varepsilon$ for all $i > i_0$. Then by (1), $$| ||a + \ker(p_i)|| - ||a + \ker(p)|| |$$ $$\leq | ||a + \ker(p_i)|| - p_i(a^n)^{1/n}| + |p_i(a^n)^{1/n} - p(a^n)^{1/n}|$$ $$+ |p(a^n)^{1/n} - ||a + \ker(p)|| |$$ $$\leq (k^{1/n} - 1)||a + \ker(p_i)|| + |p_i(a^n)^{1/n} - p(a^n)^{1/n}|$$ $$+ (k^{1/n} - 1)||a + \ker(p)|| < 3\varepsilon$$ for all $i \geq i_0$, and this proves the proposition. Next we will compare τ_{∞} with the Gelfand topology. Let A be a Banach algebra. Let \mathcal{M} be the space of maximal modular ideals with codimension 1 together with the trivial ideal A. By the Gelfand theory this corresponds to the space of homomorphisms $A \to \mathbb{C}$, and so carries the relative w^* -topology from the dual A' which is known as the Gelfand topology. We will show that $\mathcal{M} \subset \mathrm{Id}(A)$ is τ_{∞} -closed and that the relative τ_{∞} -topology coincides with the Gelfand topology, provided A has a bounded approximate identity $(e_i)_i$. LEMMA 9. Let A be a Banach algebra and $\varphi:A\to\mathbb{C}$ a non-zero homomorphism, $I := \ker(\varphi)$. Then $$\kappa_{k}^{-1}(I) = \{t|\varphi(\cdot)| : t \in [1, k/||\varphi||]\}.$$ Proof. The inclusion "\(\sigma\)" is obvious. If $p \in \kappa_k^{-1}(I)$, then p induces a norm \overline{p} on A/I via $\overline{p}(a+I):=p(a)$. But $A/I\cong \mathbb{C}$ via $\overline{\varphi}:A/I\to \mathbb{C}$, $a+I\mapsto \varphi(a)$, hence $\overline{p}\circ \overline{\varphi}^{-1}$ is an algebra norm on \mathbb{C} , and this implies $\overline{p}\circ\overline{\varphi}^{-1}=t|\cdot|$ for some $t\geq 1$. But then $p=t|\varphi(\cdot)|$, and from $p\in\mathcal{S}_k$ we conclude $t \leq k/||\varphi||$. 197 LEMMA 10. Let A be a Banach algebra, and $p \in S_k(A)$. Then the following assertions are equivalent: - (i) There is a homomorphism $\varphi: A \to \mathbb{C}$ and a real number t > 0 such that $p = t|\varphi(\cdot)|$. - (ii) $\exists s > 0 : \forall a, b \in A : p(ab) \ge sp(a)p(b)$. Proof. The implication from (i) to (ii) is trivial, just let s=1/t. Conversely, assume that (ii) holds. Then p induces a norm \overline{p} on $A/\ker(p)$ with the property $\overline{p}(xy) \geq s\overline{p}(x)\overline{p}(y)$ for all $x,y \in A/\ker(p)$, and this property also holds in the completion B of $(A/\ker(p),\overline{p})$. From $\overline{p}(x^2) \geq s\overline{p}(x)^2$ we get by induction $$\overline{p}(x^{2^n}) \ge s^{2^n - 1} \overline{p}(x)^{2^n},$$ and then by the Beurling formula for the spectral radius $r_B(x) \geq s\overline{p}(x)$. By the theorem from [10] we know that B is commutative. See also [9], p. 345, for this argument. Let $\widetilde{B} = B$ if B has a unit and $\widetilde{B} = B_1$, the algebra which emerges from the process of adjoining a unit e, otherwise. By Lemma 2 of [10] we may introduce a norm q on \widetilde{B} in such a way that \overline{p} and $q|_B$ are equivalent (and $r_{\widetilde{B}}(x) \geq s^3 q(x)$ for all $x \in \widetilde{B}$). In the case where B does not have a unit we have $$q(x + \lambda e) := \sup\{\overline{p}(xz + \lambda z) : z \in B, \ \overline{p}(z) \le 1\} \quad (x \in A, \ \lambda \in \mathbb{C}).$$ Then for $z_1, z_2 \in B$ with $||z_1||, ||z_2|| \le 1$ we get $$q((x + \lambda e)(y + \mu e)) \ge \overline{p}((x + \lambda e)(y + \mu e)z_1z_2)$$ $$= \overline{p}((x + \lambda e)z_1(y + \mu e)z_2) \ge s\overline{p}((x + \lambda e)z_1)\overline{p}((y + \mu e)z_2)$$ and so $$q((x+\lambda e)(y+\mu e)) \ge sq(x+\lambda e)q(y+\mu e)$$ for all $x+\lambda e, y+\mu e \in \widetilde{B}$. Hence we may assume $q(xy) \geq sq(x)q(y)$ for all $x, y \in \widetilde{B}$ in either case. We now follow the argument of Theorem 10.19 of [12] to conclude that \widetilde{B} is isomorphic to the complex numbers. We have $q(1) = q(xx^{-1}) \ge sq(x)q(x^{-1})$, and hence (1) $$q(x^{-1}) \le \frac{q(1)}{sq(x)}$$ for all invertible elements $x \in \widetilde{B}$. If $(x_n)_n$ is a sequence of invertibles converging to $x \in \widetilde{B} \setminus \{0\}$, then $$q(x_n^{-1} - x_m^{-1}) = q(x_m^{-1}(x_n - x_m)x_n^{-1}) \le q(x_m^{-1})q(x_n - x_m)q(x_n^{-1})$$ $$\stackrel{(1)}{\le} \frac{q(1)^2}{s^2q(x_n)q(x_m)}q(x_n - x_m) \xrightarrow{n,m} 0.$$ Hence the sequence $(x_n^{-1})_n$ converges to an element $y \in \widetilde{B}$ which is easily seen to be the inverse of x. So the invertible elements of \widetilde{B} are open and closed in $\widetilde{B}\setminus\{0\}$. Since the latter set clearly is connected we conclude that \widetilde{B} is a division algebra, hence $\widetilde{B}\cong\mathbb{C}$ by Mazur's theorem. Of course this implies $A/\ker(p) \cong \mathbb{C}$. Therefore $\ker(p) = \ker(\varphi)$ for a homomorphism $\varphi: A \to \mathbb{C}$, and since a norm on \mathbb{C} necessarily is a multiple of the absolute value, p must be of the form $t|\varphi(\cdot)|$ for some t>0. THEOREM 11. Let A be a Banach algebra with a bounded approximate identity $(e_i)_i$. Then the Gelfand space \mathcal{M} is τ_{∞} -closed, and the Gelfand topology coincides with all τ_k , hence with τ_{∞} . Proof. Let \mathcal{H} be the set of homomorphisms $A \to \mathbb{C}$. Then the norms of $\varphi \in \mathcal{H} \setminus \{0\}$ stay away from zero. For this, let β be a bound for $(e_i)_i$. Since $\varphi(e_i) \to 1$ for $0 \neq \varphi \in \mathcal{H}$, we easily see that $\|\varphi\| \geq 1/\beta$. By a combination of the lemmas above we have $$\kappa_k^{-1}(\mathcal{M}) = \left\{ p \in \mathcal{S}_k : \forall a, b \in A : p(ab) \ge \frac{1}{k\beta} p(a) p(b) \right\}.$$ In particular, $\kappa_k^{-1}(\mathcal{M})$ is closed and this means that \mathcal{M} is τ_k -closed for all k, hence τ_{∞} -closed. But then the τ_k -topology on $\mathcal M$ coincides with the quotient topology of the map (1) $$\kappa_k | \kappa_k^{-1}(\mathcal{M}) : \kappa_k^{-1}(\mathcal{M}) \to \mathcal{M}.$$ Let $p_i \to p$ in $\kappa_k^{-1}(\mathcal{M})$. We have $p_i = t_i |\varphi_i(\cdot)|$ and $p = t |\varphi(\cdot)|$ for $\varphi, \varphi_i \in \mathcal{H}$ and $t, t_i \in [1, \beta]$ by Lemma 9. Given any subnet $(p_j)_j$ we may find a finer subnet $(p_l)_l$ such that $t_l \to s$ in $[1, \beta]$ and $\varphi_l \to \psi$ in (\mathcal{H}, w^*) . This implies $$|t|\varphi(\cdot)| = p = \lim_{l} p_l = \lim_{l} t_l |\varphi_l(\cdot)| = s|\psi(\cdot)|.$$ So φ and ψ are proportional homomorphisms, hence equal. This implies $$\kappa_k(p_l) = \ker(\varphi_l) \to \ker(\varphi) = \kappa_k(p)$$ in the Gelfand topology. Therefore the map (1) is continuous if \mathcal{M} carries the Gelfand topology, and this in turn means that τ_k is finer than the Gelfand topology $\tau_{\rm G}$ for all k, and then $\tau_{\infty} \supset \tau_{\rm G}$. Conversely, if $\varphi_i \to \varphi$ in (\mathcal{H}, w^*) then $|\varphi_i(\cdot)| \to |\varphi(\cdot)|$ in \mathcal{S}_1 , and this implies $\ker(\varphi_i) \to \ker(\varphi)$ with respect to τ_1 . But this yields $\tau_G \supset \tau_1$ on \mathcal{M} . This finally proves the theorem. 5. Topological properties. When is $(\operatorname{Id}(A), \tau_{\infty})$ a T_1 -space, i.e. when are points closed? This of course is the case iff all topologies τ_k are T_1 , and this is the case iff $$\forall I \in \mathrm{Id}(A): \{p \in \mathcal{S}_k : \ker(p) = I\} \text{ is closed in } \mathcal{S}_k.$$ 198 Say that a Banach algebra $(A, \|\cdot\|)$ has the *norm property* iff any pointwise limit of a uniformly $\|\cdot\|$ -bounded net of norms on A is again a norm. Since the seminorms $p \in \mathcal{S}_k(A)$ with $\ker(p) = I$ correspond bijectively to the norms in $\mathcal{S}_k(A/I)$ (where A/I carries the quotient norm), a simple reformulation of the above consideration yields: PROPOSITION 12. A point $I \in Id(A)$ is τ_{∞} -closed iff A/I has the norm property. This property is somehow related to minimal norm topologies (see [8]) as will be shown by the following results. PROPOSITION 13. Let P be a primitive ideal of finite codimension. Then $\{P\}$ is τ_{∞} -closed. Proof. We have $A/P \cong M_m(\mathbb{C})$ for some $m \in \mathbb{N}$ and this algebra has a unit 1. Let $p_i \to p$ in $S_k(A/P)$, where each p_i is a norm. Since $p(1) = \lim_i p_i(1) \geq 1$ the ideal $\ker(p)$ must be proper, hence $\{0\}$. PROPOSITION 14. Let $(A, \|\cdot\|)$ be a Banach *-algebra with a minimal norm topology which stems from a pre-C*-norm on A. Then A has the norm property. Proof. Let $p_i \to p$ be a convergent net of norms p_i in \mathcal{S}_k . Since $\|\cdot\|_*$ yields the minimal norm topology there are positive constants c_i satisfying $\|\cdot\|_* \le c_i p_i$ (where $\|\cdot\|_*$ is the pre- C^* -norm). This implies $$||a||_*^2 = ||a^*a||_* = ||(a^*a)^n||_*^{1/n} \le c_i^{1/n} p_i ((a^*a)^n)^{1/n}$$ $$\le c_i^{1/n} p_i (a^*a) \le c_i^{1/n} p_i (a^*) p_i (a)$$ for all positive integers n, hence $$||a||_*^2 \le p_i(a^*)p_i(a) \to p(a^*)p(a).$$ So p(a) = 0 implies a = 0, which is the desired result. So if e.g. H is a Hilbert space and $A \subset \mathcal{L}(H)$ is a *-subalgebra which contains all finite-dimensional operators, then A (with any Banach algebra norm) has the norm property, since by [8], Th. 3.3, A satisfies the assumptions of the above proposition. The same conclusion holds for all C^* -algebras by [8], Th. 3.6. PROPOSITION 15. Let A be an annihilator algebra. Then $\operatorname{Rad}(A)$ is a τ_{∞} -closed point in $\operatorname{Id}(A)$. Proof. By [7], §32, Prop. 15, $A/\operatorname{Rad}(A)$ is an annihilator algebra, hence we may reduce to the semisimple case. If $p_i \to p$ is a convergent net of norms $p_i \in \mathcal{S}_k$ then by [7], §32, Lemma 23, we have for the spectral radius $$r(a) = \lim_{n} p_i(a^n)^{1/n} \le p_i(a) \to p(a).$$ Next one may ask when $(\operatorname{Id}(A), \tau_{\infty})$ is a Hausdorff space. This of course is the case if A is a C^* -algebra since then we have $\tau_{\infty} = \tau_s$. I would like to mention without proof that the Banach algebras l^p , $1 \le p \le \infty$, with componentwise multiplication and the convolution algebras $L^p(G)$, G a compact group, $1 \le p < \infty$, have τ_{∞} Hausdorff. It can be shown (using [11], 7.1.5) that each two-sided closed ideal of $L^p(G)$ is the intersection of the maximal ideals containing it. Therefore $\operatorname{Id}(L^p(G))$ corresponds bijectively to the subsets of the dual group Γ , and hence to $\{0,1\}^{\Gamma}$, where each subset of Γ is identified with its characteristic function $\Gamma \to \{0,1\}$. Then the τ_{∞} -topology on the space $\operatorname{Id}(L^p(G))$ corresponds to the product topology on $\{0,1\}^{\Gamma}$ which clearly is a Hausdorff space. The details are left to the reader. PROPOSITION 16. Let A be a Banach algebra. Then the following are equivalent: (i) $(\mathrm{Id}(A), \tau_{\infty})$ is a Hausdorff space. (ii) If $I_i \to I$ in $(\mathrm{Id}(A), \tau_\infty)$, then for all $x \in A$ $$\lim \sup_{i} ||x + I_{i}|| \le ||x + I||, \ \lim_{i} \inf ||x + I_{i}|| = 0 \implies x \in I.$$ Proof. (i) \Rightarrow (ii). Let q_i be the quotient seminorm of I_i . Assume that $\limsup_i q_i(x) > \|x+I\|$. Then we can find a subnet $(q_j)_j$ such that $\lim_j q_j(x) > \|x+I\|$ and $q_j \to p \in \mathcal{S}_1$, since \mathcal{S}_1 is compact. Since $I_j = \ker(q_j) \to \ker(p)$ with respect to τ_1 , hence with respect to τ_∞ , we have $I = \ker(p)$ because τ_∞ is Hausdorff. But $p \in \mathcal{S}_1$ and this implies $$||x+I|| = ||x+\ker(p)|| \ge p(x) = \lim q_j(x) > ||x+I||.$$ This contradiction shows $\limsup_{i} ||x + I_{i}|| \le ||x + I||$. Now consider the situation $\liminf_i q_i(x) = 0$. Again we may find a subnet $(q_j)_j$ such that $\lim_j q_j(x) = 0$ and $q_j \to p$ in S_1 . Since τ_∞ is Hausdorff we have $I = \ker(p)$, and this implies $p(x) = \lim_j q_j(x) = 0$, i.e. $x \in I$. (ii) \Rightarrow (i). Let $I_i \to I$ and $I_i \to J$ in $(\mathrm{Id}(A), \tau_{\infty})$. We have to prove I = J. For this, let $x \in I$. Then by the assumption in (ii), $$\liminf_{i} ||x + I_{i}|| \le \limsup_{i} ||x + I_{i}|| \le ||x + I|| = 0,$$ and this implies $x \in J$. Hence $I \subset J$ and then I = J. 6. Another topology. We are in need of still another topology in order to say more about the case of a separable Banach algebra. For a compact set $K \subset A$ define $$U(K) := \{ I \in \operatorname{Id}(A) : I \cap K = \emptyset \}.$$ Obviously we have $U(K_1) \cap U(K_2) = U(K_1 \cup K_2)$, hence the sets U(K), $K \subset A$ compact, form a base for a topology τ_c on $\mathrm{Id}(A)$. LEMMA 17. For all Banach algebras we have $\tau_w \subset \tau_c \subset \tau_\infty$. Proof. Since $U(\{x\}) = \{I \in \operatorname{Id}(A) : x \notin I\}$ we have $\tau_{\mathbf{w}} \subset \tau_{\mathbf{c}}$. Let $p_i \to p$ in \mathcal{S}_k , and let $\ker(p) \in U(K)$ for some compact set $K \subset A$. Then $\inf_{x \in K} p(x) > 0$. Since $p_i \to p$ pointwise we have $p_i \to p$ uniformly on compact sets, hence there is an index i_0 such that $\inf_{x \in K} p_i(x) > 0$ for all $i \geq i_0$. But this means that $\ker(p_i) \in U(K)$ for all $i \geq i_0$. So we have shown that $\kappa_k : \mathcal{S}_k \to (\operatorname{Id}(A), \tau_c)$ is continuous. By definition of the quotient topology τ_k we deduce $\tau_c \subset \tau_k$. This holds for all k, so we have $\tau_c \subset \tau_{\infty}$. LEMMA 18. Let $(I_i)_i$ be a net in Id(A) and $I \in Id(A)$ such that $$\forall x \in A \setminus I : \lim_{i \to \infty} \|x + I_i\| > 0.$$ Then $I_i \to I$ with respect to τ_c . Proof. Let $K \subset A$ be compact and $I \cap K = \emptyset$. For each $x \in K$ we then have $r_x := \liminf_i \|x + I_i\| > 0$. Hence there is an index i(x) such that $\|x + I_i\| > \frac{2}{3}r_x$ for all $i \geq i(x)$. Let $B(x,r) \subset A$ denote the open ball around $x \in A$ with radius r. Then by compactness of K there are finitely many points $x_1, \ldots, x_n \in K$ such that $K \subset B(x_1, \frac{1}{3}r_{x_1}) \cup \ldots \cup B(x_n, \frac{1}{3}r_{x_n})$. Let i_0 be an index larger than $i(x_1), \ldots, i(x_n)$. Then for any $y \in K$ there is a j such that $y \in B(x_j, \frac{1}{3}r_{x_j})$ and then for $i \geq i_0$ we have $$||y + I_i|| \ge ||x_j + I_i|| - ||x_j - y|| \ge \frac{2}{3}r_{x_j} - \frac{1}{3}r_{x_j} = \frac{1}{3}r_{x_j} > 0,$$ hence we have shown $I_i \cap K = \emptyset$ for $i \geq i_0$. COROLLARY 19. If A is a C*-algebra then $\tau_{\rm w} = \tau_{\rm c}$. Proof. If $I_i \to I$ with respect to τ_w then we know that $||x+I|| \le \liminf ||x+I_i||$ for all $x \in A$, and the result follows. In general we have $\tau_{\rm w} \neq \tau_{\rm c}$. For instance, in Example 1 it can be shown that $I_{\mathbb D}$ is not in the $\tau_{\rm c}$ -closure of $\{I_{\{z\}}: z \in 2\mathbb D \setminus \mathbb D\}$, hence we must have $\tau_{\rm w} \neq \tau_{\rm c}$ in this example. 7. Separable Banach algebras. In this section let A be a separable Banach algebra. Then we know that all spaces \mathcal{S}_k are metrizable compact spaces by Lemma 2. THEOREM 20. Let $W \subset Id(A)$ be any subspace. Then W is a separable Lindelöf space in the τ_1 -topology, hence the same holds true for all weaker topologies, for example τ_w , τ_c or τ_∞ . This theorem extends the results of [14], Cor. 4.5, to a large extent. We are interested in other properties of $(\mathrm{Id}(A), \tau_{\infty})$. I do not know whether this space must be first (or even better second) countable, but the following holds: PROPOSITION 21. Sequentially closed sets in $(\mathrm{Id}(A), \tau_{\infty})$ are already closed, and sequentially continuous maps on $(\mathrm{Id}(A), \tau_{\infty})$ are already continuous. Proof. Let $W \subset \operatorname{Id}(A)$ be sequentially closed. Let p be in the closure of $\kappa_k^{-1}(W) \subset \mathcal{S}_k$. Since \mathcal{S}_k is metrizable, there is a sequence $(p_n)_n$ in $\kappa_k^{-1}(W)$ such that $p_n \to p$, and this implies $W \ni \ker(p_n) \to \ker(p)$. Since W is sequentially closed we have $\ker(p) \in W$, hence $p \in \kappa_k^{-1}(W)$. So we have proved that $\kappa_k^{-1}(W)$ is closed in \mathcal{S}_k and this proves that W is τ_k -closed for all $k \in \mathbb{N}$, hence τ_{∞} -closed. The second assertion follows from the first. PROPOSITION 22. For a sequence $(I_n)_n$ and an ideal I in Id(A) the following are equivalent: - (i) $I_n \to I$ with respect to τ_c . - (ii) For all $x \in A \setminus I$ we have $\liminf_n ||x + I_n|| > 0$. Proof. (ii) \Rightarrow (i) is clear from Lemma 18. Conversely, assume that (i) holds and let $x \in A \setminus I$. We have to show $\liminf_n \|x + I_n\| > 0$. Assume the contrary. Then there is a subsequence $(I_{n_m})_m$ such that $\lim_m \|x + I_{n_m}\| = 0$, hence there are $x_m \in I_{n_m}$ such that $\|x - x_m\| \to 0$. Since $x \notin I$ and I is closed, we have $x_m \notin I$ for large $m, m \geq m_0$ say. Then $K := \{x\} \cup \{x_m : m \geq m_0\} \subset A$ is compact and disjoint from I. So we have $I_n \cap K = \emptyset$ for large n, but this contradicts $x_m \in K \cap I_{n_m}$ for $m \geq m_0$. THEOREM 23. For a separable Banach algebra A the following assertions are equivalent: - (i) $(\mathrm{Id}(A), \tau_{\infty})$ is a Hausdorff space. - (ii) $(\operatorname{Id}(A), \tau_{\infty})$ is a metrizable space. - (iii) If the sequence $(I_n)_n$ is τ_{∞} -convergent to I, then $\limsup_n ||x+I_n|| \le ||x+I||$ for all $x \in A$. - (iv) If $p_n \to p$ and $r_n \to r$ in some S_k such that $\ker(p_n) = \ker(r_n)$ for all $n \in \mathbb{N}$ then $\ker(p) = \ker(r)$. Proof. (i) \Rightarrow (ii). Since comparable, compact Hausdorff topologies are equal we have $\tau_{\infty} = \tau_k$ for all k. Then $(\mathrm{Id}(A), \tau_k) = \kappa_k(\mathcal{S}_k)$ is a Suslin space and (ii) follows because compact Suslin spaces are metrizable. The converse $(ii) \Rightarrow (i)$ is trivial. - (i)⇒(iii) follows from Proposition 16. - (i)⇒(iv). The assumptions of (iv) imply $$\ker(p_n) = \ker(r_n) \to \ker(p), \ker(r)$$ hence ker(p) = ker(r) by the Hausdorff property. (iv) \Rightarrow (iii). Let $\tilde{\tau}_{uc}$ be the topology on \mathbb{R} which is generated by the intervals $(-\infty, \lambda)$, $\lambda \in \mathbb{R}$. Define $$\varphi_x : \mathrm{Id}(A) \to (\mathbb{R}, \widetilde{\tau}_{\mathrm{uc}}), \quad I \mapsto ||x+I||, \quad x \in A.$$ Let $p_n \to p$ in \mathcal{S}_k and let q_n be the quotient seminorm of $\ker(p_n)$. For any subsequence $(p_{n_i})_i$ we may find another subsequence $(p_{n_{i_j}})_j$ such that $q_{n_{i_j}} \to r$ in \mathcal{S}_1 . Since $\ker(p_n) = \ker(q_n)$ for all n we deduce $\ker(p) = \ker(r)$ from (iv). Since $r \in \mathcal{S}_1$ we have $r(x) \leq ||x + \ker(r)||$, hence $$||x + \ker(p)|| = ||x + \ker(r)|| \ge r(x) = \lim_{j} q_{n_{i_j}}(x) = \lim_{j} ||x + \ker(p_{n_{i_j}})||.$$ Hence we proved that $S_k \to (\mathbb{R}, \widetilde{\tau}_{uc}), p \mapsto \|x + \ker(p)\|$, is continuous, hence $\varphi_x : (\mathrm{Id}(A), \tau_k) \to (\mathbb{R}, \widetilde{\tau}_{uc})$ is continuous for all k. Therefore $\varphi_x : (\mathrm{Id}(A), \tau_\infty) \to (\mathbb{R}, \widetilde{\tau}_{uc})$ is continuous, and this is nothing but (iii). (iii)⇒(i). First let us prove the following assertion: (*) Limits of sequences are unique, i.e. $(\mathrm{Id}(A), \tau_{\infty})$ is a US-space in the sense of [15]. Let $I_n \to I$ be a τ_{∞} -convergent sequence. Then there is a subsequence $(I_{n_m})_m$ such that $q_{I_{n_m}} \to p$ in \mathcal{S}_1 . Let us prove $I = \ker(p)$. By the assumption (iii) we have $$p(x) = \lim_{m} ||x + I_{n_m}|| \le ||x + I||,$$ and so $I \subset \ker(p)$. On the other hand, we have $I_{n_m} \to I$ with respect to τ_c , hence by Proposition 22, $$x\in A\setminus I \quad \text{implies} \quad \liminf_{m}\|x+I_{n_m}\|>0, \text{ hence } p(x)>0.$$ Therefore $\ker(p) \subset I$. So we have $I = \ker(p)$, and this proves (*). Since we do not know whether $(\mathrm{Id}(A), \tau_{\infty})$ is first countable, the following assertion deserves a proof. (**) Let $W \subset \mathrm{Id}(A)$. Then $\widetilde{W} := \{I: \text{ there is a sequence } I_n \in W \text{ such that } I_n \to I\}$ is the τ_{∞} -closure of W. It is clear that $\widetilde{W} \subset \overline{W}$, hence by Proposition 21 we only have to show that \widetilde{W} is sequentially closed. Let $(I_n)_n$ be a sequence in \widetilde{W} such that $I_n \to I$ and let us show $I \in \widetilde{W}$. There are sequences $(I_m^n)_m$ in W such that $I_m^n \stackrel{m}{\to} I_n$ as $m \to \infty$. Let q_n and q_m^n be the quotient seminorms of I_n resp. I_m^n . Considering subsequences we may assume $q_n \to p$ and $q_m^n \stackrel{m}{\to} r_n$ in \mathcal{S}_1 . Again by compactness of S_1 we may assume $r_n \to r$ in S_1 . Let $(V_t)_t$ be a countable open neighbourhood base of r in S_1 . There are $n_1 < n_2 < \ldots$ satisfying $r_{n_t} \in V_t$. Hence there are $m_t \in \mathbb{N}$ such that $q_{m_t}^{n_t} \in V_t$. This implies $q_{m_t}^{n_t} \to r$ as $t \to \infty$, and therefore $\ker(r) \in \widetilde{W}$. Since $I_m^n \xrightarrow{m} I_n$ and $I_m^n = \ker(q_m^n) \xrightarrow{m} \ker(r_n)$ we have $I_n = \ker(r_n)$ by (*). Since $I_n \to I$ and $\ker(r_n) \to \ker(r)$ we have $I = \ker(r)$, again by (*). Therefore $I \in \widetilde{W}$, and this proves (**). Now let $I_i \to I$ be a τ_{∞} -convergent net in $\mathrm{Id}(A)$. We must show that I is the unique limit. Restricting to a subnet we may assume $q_{I_i} \to p$ in S_1 and it is enough to prove $I = \ker(p)$. Let $(W_n)_n$ be a countable closed neighbourhood base of p. There are indices i_n such that $q_{I_i} \in W_n$ for all $i \geq i_n$. Then I is in the closure of $\{I_i : i \geq i_n\}$ and so by (**) there are sequences $(J_m^n)_m$ in $\{I_i : i \geq i_n\}$ converging to I, and additionally we may assume that the quotient seminorms q_m^n of J_m^n converge to some seminorm p_n in S_1 . Then we have $J_m^n \stackrel{m}{\longrightarrow} I$ and $J_m^n \stackrel{m}{\longrightarrow} \ker(p_n)$, and by (*) we conclude $I = \ker(p_n)$. But $p_n = \lim_m q_n^n \in \overline{W}_n = W_n$ for all n, implying $p_n \to p$, hence $I = \ker(p_n) \to \ker(p)$. By (*) we now may conclude $I = \ker(p)$. LEMMA 24. Let $(\operatorname{Id}(A), \tau_{\infty})$ be a Hausdorff space. Then the intersection $\cap : \operatorname{Id}(A) \times \operatorname{Id}(A) \longrightarrow \operatorname{Id}(A)$ is τ_{∞} -continuous. Proof. Let $I_n \to I$ and $J_n \to J$ be τ_{∞} -convergent sequences. If q_n resp. q'_n are the quotient seminorms of I_n resp. J_n then each subsequence $(I_m \cap J_m)_m$ contains another subsequence $(I_t \cap J_t)_t$ such that the sequences $(q_t)_t$ and $(q'_t)_t$ converge in S_1 , to p resp. p' say. Since τ_{∞} is assumed to be Hausdorff we have $I = \ker(p)$ and $J = \ker(p')$. We have $\max\{q_t, q'_t\} \to \max\{p, p'\}$ in S_1 , and this implies $I_t \cap J_t \to \ker(p) \cap \ker(p') = I \cap J$. Let us consider the space Min-Primal(A) of minimal primal ideals. This is always a Hausdorff space with respect to $\tau_{\mathbf{w}}$. To see this, let $(I_i)_i$ be a net in Min-Primal(A) which converges to I and J in Min-Primal(A). Then we also have $I_i \to I \cap J$, in particular $I \cap J$ must be primal. Since I and J are minimal primal we conclude $I = I \cap J = J$. In the case of a C^* -algebra we know by [1], Cor. 4.3(a), that $\tau_{\rm w}$ and $\tau_{\rm s}$ coincide on Min-Primal(A). A possible generalization to Banach algebras would be that τ_{∞} and $\tau_{\rm w}$ coincide on Min-Primal(A), but this is not the case as can be seen by Example 1; there $I_{\mathbb{D}}$ is in the $\tau_{\rm w}$ -closure of Min-Primal(A)\{ $I_{\mathbb{D}}$ } while $I_{\mathbb{D}}$ is an τ_{∞} -isolated point in Min-Primal(A) by Theorem 11. For C^* -algebras we have $\tau_{\rm w}=\tau_{\rm c}$ by Proposition 19, and one could replace $\tau_{\rm w}$ by $\tau_{\rm c}$ in the above considerations. Following this idea one gets the following THEOREM 25. For a separable Banach algebra the following assertions hold: - (i) For $E \subset \operatorname{Id}(A)$ define $\widetilde{E} := \{I \in \operatorname{Id}(A) : I \supset J \text{ for some } J \in E\}$. Then $(\overline{E}^{\tau_k})^{\sim} = (\overline{E}^{\tau_\infty})^{\sim}$ for all k and this is the τ_c -sequential closure of E (i.e. the smallest τ_c -sequentially closed set containing E). - (ii) The τ_{c} -sequentially closed sets are the closed sets of a topology τ_{cs} . - (iii) τ_{∞} , τ_{cs} and all the τ_k coincide when restricted to Min-Primal(A) and these topologies make Min-Primal(A) a Suslin space. - (iv) If $\tau_{\infty}(A)$ is Hausdorff, then (Min-Primal(A), τ_{∞}) is a Polish space, i.e. a G_{δ} -subset of (Id(A), τ_{∞}). - Proof. (i) Let E_0 be the τ_c -sequential closure of E. Because $\tau_\infty \subset \tau_k$ and by Proposition 21, $\overline{E}^{\tau_k} \subset \overline{E}^{\tau_\infty} \subset E_0$, hence $(\overline{E}^{\tau_k})^{\sim} \subset (\overline{E}^{\tau_\infty})^{\sim} \subset E_0$. Therefore it is enough to show that $(\overline{E}^{\tau_k})^{\sim}$ is τ_c -sequentially closed. To this end, let $(I_n)_n$ be a sequence in $(\overline{E}^{\tau_k})^{\sim}$ which is τ_c -convergent to some $I \in \mathrm{Id}(A)$. Then we have $J_n \in \overline{E}^{\tau_k}$ such that $J_n \subset I_n$ and considering subsequences we may assume $q_{J_n} \to p$ in S_1 . From Proposition 22 we conclude $p(x) = \lim_n q_{J_n}(x) \geq \liminf_n q_{I_n}(x) > 0$ if $x \in A \setminus I$, and this means $\ker(p) \subset I$. Since $\ker(q_{J_n}) \to \ker(p)$ with respect to τ_k we have $\ker(p) \in \overline{E}^{\tau_k}$. Hence $I \in (\overline{E}^{\tau_k})^{\sim}$, and this proves (i). - (ii) Since obviously $(E \cup F)^{\sim} = \widetilde{E} \cup \widetilde{F}$ for subsets $E, F \subset \operatorname{Id}(A)$ it is easy to see by (i) that the operation of taking the τ_{c} -sequential closure satisfies the Kuratowski closure axioms. - (iii) τ_{c} -sequentially closed sets are clearly τ_{∞} -closed by Proposition 21 and so τ_k -closed for all k. Conversely, let $E \subset \text{Min-Primal}(A)$ be relatively τ_k -closed. Then $\overline{E}^{\tau_k} \cap \text{Min-Primal}(A) = E$ and this clearly implies $(\overline{E}^{\tau_k})^{\sim} \cap \text{Min-Primal}(A) = E$ because $\overline{E}^{\tau_k} \subset \text{Primal}(A)$. By (i), E is relatively τ_{cs} -closed. So all topologies in question coincide on Min-Primal(A). Let $H := \kappa_1^{-1}(\operatorname{Primal}(A))$, which is a closed subset of \mathcal{S}_1 , and let $\max(H)$ be the set of maximal elements in H. Clearly $H = \{q_I : I \in \operatorname{Min-Primal}(A)\}$ and so $\operatorname{Min-Primal}(A)$, which is a Hausdorff space (this is even true for the relative $\tau_{\mathbf{w}}$ -topology), is a continuous image of $\max(H)$. Therefore it is sufficient to show that $\max(H)$ is a Polish space, i.e. a G_{δ} -set in \mathcal{S}_1 . Define $$H_1 := \{(p,q) \in H^2 : p \le q\}, \quad H_2 := \{(p,q) \in H^2 : p \ge q\}.$$ We have $p \in H \setminus \max(H)$ iff there is a $q \in H$ such that $p \leq q$ and $p \not\geq q$ iff $p \in \operatorname{pr}_1(H^2 \cap H_1 \setminus H_2)$, where pr_1 denotes the projection onto the first coordinate. Since open sets in \mathcal{S}_1 are F_{σ} -sets, $H^2 \cap H_1 \setminus H_2$ is F_{σ} , hence σ -compact, and so is the continuous image $\operatorname{pr}_1(H^2 \cap H_1 \setminus H_2)$. Therefore $\operatorname{max}(H) = H \setminus \operatorname{pr}_1(H^2 \cap H_1 \setminus H_2)$ is a G_{δ} -set. This proves (iii). (iv) Now let $(\mathrm{Id}(A), \tau_{\infty})$ be Hausdorff, hence metrizable by Theorem 23. Let $X := \mathrm{Primal}(A)$, which is τ_{∞} -closed. Then $$G_1 := \{(I, J) \in X^2 : I \subset J\}, \quad G_2 := \{(I, J) \in X^2 : I \supset J\}$$ are τ_{∞} -closed by Lemma 24. The same arguments as in (iii) now yield that Min-Primal $(A) = X \setminus \operatorname{pr}_1(X^2 \cap G_2 \setminus G_1)$ is a G_{δ} -set in X. This finishes the proof of the theorem. Part (iii) of the above theorem obviously generalizes Corollary 4.3(a) of [1], and part (iv) is a generalization of Corollary 5.2 of [5]. For all this it would be an advantage to know whether τ_{∞} and/or τ_{c} satisfy the first (or even better the second) countability axiom if the Banach algebra is separable, but this must remain an open question here. #### References - R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542. - R. J. Archbold and D. W. B. Somerset, Quasi-standard C*-algebras, Math. Proc. Cambridge Philos. Soc. 107 (1990), 349-360. - F. Beckhoff, The minimal primal ideal space of a C*-algebra and local compactness, Canad. Math. Bull. (4) 34 (1991), 440-446. - [4] —, The minimal primal ideal space and AF-algebras, Arch. Math. (Basel) 59 (1992), 276-282. - [5] —, The minimal primal ideal space of a separable C*-algebra, Michigan Math. J. 40 (1993), 477-492. - [6] —, The adjunction of a unit and the minimal primal ideal space, in: Proc. 2nd Internat. Conf. in Funct. Anal. and Approx. Theory, Acquafredda di Maratea, September 14–19, 1992, Rend. Circ. Mat. Palermo (2) Suppl. 33 (1993), 201–209. - [7] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. - [8] H. G. Dales, On norms on algebras, in: Proc. Conf. Canberra 1989, Centre for Mathematical Analysis, Australian National University, Vol. 21, 1989, 61-96. - R. S. Doran and V. A. Belfi, Characterizations of C*-algebras, Marcel Dekker, 1986. - [10] R. A. Hirschfeld and W. Żelazko, On spectral norm Banach algebras, Bull. Acad. Polon. Sci. 16 (1968), 195-199. - [11] W. Rudin, Fourier Analysis on Groups, Interscience, 1962. - [12] —, Functional Analysis, McGraw-Hill, 1973. - [13] S. Sakai, C*-algebras and W*-algebras, Springer, 1971. - [14] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52. - [15] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly 74 (1967), 261-266. MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNSTER EINSTEINSTR. 62 48149 MÜNSTER, FED. REP. GERMANY > Received December 28, 1994 Revised version March 2, 1995 (3398)