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Topologies on the space of ideals
of a Banach algebra

by

FERDINAND BECKHOFF (Minster)

Abstract. Some topclogies on the space Id(4) of two-sided and closed ideals of a
Banach algebra are introduced and investigated. One of the topeologies, namely 700, coin-
cides with the so-called strong topology if A is a C*-algebra. We prove that for a sepa-
rable Banach algebra oo coincides with a weaker topology when restricted to the space
Min-Primal(4) of minimal closed primal ideals and that Min-Primal(A) is a Polish space
If meo is Hausdorfl; this generalizes results from [1] and [3]. All subspaces of Id(A) with
the relative hull kernel topology turn out to be separable Lindeldf spaces if A is separable,
which improves regults from. [14].

1. Introduction. In [14] D. W. B. Somerset has started the investigation
of the space Min-Primal(A4) of minimal primal closed ideals of a general
Banach algebra. He proved, among other things, that if A is a separable
Banach algebra, then the space Prime(A) of closed prime ideals with the
hull kernel topology (or weak topology 7 ) is separable, and if additionally
A is topologically semiprimal, then Min-Primal(A} is also separable. We will
prove the much stronger result that all subspaces of the space Id(A) of closed
two-sided ideals of A are separable Lindeldf spaces if A ia separable. On page
50 of [14] the author left open the question whether Min-Primal(A) is second
countable if A is separable. We will give an example of a unital separable
subalgebra A of & commutative C*-algebra such that Min-Primal(A4) is not
even first countable.

The methods used here are rather different from those of [14]. Here we
try to generalize the idea of the strong topology 7s in Id(A) (see [1] for this
or next paragraph). If A is a C*-algebra, then this topology makes Id(A)
a compact Hausdorff space. This useful topology has been investigated and
applied in the theory of C*-algebras (see e.g. [1]-[6]).

IE(A, |- is a Banach algebra, then 7, is by definition the weak topology
of all maps

Id(A) = Ry, Im|z+1|, zeA
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For a general Banach algebra 7; need not be compact, and obviously 7,
depends on the special norm on A. Indeed, it is easy to find equivalent
algebra norms on the C*-algebra of convergent sequences such that the 7,-
topology defined by this new norm is not compact. We will define another
topology Tee on Id(A) with the following properties:

(i) (Id(A), Ts0) is compact {not Hausdorff in general).
(i) 7w C Too C 75
(iii) 7o only depends on the norm topeology of A, not on the special
norm.
(iv) Too = 75 if A is & C*-algebra.
(v) If A is a commutative Banach algebra with a bounded approximate
identity then on the Gelfand space 7.o coincides with the Gelfand topology.

This topology can be used to answer the above mentioned questions.
Further properties and examples are given in the following sections.

2. An example

ExaMPLE 1. Let D be the closed unit disc in the plane, 2D the disc with
radius 2. Let A(D) be the disc algebra, i.e. the Banach algebra of continuous
functions I — C that are holomorphic in the interior of B. Let C(2ID) be
the commutative C*-algebra of continuous functions on 2ID. Define

A= {feC(2D): fDe AD)}-

For M C 2D let ;4 be the ideal of functions in 4 vanishing on M. Then it
is not difficult to prove that

Min-Primal(4) = {I;,; : z € 2D\ D} U {Ip}.

ASSERTION. Ip s in the T-closure of My 1= {I,} : z € 2D \ D} but no
sequence tn My v -converges to Ip.

Proof. Let U be an open ry-neighbourhood of Ip. Then U contains a
neighbourhood of the form

V= {I e Min-Primal(A) : fs €1,..., fa €1}, fr,e s fn €A, neN.

Since Ip € V we have f;|D 5 0. Since A(D) is an integral domain we have
fi... fa # 0, and by the masxdmum modulus principle there is a point t € 8D
such that fi(t)... fu(t) # 0. By the continuity of the f; we can conclude
that there is a point s € 2D\ ID such that f1(s)... f.(s) % 0, and this means
Ity € V. C U. Hence I is in the y-closure of My.

Now assume that there were a sequence (), in 2ID \ ID such that Ip;,)
converges to [p. Since 2D is compact we may assume that ¢, — ¢t € 2D.
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Then F = DU {t, : n € N} U{t} is a closed subset of 2D. Define
.. e Jr—t HzeD,
foF =€ f(")“{o if z € F\D.

This clearly is continuous and by the Tietze extension theorem it can be
extended to an element g € C(2D), and obviously g € A. Since g & Ip we
must have g & I, for large n by the assumed Tw-tonvergence, but this is
not the case. This contradiction finishes the proof of the assertion. =

Hence Ip € Min-Primal(4) cannot have a countable neighbourhood
base, and so Min-Primal(A) 18 not a first countable space in the relative
Tw-topology. This answers a question on page 50 of [14] in the negative.

3. Construction of the topology and simple properties. Let (4,
| -1]) be a Banach algebra. For k € N let Si(A, || - ||} be the set of all algebra
seminorms bounded by %, i.e. the set of seminorms p : A — RaL such that
p(ab) < pla)p(b) and p(a) < kf|a|| for all a,b € A. Write only Sk if (4, - ||)
is clear. We have in the obvious manner

Se(4, -1 < T 1o, kllal].
agA

Since the conditions for a real-valued function to be an element of §, are
pointwise conditions, &y, is a closed, hence compact subspace of the product
space, i.e. &y is compact with respect to the topology of pointwise conver-
gence.

LEMMA 2, If A is separable, then Sy is metrizable.
Proof. If (a,), is a dense sequence in A then the injection

Si > [T 10 klenll

neN

defines the same topology on Sy. Indeed, if (p;); is & net in S, p € Sk, and
if pi(an) — plan) for all n, then for a € A4,

pile) = p(a)| < pila— an) + [pilan) = plan)| + plon — a)
< 2klla ~ anf| + |pi(en) — plon)l,
and this is small for large 7 if n is chosen appropriately. m
Now define
kr 2 Sp(A, |- ]1) — 1d(4),

This map is surjective since if I € Id(A) then the corresponding quotient
seminorm, :

p +— ker(p).

al@)=la+Il, acA,



192 F. Beckhoff

obviously is in 8; € 8. Let 7(A4, |- ||) be the quotient topology of this map
on Id(A), and finally 7o {4, || - ||) :== (Y, 7% (A, || - [|). Simply write 7% or 7o
if no confusion can arise.

Too May alternatively be described as follows: Equip U:c Sy, with the
inductive topology; then 7o is the quotient topology of the map p — ker(p).

LEMMA 3. For any Banach algebra (A, | - ||) the topologies T, k € N,
are compact (in general not Housdorff) and

Tw CToo C oo  CTe4Lt CTp C 0. O C Tye

Proof. Since the Sy are compact, it is clear that the topologies T, and
hence T, are also compact.

Let I; — I in (Id{A),7s), i-e. gr, — g7 in S1. This implies I; — I with
respect to 71, thus proving the inclusion 1y C 7.

Since k11 : Sp+1 — (Id(A), Tht1) Is continuous, so is the restriction

Ky — Ii;c+1|S;ﬂ : Sk — (Id(A),Tk+1).

By definition 7y, is the finest topology on Id{A) making this map continuous,
and this implies Tx11 C T&.

The only thing left to show is 7 C Tp forall k € M. Ifp; — pin &
and z ¢ ker(p), then p;(z) — p(z) # 0 and therefore z & ker(p,} for large i.
This proves the my-convergence k(p;) —+ ki (p), and again by the definition
of the quotient topalogy 7 we conclude 7 C 7%, ™

The topologies 73 seem to depend on the special norm chosen on A
although I do not know any example for this. But we have the following

PROPOSITION 4. Let (A,| - ||} is a Banach algebra. The topology
Too (A, || - I|) on Id(A) is compact, 7w C Teo C Ts, and if || - |0 s another
equivalent algebra norm then 7oo{A, || - 1) = Too (A, 1 - ll0)-

Proof. We only have to show the independence on the special norm.
There are constants o, § > 0 such that «f - |lg < ||| £ 8i| - lo. For k € N
let | € N be such that | > 8k. Then Sp(A. { - |) € Si(4, | - lo). Since the
restriction

wr: Sp(A, || - 1) — (1d(A), (A, |- o))
is continuwous we have (A, || - ||} D (A, || - o) O Tac(A,] - {lo) by the
definition of the quotient topologies. As k was arbitrary we see 7o (4, ||-]]) 2
Too (A, || - lo); the reverse inclusion is similar., w

PROPOSITION 5, Let ¢ : A — B be a continuous homomorphism belween,
Banach algebras and define

F:1A(B) = 1d(A), [ (D).

Then § is Teo-continuous. If @ is surjective then & is a homeomorphism onto
ifs image.
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Proof. Since ¢ is continuous, & maps closed ideals to closed ideals. For
k € Nlet I € N be such that | > k|/¢||. Then we have a map

P:Sk(B) = 8(4), p—po,

and the diagram
Si(B) L s(4)
e | L

Id(B) & 1d(4)

is obviously commutative. Since Fory = ;07 is continuous, we deduce the
p-m-continuity of &, and hence the Ti-Teo-cOUtinuity. As k& was arbitrary
the first agsertion follows.

Now let ¢ be surjective. By Proposition 4 we may assume that B = A4 /J
for J = ker(y) and that ¢ is the quotient map. Then
im(@) = {I e Id{A4) : I D J} C Id(A)

is my-closed, hence 7y-closed for all & € N. Then the restricted topology
7 |im($) coincides with the quotient topology of the map

e

ki ¢ 65 (im(3) — im ().
Therefore it is enough to show that
o my iy (10(B)) — 1A (A/T, Too)
is continuous. To this end let p; — pin k5 (im($)). Then ker(p;), ker(p) > J,
Bila+J)=pi(a}, Bla+J):=p(a)
are well-defined elements of S;(A/J) and we have P, — P; moreover,
7™ o m(pi) = 37 (ker(p:)) = ker(p;)/J = kex(;)
—ker(B) = ... = § " o mx(n),
and this finishes the proof of the second assertion. m

PROPOSITION 6. Let J be a two-sided closed ideol in o Banach algebra
A. Then
(i) The intersection map i :1d(A) — Ld(I), J—~JN1I, is To-continuous.
(i) If I has an approzimate identity then IA(I) C Id(A).
(ii}) If I' has o bounded approzimate identity then (1A(I), 7o (D)) carries
the subspace topology from (Id(A), 7o (4)).
Proof Let r: Sp(A4) — Si(I) be the restriction map. Then the diagram
Su(4) = S(D)
Ri | L ok

1d(4) 5 1d()
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is obviously commutative, and the r-continuity is easily deduced from this.
Since k was arbitrary this proves (i).

(ii) is easy.

(iil) Let (e;); be an approximate identity with bound ¢ > 1. For k € N
let I € N be guch that [ > ck. First let us prove

(%) Vp € 8, (1) : I € Si(A) :

Define p{a) := sup{p(az) : z € 1, ||z|| £ 1}. Then 7 obviously is a seminorm
on A, and for a,b € A, z € I, ||z} < 1 we have

p < plr < ckp.

cf(a)p(b)-

Hence p(ab) < cp(a)f(b) and this implies that p:= cp'is an algebra seminorm
on A. It is easily seen that this p satisfies (x).

Let ¢ : Id(I) ¢ 1d(A) be the inclusion, and let p; — p be any convergent
net in Sp(I). Given any subnet (p;); choose P; as in (x), and find a con-
vergent subnet (Fm)m by compactness of Si(A), fm — ¢ say. For 2 € I we
have pm(z) < Bm(z) < ckpm(z), and this yields p(z) < ¢(z) < ckp(z). This
implies ker(Fm) N I = ker(py,) and ker(g) NI = ker(p). Then we see

= ker(Bp,) NI = ker(g) NI by (i)
= u(xer(p)) = e(rx(p))-

Therefore ¢ o rg : Sx(I) — (Id(A), 7o) is continuous for all k, and this
implies the froo—contmmty of «. Together with (i) this proves the claim since
the intersection map 4 is obviously the continuous inverse of .. =

plabz) = limp(ae;br) < li;np(aej Yp(bz) £
2

(ko (D })

Without proof I would like to mention the following

PrROPOSITION 7. Let (An)n be a sequence of Banach algebras having
approzimate identities and let 4 be the co-sum of the An. For I € Id{A)
and n € N let I(n) C A, be the nth projection of I. Then

(Id(A):TDO) —* H (Id(An): 'Too)a I (I(n))nEN:
neEN

is a continuous bijection.

4. Comparison with other topologies

PROPOSITION 8. Let A be a C*-algebra. Then 1y = 7y for ¢ll k € N, in
particular Tee = Ts.

Proof. We have to prove 7, C 7 for all positive integers k. To this end,
let p; -~ p in 8. The claim is

la+ ker(p)|j = lla + ker(p)|  Va € 4,
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Since |la + I|[* = [la*a + I|| for all I € Id{A) we may assume that a is
selfadjoint. By an old theorem of Kaplansky (see [13], Th. 1.2.4) we have

lla +ker(g)|| < qfa)

because o+ ker(g) generates a commutative C'*-algebra in A/ ker(q). By the
definition of &, we have

la+ ker(g)|| < ¢(a) < klla + ker(q)|
Therefore for all n & N we see
o+ ker(g)||* = [a® + ker(q)| < ¢(a™) < klla™ + ker(q
and from this by taking the nth root
(1) lla -+ ker()]| € g(a™)M™ < K/"|la + ker(g)]]
for all selfadjoint @ € 4 and all seminorms g € Sy,
Back to our convergent net p;, — p. For ¢ > 0 find n € N such that

RAES 1\||fz|[ < ¢. There is an index 4g such that |p;(a™)}/™ — p(a®)*/"| < ¢
for all ¢ > 4p. Then by (1),

o + ker(ps)ll — lla + ker(p)|| |
< |lla + ker(ps)|| — pa(a™)/™| + [pi(a™) /"
+ (@)™ ~ o+ ker(p) |
< (K7™ = Dlla + ker(pi)|| + lps(a™)*™ = p(a™)*"|

+ (kY" ~1)]ja + ker(p)] < 3¢
for all ¢ > 4y, and this proves the proposition. =

for all seminorms ¢ & Sy,

for all ¢ € &, a € A selfadjoint.

) < Ella+ ker(g)]",

- p(a™)*"]

Next we will compare T with the Gelfand topology. Let 4 be a Banach
algebra. Let M Dbe the space of maximal modular ideals with codimension 1
together with the trivial ideal A. By the Gelfand theory this corresponds to
the space of homomorphisms 4 ~ C, and so carries the relative w*-topology
from the dual A’ which is known as the Gelfand topology. We will show that
M C 1d(A) {8 ro~closed and that the relative Too-topology coincides with
the Gelfand topology, provided A has a bounded approximate identity (e4);.

LeMMA 9, Let A be a Banach algebra and ¢ : A — C a non-zero homo-
morphism, I == kor(e). Then
rp (1) = {tle()] ¢ & [L A/ llll}-
Proof. The inclugion “2" is obvious. If p € H-;;l(f ), then p induces a
norm F on A/J via Bla + I) = pla). But 4/I = C via §: A/T = C,
a+1I — @{a), hence Po P~ is an algebra norm on C, and this implies
B oT,é“‘l = t| | for some ¢ > 1. But then p = #|@(-)|, and from pe Sk we
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LEMMA 10. Let A be o Banach algebra, and p € Sp(A). Then the follow-
ing assertions are eyuivalent:

(i) There is a homomorphism ¢ : A — C and a real number ¢ > 0 such
that p = ()|

(i) 3s > 0 : Va,b € A : p(ab) > sp(a)p(b).

Proof The implication from (i) to (ii) is trivial, just let s = 1/t. Con-
versely, assume that (i) holds. Then p induces a norm p on A/ ker(p) with
the property B(zy) > sB(x)p(y) for all z,y € A/ker(p), and this property
also holds in the completion B of (A/ ker(p), 7). From B(z?) > sp(z)? we
get by induction

B(a) = 5% ()",
and then by the Beurling formula for the spectral radius #g(z) = sp(«). By
the theorem from [10] we know that B is commutative. See also [9], p. 345,
for this argument. Let B = Bif Bhas aunit and B = Bi, the algebra which
emerges from the process of adjoining a unit e, otherwise. By Lemma 2 of
[10] we may introduce a norm ¢ on B in such a way that 7 and ¢|p are
equivalent (and r5(z) > s%q(z) for all z € B).
In the case Where B does not have a unit we have

q(z + Ae) = sup{B(zz + Az) : z € B, p(z) L 1}
Then for zi1, 29 € B with ||z1]], |22 £ 1 we get
a(@+ ey + ue)) 2 B((e = Ae)y + pe)z1z2)

=P((z + Ae)z1{y + pe)za) = sp({z -+ Ae)z)P((y + pe)za)

(ze A, Ael).

and so
q((z+ Xe)(y + pe)) > sqlz + Ae)g(y + ue)

Hence we may assume q(zy) > sq(z)q(y) for all z,y € B in either case.
‘We now follow the argument of Theorem 10.19 of [12] to conclude that

B is isomorphic to the complex numbers. We have ¢(1) = q(zz™!) >

for all x + Ae,y + pe € B.

sq(z)g(z =1}, and hence
(1) g(z™) < () for all invertible elements z € B.
2q(z)

If (2, )n is & sequence of invertibles converging to = € B \ {0}, then

gloyt —znt) = g(znt (2 — zmdey ) < alzpalen — en)a(zrt)
@ g1y
S ey o) 0

Hence the sequence (z; '), converges to an element y € B which is easily
seen to be the inverse of z. -
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So the invertible elements of B are open and closed in B \ {0}. Since
the latter set clearly is connected we conclude that B is a division algebra,
hence B & € by Magzur’s theorem.

Of course this implies A/ker(p) & C. Therefore ker(p) = ker(y) for a
homomorphism ¢ : A — C, and since a norm on C necessarily is a nultiple
of the absolute value, p must be of the form t|p(-)| for some t > 0. »

THROREM 11. Let A be o Banach algebra with o bounded approzimate

identity (eq);. Then the Gelfand space M is 7oo-closed, and the Gelfand
topology cotncides with all 7, hence with 7.

Proof. Let H be the set of homomorphisms 4 — C. Then the norms of
@ € K\ {0} stay away from zero, For this, let 8 be a bound for (e;);. Since
p(e;) — 1 for 0 # o € H, we easily see that |¢| > 1/8.

By a combination of the lemmas above we have

wpt (M) = {pESk Va,b € A : plab) > klﬁ (a)p (b)}.

In particular, mkjl(M ) 1s closed and this means that M is 7-closed for all
k., hence T -closed.

But then the 7i-topology on M coincides with the quotient topology of
the map

(1) rilwg (M) /(M) — M.

Let p; — p in &5 ' (M). We have p; = %;lp;()| and p = tlg(-)] for ¢, ¢; € H
and £,4; € [1, 4] by Lemma 9. Given any subnet (p;); we may find a finer
subnet (p;); such that ¢; — s in [1, 8] and ; — 1 in (H,w*). This implies

Ho()] = p = lmpr = Imtalou()] = sl ().
So ¢ and 4 are proportional homomorphisms, hence equal. This implies

ki (pi) = ker(pr) — ker(p) = wi(p)

in the Gelfand topology. Therefore the map (1) is continuous if M carries the
Gelfand topology, and this in turn means that 4 is finer than the Gelfand
topology 7o for all k, and then 740 D 7.

lonversely, if @, - @ In (H,w*) then |v;{-)] — le())] in &1, and this
implies ker(p;) — ker(ip) with respect to 7y But this yields ¢ D 7 on M.
This finally proves the theorem. =

5. Topological properties. When is (Id(A), 1) a T1-space, i.e. when
are points closed? This of course is the cage iff all topologies m are T, and
this is the case iff '

vIield(A): {pe€ Sy:ker(p)=1T} is closed in Sk.
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Say that a Banach algebra (4, || - ||) has the norm property iff any pointwise
limit of 2 uniformly || |-bounded net of norms on A is again a norm. Since the
seminorms p € Sy A) with ker(p) = I correspond bijectively to the normg
in Sg(A/I) (where A/I carries the quotient norm), a simple reformulation
of the above consideration yields:

PROPOSITION 12. A point I € 1A(A) is 1 -closed iff A/l has the norm
property.

This property is somehow related to minimal norm topologies (see [8])
as will be shown by the following results.

PROPOSITION 13. Let P be a primitive ideal of finite codimension. Then
{P} is 700 -closed.

Proof We have A/P = M,,(C) for some m &€ N and this algebra has

a unit 1. Tet p; — p in Sp(A/P), where each p; is a norm. Since p(l) =
lim; p;(1) > 1 the ideal ker(p) must be proper, hence {0}. w

PROPOSITION 14. Let (A4,) - ||) be o Banach *-algebra with a minimal
norm topology which stems from a pre-C*-norm on A. Then A has the norm
property.

Proof. Let p; — p be a convergent net of norms p; in S. Since || - |
yields the minimal norm topology there are positive constants ¢; satisfying
|- ||« < eip: (where |- |l is the pre-C*-norm). This implies

a2 = la*all = I(a"a) " < ;" pi((a"a)") /"
< &/ pila"a) < ¢ pila*)pia)
for all positive integers n, hence
3 < pila®)pia) — pla™)p(a).
So p(a) = 0 implies ¢ == 0, which is the desired resnlt. =

llal

So if e.g. H is a Hilbert space and A C L(H) is a *-subalgebra which
contains all finite-dimensional operators, then A {with any Banach algebra
norm) has the norm property, since by [8], Th. 3.3, A satisfies the assump-
tions of the above proposition. The same conclusion holds for all C*-algebras
by [8], Th. 3.6:

PROPOSITION 15. Let A be an annihilator algebra. Then Rad(A) s a
Too-closed point in Id(A4}.

Proof. By [7], §32, Prop. 15, A/ Rad(A) is an annihilator algebra, hence
we may reduce to the semisimple case. If p; — p is a convergent net of norms
p; € Sy then by [7], §32, Lemma 23, we have for the spectral radius

rla) = limpi(a™)*/" < pi(a) — p(a).
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Therefore ker(p) consists entirely of quasiregular elements, hence ker(p) C
Rad(A) = {0}, which proves the assertion. m

Next one may ask when (Id(A}, 7 ) is a Hausdorff space. This of course
is the case if 4 is a C™-algebra since then we have 7., = 7. [ would like to
mention without proof that the Banach algebras IP, 1 < p < o0, with com-
ponentwise multiplication and the convolution algebras LP(@), G a compact
group, 1 £ p < 00, have 7o Hausdorff. It can be shown {using [11], 7.1.5)
that each two-sided closed ideal of LP(G) is the intersection of the maximal
ideals containing it. Therefore Id(L* (@) corresponds bijectively to the sub-
sets of the dual group [7, and hence to {0,1}7, where each subset of I' is
identified with its characteristic function I" — {0, 1}. Then the To-topology
on the space [d(LP{(¥)) corresponds to the product topology on {0,1}F
which clearly is a Hausdorff space. The delails are left to the reader.

ProrosirioNn 16. Let A be a Banach algebra. Then the following are
equivalent:

(i) (Td(A), Teo) ts & Housdorff space.
(1) If I = I in (1d(A), 7o), then forallz € A

Hmsup |z + L < lle+ 7|, lminflla+5]=0 = z el
P k3

Proof. (i)=(ii). Let ¢; be the quotient seminorm of I;. Assume that
limsup, ¢;(2) > |l&-+I]|. Then we can find a subnet (g;); such that lim, g; ()
> ||lz-+1|| and g; — p € 84, since Sy is compact. Since £; = ker(g;) — ker(p)
with respect to 71, hence with respect to 7o, we have I = ker(p) because
Teo 18 Hausdorff. But p € & and this implies

& + Il = ||z + ker(p)|| Z p(=) = limg; (z) > ||z + ||
This contradiction shows limsup, ||z -+ 5|} < |« -+ I||.

Now consider the situation liminf; ¢;(2) = 0. Again we may find a subnet
(g;)5 such that limy g;j(x) = 0 and g; — p in 1. Since 7, is Hausdorff we
have I = ker(p), and this implies p(x) = lim; g;{x) = 0,ie. z € I.

(ii)=+(i). Let [; — T and [; — J in (Id(A), 7e ). We have to prove I = J.
For this, let 2 € I. Then by the assumption in (if),

< limsap ||z + L] < jlz+ I =0,
i

liminf || 4 5
£
and this implies ¢ € J. Hence I ¢ J and then / = J. =
6. Another topology. We are in need of still another topology in order

to say more about the case of a separable Banach algebra. For a compact
set K C A define '

U(K) = {I €Td(4): In K =0}
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Obviously we have U{(Ky) NU(Ka) = U(Ky U Ka), hence the sets U(K),
K C A compact, form a base for a topology 7. on Id(4).

LeMMA 17. For all Banach algebras we have T C Te C Too-

Proof. Since U({z}) = {I € Id(4) : ¢ ¢ I} we have 7y C 7. Let
p; — pin S, and let ker{p} € U(K) for some compact set K C A. Then
infyex p(z) > 0. Since p; — p pointwise we have p; — p uniformly on
compact sets, hence there is an index #g such that infyez pi(x) > 0 for
all 1 > 4o. But this means that ker(p;) € U(K) for all i > 45, So we have
shown that xj : 8y — (Id{A),7.) is continuous. By definition of the quotient
topology 7 we deduce 7, C 7. This holds for all &, so we have 7. C 7. =

LeMMA 18. Let (I;); be o net in Yd(A) and I € Id(A) such that
Yre A\I: liminf|lz-+ L] >0

Then I; — I with respect to ..

Proof Let K C A be compact and I N K = 0. For each 2 € K we
then have ry := liminf; |z + J;|| > 0. Hence there is an index i{z) such that
|z + Ll > 2rg for all i > i(z). Let B(z,r) C A denote the open ball around
x € A with radius r. Then by compactness of K there are finitely many
points z1, ..., %, € K such that K C B(w1,3rs,) U... U By, $rs,). Let
ip be an index larger than i(z1),...,%(%y). Then for any y € K thereisa j
such that y € B{z;, 37, ) and then for ¢ > iy we have

ly + L = 25 -+ Ll - ||lz5 -yl = %TEJ - %'ij = %"T'EJ >0,

hence we have shown I, N K =0 for ¢ > ¢p. m
CoOROLLARY 19. If A 1g a C*-algebra then 1w = 7.

Proof. If I; — I with respect to 7 then we know that ||z + I| <
liminf |& + I;|| for all 2 € A, and the result follows. =

In general we have 7y # 7. For instance, in Example 1 it can be shown
that Ip is not in the re-closure of {f;;} : 2 € 2D\ D}, hence we must have
Tw ¥ Tp in this example.

7. Separable Banach algebras. In this section let A be a separable
Banach algebra. Then we know that all spaces & are metrizable compact
spaces by Lemma 2.

TuroreM 20. Let W C Id(A) be any subspace. Then W is a seporable
Lindeldf space in the 7 -topology, hence the same holds irue for oll weaker
topologies, for exarmple T, Te OF Too.
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Proof s (W) C Sy is a second countable and metrizable space, hence
it iz a separable Lindelof space, and so is the continuous image W =
m(f"ul—l(w))- =

This theorem extends the results of [14], Cor. 4.5, to a large extent. We
are interested in other properties of (Id(A), 7). I do not know whether
this space must be first (or even better second) countable, but the following
holds:

ProOpOSITION 21. Sequentially closed sets in (1d(A), 7o) are already
closed, and sequentially continuous maps on (1d(A), 7o) are already con-
hinuous,

Proof Let W < Id(A) be sequentially closed. Let p be in the closure of
-1 I ; ; . : .
ki (W) C 8. Since S is metrizable, there is a sequence (p,)n in & (W)
such that pn — p, and this implies W = ker(p,) — ker(p). Since W is
sequentially closed we have ker(p) € W, hence p € &' (W). So we have
proved that m;‘l(W) is cloged in &) and this proves that W is +-closed for
all k € N, hence 7o-closad. The second assertion follows from the first. m

PROPOSITION 22. For a sequence (In)n and an ideal I in 1d(A) the
following are equivalent:

(i) In — I with respect to 7.
(il) For all z € A\ I we have liminf, ||z + L,|| > 0.

Proof (ii)=»(i) is clear from Lemma 18. Conversely, assume that (i)
holds and let z € A\ J. We have to show liminf, ||z + I,,| > 0. Assume the
contrary. Then there is a subsequence (I, )r, such that limy, ||z+1,,,| = 0,
hence there are =, € I, such that ||z — 2| — 0. Since z & I and I is
closed, we have x,, & I for large m, m > mgy say. Then K = {2z} U {z :
m > mg} C A is compact and disjoint from I. So we have I, N K = § for
large n, but this contradicts 2, € K N1, for m > mg. n

THEOREM 23. For o separable Banach algebra A the following assertions
are equivalent:

(1) (1d(A), Tee) %8 o Hausdorff space.
(i) {TA(A), 7o) 1 o metrizable space.
(lil) If the segquence (1), i8 Too-conuergent o I, then limsup,, |z +1,|| <
&+ Il for all & & A.
(iv) If pp, =~ p and ry, = 7 in some Sy such that ker(p,) = ker(r,) for
all n € N ihen ker(p) = ker(r).

Proof. (i)=+(ii). Since comparable, compact Hausdorff topologies are
equal we have 7o, = 74 for all k. Then (Id(A), 7%) = #x(Sk) is a Suslin space
and (ii) follows because compact Suslin spaces are metrizable.

The converse {ii)=>(i) is trivial, '
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(i)=>(iii) follows from Proposition 16.
{(i)=(iv). The assumptions of (iv) imply
ker(p,) = ker(r,,) — ker(p), ker(r)

hence ker(p) = ker(r) by the Hausdorfl property. .

(iv)=+(iii). Let Ty be the topology on R which is generated by the inter-
vals (—oo, A), A € R. Define

©g : 1d(4) — (Ra:’:uc): I |z+ I,

Let p, — p in & and let g, be the quotient seminorm of ker(p,). For
any subsequence (py,); we may find another subsequence (pm.:j ); such that
Gn,, — T in 8y. Since ker(pn) = ker(gs) for all n we deduce ker(p) = ker(r)

7
from (iv). Since r € S; we have r(z) < |z + ker(r)||, hence

e + ker(@)] = [le + ex(r)] 2 r(x) = isa g, (&) = lim |12 = kex(ps, ).

z & A

Hence we proved that Sy — (R,Fy), p — ||z + ker(p)||, is continuous,
hence ¢, : (Id(A),7x) — (R, Tyc) is continuous for all k. Therefore ¢, :
(Id(A), 7o) — (R, Tpe) is continuous, and this is nothing but (iii).

(ii)=-(i). First let us prove the following assertion:
{(¥)  Limits of sequences are unique, i.e. (Id(4), 7e) is a US-space in the

sense of [15].

Let I, — I be a 7o,-convergent sequence. Then there is a subsequence
(It )m such that g, = pin ;. Let us prove I = ker(p). By the assump-
tion (iii) we have

p(z) =lim o+ Lo, | < 2+ 1),

and so I C ker(p). On the other hand, we have I',,, — I with respect to .,
hence by Proposition 22,

z ¢ A\I implies lirlyrrjnf |z + I,.|] > 0, hence p(z) > 0.

Therefore ker(p) C I. So we have I = ker(p), and this proves {x).
Since we do not know whether (Id(A), 7 ) is-first countable, the following
assertion deserves a proof.
(#+) Let W C Id(A). Then W= {I: there is a sequence I, € W such
that I, -» I} is the 7o -clogsure of W.

It is clear that W c W, hence by Proposition 21 we only have to show
that W is sequentially closed. Let (I,), be a sequence in W such that
I, — I and let us show I € W. There are sequences (I7),, in W such that
1% 3B I, as m -~ co. Let g, and g7, be the quotient seminorms of I, resp.
I7. Considering subsequences we may assume g, — p and g7, = 7, in &1.
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Again by compactness of S| we may assume r, — r in S;. Let (V}); be a
countable open neighbourhood base of r in §;. There are ny < ny < ...
satisfying rn, € V. Hence there are m; € N such that g, € V;. This implies
gl — r as t — oo, and therefore ker(r) € W,

Since I 5 I, and I?, = ker(q) = ker(r,) we have I, = ker(r,) by
(). Since I, — I and ker(r,) — kexr(r) we have I = ker(r), again hy ().
Therefore I € W, and this proves (*#).

Now let I; — I be a 7ee-convergent net in Id(A4). We must show that [
is the unique limit. Restricting to a subnet we may assume g7, — p in &)
and it is enough to prove I = ker(p).

Let (W,)n be a countable closed neighbourhood base of p. There are
indices 4, such that ¢;;, € W, for all ¢ > ¢,,. Then I is in the closure of {I; :
i 2 i, and so by (x#) there are sequences (J™ )y, in {I; : ¢ > i, } converging
to I, and additionally we may assume that the quotient seminorms g7, of
J7, converge to some seminorm p, in S;. Then we have J2 5 I and J7 5
ker(p, ), and by () we conclude I = ker(p,, ). But p, = lim, o7, € W, = Wy,
for all n, implying pn, — p, hence I = ker(p,) — ker(p}. By (x) we now may
conclude I = ker(p). =

LeMMma 24. Let (1d(A), 7o) be a Hausdorff space. Then the intersection
N Id(A) x Id(A) — Id{A) is 1y -continuous.

Proof. Let I, — [ and J, — J be 7w-convergent sequences. If gy,
resp. g,, are the quotient seminorms of I, resp. J, then each subsequence
(I N T )m contains another subsequence (I; NJy); such that the sequences
(g¢): and (g;); converge in 81, to p resp. p’ say. Since 7 is assumed to
be Hausdorff we have I = ker(p) and J = ker(p’). We have max{q:, ¢, } —
max{p,p'} in 81, and this implies [; N J; — ker(p) Nker(p’) =INJ. »

Let us consider the space Min-Primal(A) of minimal primal ideals. This
is always a Hausdorff space with respect to 7. To see this, let (I;); be a net
in Min-Primal(A) which converges to I and J in Min-Primal(4). Then we
also have I; — I'NJ, in particular I N J must be primal. Since I and J are
minimal primal we conclude I =INJ = J.

In the case of a C*-algebra we know by [1], Cor. 4.3(a), that n, and
Ty coincide on Min-Primal{A4). A possible generalization to Banach algebras
would be that 7o and 7 coincide on Min-Primal(A), but this is not the case
as can be seen by Example 1; there Iy is in the my-closure of Min-Primal(:4)\
{Ip} while Iy is an 7eo-isolated point in Min-Primal(A) by Theorem 11. For
C*-algebras we have 7, = 7. by Proposition 18, and one could replace 14
by 7. in the above considerations. Following this idea one gets the following

THEOREM 25. For a separable Banach algebra the following assertions
hold:
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(i) For E C 1d(A) define E = {I € 1d(4) : I D J for some J € E}.
Then (E )~ = (B =)~ for all k and this is the 7.-sequential closure of E
(i.e. the smallest 7.-sequentially closed set containing E).

(i) The T.-sequentially closed sets are the closed sets of a topology 7.

(iil) Two, Tus and all the T, coincide when restricted to Min-Primal(A) and
these topologies make Min-Primal(A) ¢ Suslin space.

(iv) If Too (A) s Hausdorff, then (Min-Primal(A), 7o) 48 o Polish space,
ie. a Gg-subset of (Id{A), 7o)

Proof. (i) Let Ey be the m.-sequential closure of F. Because 7o, C 71
and by Proposition 21, E © « B C Eq, hence (')~ ¢ (™)~ c B,
Therefore it is enough to show that E™)™ is re-sequentially closed. To
this end, let {I,)» be a sequence in (E ")~ which is T.-convergent to some
I € 1d{A). Then we have J, € E™ such that J, C I, and considering
subsequences we may assume ¢y, — p in S1. From Proposition 22 we con-
clude p(z) = lim, g5, (z) > liminf, g7, (z) > 0if x € A\ I, and this means
ker(p) C I. Since ker(gs, ) — ker(p) with respect to 3, we have ker(p) € E'*.
Hence I & (E *)~, and this proves (i).

(ii) Since obviously (EUF)™ = EUF for subsets E, F < Id(A) it is easy
to see by (i) that the operation of taking the 7.-sequential closure satisfies
the Kuratowski closure axioms.

(i) 7¢-sequentially closed sets are clearly Too-closed by Proposition 21
and so 7y-closed for all k. Conversely, let F C Min-Primal(A) be relatively
re-closed. Then " N Min-Primal(A) = E and this clearly implies (E *)™~N
Min-Primal(A) = E because & ° < Primal(A). By (i), E is relatively re-
closed. So all topologies in question coincide on Min-Primal(A4).

Let H := x]*{Primal(A)), which is a closed subset of 81, and let max{H)
be the set of maximal elements in H. Clearly H = {g; : I € Min-Primal{A4)}
and so Min-Primal(4), which is a Hausdorff space (this is even true for
the relative Tw-topology), is a continuous image of max(H). Therefore it is
sufficient to show that max(H) is a Polish space, i.e. a Gg-set in Sy. Define

Hy={(p) e H*:p<q}, Ha={(p,g)eH:p2g}.

We have p € H \ max(H) iff there is a g € Hsuch that p € gand p # ¢
iff p € pry(H?2N Hy \ Hy), where pr; denotes the projection onto the first
coordinate. Since open sets in &1 are Fy-sets, H* N Hy \ Hy is F,, hence
o-compact, and so is the continuous image pry(H? N Hy \ Hs). Therefore
max{H) = H \ pr; (H? N H, \ Hy) is a Gs-set. This proves (iii).

(iv) Now let (1d(A}, 7o) be Hausdorf, hence metrizable by Theorem 23.
Let X := Primal{4), which i 7o-closed. Then

Gr={(I,N)eX*:IcJ}, Gu={INyeX?:I>J}

are Too-closed by Lemma 24. The same arguments as in (ili) now yield that
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Min-Primal(4) = X \ pr;(X? N G2\ G1) is a Gs-set in X. This finishes the

proof of the theorem. m

Part (jii) of the above theorem obviously generalizes Corollary 4.3(a)
of [1], and part (iv) is a generalization of Corollary 5.2 of [5]. For all this
it would be an advantage to know whether 7o, and/or 7, satisfy the first
(or even better the second) countability axiom if the Banach algebra is
separable, but this must remain an open question here.
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