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Symbol calculus on the affine group “ax + b”
by

QIHONG FAN (Beijing)

Abstract. The symbol calculus on the upper half plane is st}ldied from the view-
point of the Kirillov theory of orbits. The main result is the LP-estimates for Fuchs type
pseudodifferential operators.

1. Introduction. The Weyl calculus on the linear phase space R™ x R™
has a natural group theoretic interpretation in terms of the K%rﬂlov method
of orbits (cf. [H]). Let H be the Heisenberg group. In the coordinates (p, g, %),
7, g € R™, t € R, the group law is given by

(p.a )@, ¢ t) = (p+o,q+d, b+t + j{pd — "))
The phase space R xR™ can be considered as an orbit O under the coadjoint

representation of the Heisenberg group H. Accord-i.ng to Kiriltov's theor.y
(cf. [K]), the irreducible unitary representation which corresponds to this

orhit is given by

g(p, 4, t) — 2Tt g2mi(pD+gX)

ie. |
.Q(p, q,-t)f(a:) — e2frit+21riqcc+7rzqu(z + P),

for f € L*(R™). . B

Let ey € O, Then for any X € O, thereexistsa g E. H such that X = geg,
where the action is given by the coadjoint representation. Modulo the cen’.c:]i
of H, the element g is unique. We identify an element X = (m,.ﬁ) €0 wi
the clement X = (z,€,0) € H. For a given ey € O and a given unitary
operator Iy, we define

Ogg = IO:
and for any X € O, put B
ox = o(X)loo(X ).

1991 Mathematica Subject Classification: 42B20, ?5805, 43'A85, 22130,
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208 Q. Fan

For a function F(X'), we define the corresponding operator Q(F) as

QF) = [ F(X)ax du(X),
o
where the measure dp(X) is the H-invariant measure on the orbit O. If
we take eg = (0,0) and Iof(z) = f(—=) for f € L*(R"), then the corre-
spondence F — Q(F) is just the Weyl correspondence on the phase space
R™ x ™.

In this paper, we shall study the symbol calculus on the upper half
plane Rﬁ_. This phase space is an orbit of the affine group “az + b under
the coadjoint representation. It turng out that the correspondence is just
the Fuchs caleulus, which has been developed by Unterberger in [U]. We
give an introduction to this calculus in Section 2. We construct the above-
mentioned correspondence from the Kirillov theory of orbits. This gives a
natural group theoretic interpretation of the Fuchs calculus. From this point
of view, one can easily generalize the Fuchs calculus to tube type affine
homogeneous Siegel domains. In the case of symmetric domains, this has
been studied by Unterberger and Upmeier in [UU]. In Section 3, we study
the LP-continuity of the corresponding operators. In the case of the Weyl
correspondence on the linear phase space R™ x R"™, the LP-estimates of the
corresponding operators were studied by many authors (cf. [B], [CM]).

2. The symbol calculus. Let G be the affine group “azx + b7, In the
coordinates (a,b), with @ € R, b € R, the group law is given by

(a,b)(a’,b") = (aa,ab’ +b).
The left and right Haar measures are given by

dadb dadb
d#‘l(aab) = ?1 d.u"r‘(a‘a b) = a

respectively. The modular function is given by A(a, b) = 1/a. We can iden-
tify the group G with a subgroup of GL(2,R) by the map

(a,b) — (8 i)

Under this map, the Lie algebra g of G has a basis A, B, where

/(10 (01
A‘(o 0)’ B‘(o o)'

B. Let X = zA+ yB € g. Then the exponential map is

N ]

One has [A,B] =
given by

1
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The adjaint action of  on g is
¥z, y) = (z,—bz +ay) for v = {a,b) € G.

Let X* = £A* +nB* € g*, the dual of g. The coadjoint action of G on g* is
given by

(2.1) X =) = (£+ %n)A* + gB*-

Under this action, the group G has two non-trivial coadjoint orbits: O4 =
{€A* +nB* : £ € R, n € R*}. Under the action (2.1) the G-invariant mea-
sure on O+ is given by du(X™*) = dfdn/In|. The corresponding irreducible
unitary representation of G can be realized on the Hilbert space L2(R™, dt).
For (e,b) € G,
75 (a, b)u(t) = Vau(at)eT 2,

where u € L*(R*, dt). Since the orbits O, and Q. have the same structure,
we only study the orbit O, and the corresponding representation 7+, and
in the following, we denote them by O and .

For (£,7m) € O, one can find a unique v € & such that (£,7) = v(0,1). In

fact, v = (1/n,&/n). For u(t) € L2(R+,dt), put
1V 1
We have 62 = I and 6* = 6. For X = (£,n) € O, put

(2.2) ox = m(7)r{y™"),
where - is determined by X = (0, 1). For u(t) € L*(R™, dt), we have

2 .
oxu(t) = gu(%) gZmiE(nit=t/m)

One may check that ox = oy = cr;{l. Let f be an integrable function
defined on O. We define the operator Q(f) by

(2.3) Qf) =2 [ F(X)oxdu(X).
@]
That is, for u € L*(RT, dt),
@4 QU =2 [ FememE T Dula? 0 dé
o)

Following Unterberger (cf. [U]), the operator Q(f) will be called the Fuchs
type pseudodifferential operator with active symbel f. For a trace class op-
erator A in L?(R*, dt), we call the function A(X) = 2Tr(Acx) the passive
symbol of A. The passive and active symbols can be generalized to distri-
butions in $'(0), and the formula (2.4) holds for «-€ S(O) in the sense of
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distributions (cf. [U]). By (2.2) and (2.3) we have the following covariance
properties for the correspondence f — Q(f):

(2.5) MRy ™) = Q(f ov™)
for any v € G, and
(2.6) (N = Q),

where f(&, n) = f(=¢&n~!). We note that if A has active symbol f and B
has passive symbol A, then

(2.7) - Tx(AB) = [ f(X)A(X)du(X).
o]

P=(1+3(za) )

Then the passive symbol of the operator Q(f) is given by Ff (cf. [U]). By
(2.7} we have the following proposition.

Let

PROPOSITION 2.1. The operator Q(f) is a Hilbert-Schmidt operator if
and only if (Ff, f) < oo.

Leteo = (0,1) € 0, Xy = (£1,m1), Xa2 = (£2,m2). Put
weo (X1, X2) = &alm —nit) + &alng ™t — ma).
For X = ~ep € O, we define
(2.8) - wx{X1, Xp) = weo (v X1, 771 Xa).
By a trivial computation, we have the following result.

ProposITION 2.2. If 4 = Q(f) and B = Q(g), then the passive symbol
h of AB 1s given by

(2.9) h2Z)=4 [ [ $(X)g(¥)e2 550 gu(X) du(Y).

If the symbols f, g are in some good class, then the equality (2.9} has
an asymptotic expansion. For details, see [U].

3. LP-estimates of pseudodifferential operators. In [U], Unter-
berger characterized a class of symbols which correspond to bounded op-
erators on L?(R*,dt). Our purpose in this section is to study the L?P-

boundedness of pseudodifferential operators. We shall prove the following
theorem.

_ THEOREM 3.1 Let f € C*(0), and for any a, 8 > 0,
(31) - 0 |(8a)POEFI < Cap(L+ 1)1
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Let K be the operator of multiplication by t, i.e. Ku(t) = tu(t), and T =
KY2Q(fYK~Y2, Then

(1) for 1 < p < oo, the operator T is bounded in LP(RT, dt/t).

(2) T is of weak type (1,1).

To prove the theorem, we introduce a distance on R* such that when
equipped with the measure t~'d#, R become a space of homogeneous type,
and then we prove that if f satisfies the estimate (3.1), then the operator
Q(f) is a Calderén~Zygmund singular integral operator.

_ For s,p € RY, let d(s,n) = |s — n|(sn) /2. We define d(s, ) = In(1 +
d(s,7)). One can check that d(s,n) has the following properties:

(3.2) d(s,n) < d(s,t)+d(t,n) for any s,5 € R™,

(3.3) d{As,An) = d(s,n) for any A, s, € RT.

The formula (3.3) is obvious. (3.2) follows from (3.3) and the inequality
(3.2") d(s,1) < d(s,t) + d(¢,1),

which follows from a trivial computation of the minimal value of the function
h(t) = d(s,t) + d(t, 1).

Let B(1,r) = {n : d(1,m) < r} and B(s,7) = {n : d(s,n) < r}. By a
trivial computation,

B(l,r) = (1+ T \/;FW: 14 13 @)
B(s,r) = (s + - @s,s—}- s \/iﬁﬁs),
where 7 = (e” — 1)2. Hence for du(n) = dn/y,
(3.4) u(B(,m)~ {2 a0,

dr asr — co.
So there is a constant A such that

(3.5) 0 < p(B(s,2r)) < Au(B(s,7)) < co.

By (3.2) and (3.5), (R*,d,du) is a space of homogeneous type in the sense
of Coifman and Weiss (cf. [CW]). We have the following proposition.

PROPOSITION 3.2, Let u € LY (R, du) and a > 0. Then u may be de-
composed as u = v + b, where

(1) 1ol z2an) < Carlullza @
(ii) b= 3 b;, where each b; is supported on some ball B(s;,r;).
(iii) fbjd,l.b =0,
(iv) [Ibsllzr < Cou(B(s;75)).
(v) 225 #(B(s5,75)) < CoHlul .z
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The proof of this proposition can be found in [CW], By (2.4), the integral
kernel k(s,n) of the operator T = K/2Q(f)K~/? with respect to the
measure dy is given by

(3.6) k(s,n) = f f(f’(Sn)1/2)62”((3/?)1/2“(?1/8)1"2)5 de.
R
That is,

dn
Tu(s) = [ k(s,n)uln) —.
R "
LEMMA 3.3. Assume f satisfies the estimate (3.1). Then for any o > 2,
there exists a constant C, such thot

(3.7) [Bnk(s, m)| < Cod(s,m)~>(sM 29~/ 4 571271/,

Proof. We use a partition of unity
1= Z%(E), ¥; supported on [&] ~ 27,
=1

such that 9;(£) = '(][)1(21_3'6) for j > 2. Put
L= (1+d(s,n)*2%5 )1 (1 — (4r?)~12%%152),
Then
L e2mills/m=tn/s)* e . g2mills /)1 ~(n/e)"/)s

Let

By(,m) = [ £5(€ (sm)!/2)eimille/m /el e g,
R

where f;(€,7) = 1;(€)f(¢, 7). Then

1 172 ) ]
ko) = [ (357006 (o)) = mig(s1/ 2512 1 g=1/3113
R

x f;(€, (sn)lﬂ)) 2mil(a/m) 2 =(n/s) ") g

I£ 61 <1, by (3.1) we obtain [|(1 — (4n®) 2 2% % 91N ;| 1o < C. By partial
integration, we have ‘

[Byks (s, m)| < C(1+ d(s,)?2M00) =N 92 (5229002 4 g=3/2y 12,
Consequently,

}5,736(3, n| < Z |8yk; (3,m)!

S 0(31/27]—3/2 _1_6*1/277-—"1/2) Z22j(1 +(fﬂ8’n)2223'61)—N
b
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< C(Sl/2n—3/2+s~—l/2n—l/2) f (1+ ((ﬂs,n)l/éit)zﬁl)‘Ntdt
0

< Gﬁs,n)—2/51 (31/2,’7—3/2 _!_8—-1/2”_1/2).

If we choose 81 = 2/a, then §; < 1, so we get the estimate (3.7). This
completes the proof. m

LeMMA 3.4. For any n,np € RY, the following estimate holds:

d
(3.8) S kem =m0 S <.
d(sn}>2d(n,m0)
Proof. Let r = d(n,m) and 7 = (¢" — 1)2. We have
k(5777) - k(s; 770) = (77 - nﬂ)aﬂk(saﬁ)
with d(7, ) < d(n,m0)- Since d(s, 7) > d{s, ) —d{n, 7), we have l+cfiv(s,?]) b

(1t+ d(s;n))e™". Note that if d(s,n) > 2r, then d(s,7) > le=md(n,ny). We
ge

ds
S 1k, = k)| 2
d(s,m)>2r

ds
< [ el Bk 2
d(sym)>2r

7 - — 1/ ds
SO [ In-mold(s, /)~ (sM2¥% 4 5712 V3=
d(e,n}>2r

< Qe f l’? _ 7]0|€rfv(3,7?)_a(81/25_3/2 +3_1/2ﬁ_1/2) @
8

dls,p)>2r
<O [ s, 1) (M) 5~y | T | 92
d(s,1)>2r oS
We note that
- - I
L’Lﬁﬁd < (;+,F"‘“4T+m)(1+ii__ \/;H)
and :
i~ — Y] 2 ~— ~ ~ = 2
gg(l+r+\/‘;rT) , g£(1+r+\/‘§"—4-7—) '
n
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Thus
ds
(3.9) f |k(s,m) — k(s,m0)| 5
d(s,n)>2r
F+VE 2\
< Ce®"(F + /47 +72) (1 + T—+—2+—)
x [ o) s L
’ E)
dfs,1)>2r
To estimate the last integral, we note that
~ d
(3.10) [ dls o (s + 577 -f
d(s,1)>2r
=2 f (31/2 _ S—l/Z)—-a(Sl/2 ”}“Sml/g) _C_l.;‘?_,
s(r)
where
4 / At 12
s(ry=1+ e e with v’ = (e* — 1)2,

2
Since s(r) = 1+2r+0(r*) as r — 0, for rp > 0 sufficiently small and r < ry

we have
o0

f (51/2 _5—1/2)—oe(sl/2 + 5—1/2) d_S
s(r) °
T 2 1/2 ds T - Y= =1
< [ (MR —1)e(st 24 smY ) £¢C [ (s=1)"%ds < Oroth,
s(r} 3(1')1/2
If we take o = 2, then by (3.9), for 0 < r < rp, we obtain
ds
f Ik(s:"?) - k(san())i _S— < C.

d(s,n)>2r

Since s(r) = e*"(1+o(1)) as r — oo, for r; > 0 sufficiently large and r > ry

we have
oC

f (642 — g=1/2)=(g1/2 4 g=1/2) 45 o pgl-20t2)r
~ =
3(r)

In this case, if we take o == 8, then by (3.9) and ¥ = e*"(1 + o(1)), for
r1 < r < oo we have

[ k(o) ~ ks, mo)l 2 < Cebrearel-2a42r <
d(s,m)>2r $
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Obviously there is a constant ¢ such that for o L1 < 1y,

ds
I Ik m) — ks, )| 2 < c.
d(am)>2r 8
Consequently,

ds
J o ks — ke m) <
d(‘*:"?)>2d(7]1770.)
This completes the proof.

The proof of Theorem 3.1 now follows from the Calderén—Zygmund the-
ory. We sketch the argument for completeness.

Proof of Theorem 3.1. We note that k(s,n) = k(n,s). By duality, it
is enough to prove the result when 1 < p < 2. By (8.7) and the result in [U],
T'is a bounded operator in L*(R*, du). By the Marcinkiewicz interpolation
theorem it is encugh to show that T is of weak type (1,1). That is, for any
o> 0and u e LHRY, dy),

(3.10) Al{s: |Tu(s)| > 2a}) < Co™ [ [u|du.

By Proposition 3.2, u can be decomposed as u = v + b, where b = " b; and
v, b; have the properties (1)-(v) in Proposition 3.2. We have

plls : [Tu(s)| > 20}) < ulfs 2 [To(s)| > a}) + u({s : [TB(s)] > o)
and
Wil < o) > 0P < 25 [ ITol)? dn(s) < O~ fuls .

Since p(lJ; Bls;,2r;)) < C'a‘lﬂuﬂu(dm, it is enough to estimate u({s
RN, Bssy 2r5) + 32 |Thy(s)] > @}). Now,

M({s € R+\UB(sj, 2r;) z |Thy(s)] > a})

<= [ The)laus).

i RE\B(s5.2r;)
By the property (iii) and (3.8),
[ ) duts)
R\ B a2y )
= [ | ] Glom) = ks, )b m) d(n)| dsts)

d(s,élj)>2’f"j

ST (S Ihlom) = ks, 9) dute) ()] dutm)

d{e,8;)>2r; _ :
<C [ |by(m)lduln) £ Cap(B(s;,rs)).
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Consequently,

a({s e R Blogy2r) : T (T05()] > a}) < Caulpsgup.

This finishes the proof of (3.10). =

Remark 1. In [U], Unterberger proved the L?-boundedness for a very
general class of symbols. Only a subclass of these symbols satisfy the esti-
mates (3.1).

Remark 2. Using the same technique as in the proof of Lemma 3.3,
one can get the following estimate on the kernel:

|k(3= 77)[ S Gﬂd('s? 77)‘.(‘7

where C, is a constant and « > 1. Moreover, the estimate near s = n cannot
be improved. In fact, one can find a symbol f which satisfies the estimate
(3.1) and the corresponding kernel k(s,n) has the singularity d(s,5) ™' near
the set {(s,%} : s = n}. From this estimate we know that the corresponding
operator is not bounded in L*. Therefore we can only get a weak type
(1,1) estimates. For strong type estimates, as in the usual case, we have the
following theorem.

THEOREM 3.5. With the notations as in- Theorem 3.1, suppose f €
C(0) satisfies the estimate

(3.11) |(ndy)2 8 £(€,m)] < Capl(L+ g™ 1A,

with m < 0. Then the corresponding operator T = K'Y2Q(f)K~1/2 is
bounded in LP(R™,t71dt) for 1 < p < oo.

Proof. Since the symbol f satisfies the estimates (3.11) with m < 0, as
in the proof of Lemma 3.3, we can find a constant £ > 0 (depending on m)
such that

(3.12) [k(s,m)| < Cad(s, 7)™
for a > 1 —&. By (3.12), we have

o0 [»]
dn ds
[ ks ml = <00, [ k(s % < ox.
0 n 0 g
By the Schur Lemma, T" is a bounded operator in L? for 1 < p < oo. This
completes the proof. »
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