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Generic smooth cocycles of degree zero
over irrational rotations

by

A, TWANIK (Wroclaw)

Abstract. If a rotation & of T has unbounded partial quotients then “most” of its
skew-product diffeomorphic extensions to the 2-torus T x T defined by ¢ cocycles of
topological degree zero enjoy nontrivial ergodic properties. In fact they admit a cyclic
approximation with speed o(1/n) and have nondiscrete (simple) spectrum. Similar results
are obtained for O coc%rcies if & admits a sufficiently good approximation by rationals.
For a.e. o and generic C cocycles the speed can be improved to o(1/(nlog n)). For generic
o and generic C" coeycles (r = 1,...,00) the spectral measure of the skew product has a
continuous component and Hausdorff dimension zero.

Introduction. On the 2-torus, we study skew-product diffeomorphisms
of the form

To(z,y) = (z+ o,y + ¢(2))

where the addition is mod 1, the number « is irrational, and ¢ : T — T is
a C7 function (r = 1,...,00). It is well known that if ¢ has nonzero topo-
logical degree then T is ergodic and the only eigenvalues are the numbers
exp(2mina). Moreover, the maximal continuous spectral type is a Rajchman
measure, i.e. its Fourier coefficients converge to zero. This is actually true
even if ¢ is only absolutely continuous; if ¢ is C?, then, as proved in [ILR],
the continuous component of the spectral measure is Lebesgue with infinite
multiplicity.

The situation is quite different if ¢ has degree zero. Now T may not even
be ergodic {as for certain constant functions) and the spectral measure is
always singular. Besides, if & has bounded partial quotients in its continued
fraction expansion then the spectrum is purely discrete.

Our aim is to study typical properties of zero degree skew products over
rotations with unbounded partial quotients. Here, by “typical” or generic
we mean for ¢ from a residual set of smooth functions,
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In Section 2 we prove that generically Ty admits a good cyclic approxi-
mation, in particular it is rank-1, The rate of cyclic approximation of “most”
C" skew products is related to the speed of diophantine approximation of
the number o The result is independent of » and holds also for more general
spaces (see Remark). Although our method borrows from [R] and {IS], the
argument is different: as the O™ norm requires keeping track of the deriva-
tives. We apply an idea of Katok to control the diameters of approximating
partitions (cf. [CFS], 16.3). The obtained rate of cyclic approximation will
allow us to majorize the size of spectral measure, at least for certain o's.

In Section 3 we apply another result of Katok to show that typical skew-
product diffeomorphisms have nondiscrete spectrum. The analogous prob-
lemn of ergodicity for real-valued cocycles was studied in Baggett and Merill
(BM2]

The author thanks the referee for simplifying the second part of the proof
of Theorem 1.

1. Definitions and basic facts. Let T be an automorphism (invert-
ible measure preserving transformation) of a standard Lebesgue probability
space (X, ) and let »(n) be a sequence of positive numbers converging to
zero. We denote by ¢ the partition of X into singletons. According to [KS]
(see also [CFS)), T' admits a cyclic approzimation (c.a.) with speed v(n) if
there exist a sequence of finite measurable partitions

&n={Co,...,Ch 1} — €
and automorphisms T, permuting cyclically the elements of £, such that
Byl
Z /.L(TCjATan) < ’U(hn).
F=0
H T admits c.a. with speed o(1/n) then T is rank-1 and rigid so it has
singular simple spectrum ([KS], [CFS], [IS]). As in [KS], we let

d(T) = sup{¢ : T admits c.a. with speed 1/n'}.

Let A be a nonempty set of real numbers. We will say that A admits
a. simultaneous diophantine approzimation with speed v(n) if there exist
integers g, — 0o such that for every z € A one can find integers p.,(z) and
a pumber n(z) with (2 — pn(x)/gn] < v(gn) for all n > n(z). We write d(A)
for the supremum of the real numbers £ such that A admits a simultaneous
diophantine approximation with speed 1/n?. Then the Hausdorff dimension
of A does not exceed 1/d(A4) (see [13]). For A = {a} we always have d(c) > 2.
Clearly d(c) = oo means that « is a Liouville number.

It follows from [I1] (see also [I3]) that if T is an irrational rotation
z ~ z+ amodl, then d(T) = d(a). For an arbitrary automorphism T
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it is proved in [I3] that if T admits c.a. with speed o(v(n)) then its spectral
measure is concentrated on a set that admits a simultaneous diophantine ap-
proximation also with speed o{v(n)). In particular, the Hausdorff dimension
of the spectral measure is always < 1/d(T).

We will consider Anzai skew products over irrational rotations (see [A]).
Let « be an irrational number and ¢ : T — T be a measurable function
(a cocycle). In the additive notation we identify the 1-torus T = {zeC:
|2| = 1} with the unit interval and put Ty(z,y) = (z + o, y + @{(x}). This
(Anzal) skew product preserves Lebesgue measure of the 2-torus T? and is a
homeomorphism or a diffeomorphism if ¢ is continuous or € !, respectively.

Two coeycles ¢, are called cohomologous if there exists another cocycle «
such that

#(z) = 9(z) +v(e + @) — y(=),
in which case we write ¢ ~ 4. If ¢ ~ 0 (or ¢ ~ 1 in the multiplicative
notation) then ¢ is called a coboundary. It is easy to see that cohomologous
cocycles give rise to isomorphic skew products. We say that ¢ is a weakly
mizing cocycle over o if m¢ ~ ¢ cannot hold for m € Z\ {0},c € T. It is
well known (see [A]) that T} is then ergodic with nondiscrete spectrum and
its only eigenvalues are the numbers exp(2mina).

We denote by & the set of measurable cocycles, where functions that are
equal a.e. are identified; & with convergence in measure becomes a Polish
space. Some ergodic properties of generic cocycles from & are known. It
was proved in [R], in & more general setup, that if & has a sufficiently good
diophantine approximation then there is a residual (i.e. co-meager) set of
cocycles such that the corresponding skew product has simple spectrum.
In fact, from [IS] and [I1] we know that for any irrational o the generic
cocycle ¢ is weakly mixing and d(Ty) = d(«), which implies a nondiserete
simple singular spectrum and in fact rank-1. Concrete examples of such step
function cocycles have been constructed in [12].

Now let @y denote the set of continuous cocycles ¢ with zero topological
degree. This means that ¢, viewed as a complex-valued function on the unit
interval, can be represented as ¢{z) = exp(2mif(z)), where f is a continuous
real-valued 1-periodic function on R. It is shown in [IS] that for the uniform
topoelogy the generic ¢ in &y is weakly mixing and if @ has unbounded partial
quoticnts then Ty admits ¢.a. with speed o{1/n), so it is rank-1. By the same
proof we easily deduce that d(Ts) > d(a) — 1 generically in &q.

In the sequel we will only study smooth skew products. We denote by
®" the set of all cocycles of class C7 (r = 1,...,00) and by &} its subset
congisting of the C" cocycles of topological degree zero. For ¢ € & there
exists a C" real-valued function f(z) on R such that f(z + 1) — f(z) € Z
is the topological degree of ¢ and d(z) = exp(2mif(x))..If ¢ € B then
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f is l-periodic. We choose the following C'" distance as the metric in $7
(1<£r <o)
" i : P
27D - D |
{1, = -~ + = —
o™ {(¢1, ¢2) = ||~ fall ; 1+ | Dfy - Dify

where D' denotes the ith derivative, || || is the uniform nerm, and the func-
tions fi, fo with ¢; = exp(2nif;) are chosen to minimize the right hand
side. With this metric 7 becomes a Polish space so the notion of genericity
is meaningful in 6" and €.

If ¢ € &}, then we know from [GLL] that the spectral measure must be
singular. The spectrum of Ty becomes “too small” if o has bounded partial
guotients, because ¢ is then cohomologous to a constant (see e.g. [BM1],
[BM2]), which forces the spectrum to be purely discrete. By the same token
the latter holds true for any given « if ¢ is “too smooth”™. For a.e. o this is
the case for any degree zero C? cocycle, which then becomes cohomologous
to a constant. From this statistical point of view the class $} seems to be
the most interesting one (Corollaries 1 and 3 below).

2. Cyclic approximation. Throughout the paper we fix an irrational
number & and a sequence of rationals p, /¢, — @ with g, positive and py, gy
relatively prime. For a fixed n, if f R —2Rand &t = 1,2,..., we write

F®(@) = f(@)+ (@ + Prfaa) + -+ Flo+ (k= 1)pa/n).
‘We will need the following simple lemima.

LEMMA. Let g : R — R be continuous and l-periodic. Then there erist
continuous 1-periodic functions g, such that

(1) llgn —gli 0,

(2) gn is linear on [(§ — 1)/¢n,j/anl, § € Z,

(3) g\ = const,

1 1

4 fiom=1Jya

Proof. First let §n(j/qn) = g(7/qn) and then extend §, to a piecewise
linear function on R. It is clear that E,(f“) is 1/g,,-periodic and linear on the

intervals specified in (2). Consequently, 74 = const. On the other hand,
by uniform continuity ||g, — g|| — 0. Note that

1 1
|5~ [ 9| <1l
0 0

so by adding a, = fol g— fol 8n — 0 we obtain (1)—(4) for g, = §n + an.

THEOREM 1. Suppose |a—pr /q,| = o(e{gn)/q2), where e(n) is a bounded
sequence of positive numbers satisfying sup,, £(n)/e(2n) < co. Then the set
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of cocycles ¢ € By such that Ty admits c.a. with speed o(c(n)/n) is residual
m Py (r=1,...,00).

Proof. First we choose a positive sequence 6, satisfying the condition
& —pn/gn| < bn = o(e(gn)/a2)
and fix an auxiliary sequence of positive integers s, -— oo such that
8np = 0(e(8n¢n)/q2)
(the assumption sup,, £(n)/e(2n) < oo is used to allow the change of argu-
went in £). Let ¢ = exp(2wif) € #}. Now the proof splits into two parts.

First agsume r < co. We apply the lemma to g = D" f. Let Foon = gn. I
r > 1, define

x
fr-—l,n(m) = Cp—1,n + f ns
0

where ¢,_y ,, 18 determined by the condition

1
f fr—-l,n = 0.
0

It is now easy to see that f._, , is a smooth l-periodic function. Since

1
(F7,) = gl = const = g, [ g =0,
0
the function jﬁi’;{n must be constant; in fact it must vanish because its
integral does. We iterate the procedure to define functions fimi=r—-1,
.-y, such that f{, = fit1n, fy fim = 0, and £{%) = 0. We have || fi, —
D*f|| = 0. Finally, we let

&
@ =cn+t [ fim
0
where the constant ¢, is chosen to ensure
1
n f frn=1/8, mod 1
0

along with the convergence f, — f in C" (this is always possible since
dn — 00). As belore, ,([’“) = const. More precisely,
1 L
ey = [ £ =g [ fo=1/sn mod L.
0 0
Now for every ¢ = exp(2mif) € @] we select a sequence f, as above and for

every n denote by @(n) the set of all the cocycles ¢, = exp(2nif,,). Clearly
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the union L., 5 #(n) is dense in &4 for all N. We choose positive numbers

0 =O(E(SnQn)>
n S%Qn

and for each of the selected f, € &(n) take the ball of radius g, centered at
£,,. For a given n denote by ¥ (n) the union of all such balls where fr, € P(n).
The set {J, - ¥(n) being open and dense, we find that the intersection

!D:ﬂ U ¥ (n)

N n=N

is residual. }
Tt remains to show that for any ¥ = exp(2mif) € ¥ the skew product

Ty admits c.a. with required speed. First note that for infinitely many n
we have g" (%, ¢n) < on. For these n’s we are going to define £, and T,
according to the definition of cyclic approximation. It will be convenient to
identify the 2-torus with the unit square. We begin by letting

To(2,y) = (& + Pn/an, ¥ + ¢a(2))
(in the additive notation) and

Co =[0,1/gn} x [0,1/55).

Now we put C; = TiCp for j = 1,...,Qy — 1, where Qn = 8pgn. Since
£4) () = 1/s, mod 1, it is clear that

Cign = [0,1/an) % [i/5n, (i +1)/8n)
for i = 0,1,...,8, — 1. As T,,Cq.-1 = Cp, we have a cycle of length
Qn. It is clear that the sets Ciy, (0 < 4 < s,) are rectangles and &n =

{Cq,...,Cg,.—1} is a partition. In order to prove £, — € we have to control
the distortion of the sets T5Cy,, . In fact the diameter of C; does not exceed

1/2n + 1/5n +sup [ £ (2) - 7 ()],
where the sup is taken over the points z,y € [0,1/¢,) and over all 1 £ k <

gn. First we compare the value of f,gk)(:c) with the sum E?;S‘ Jolw + jor)
corresponding to the irrational rotation. We have

k-1 k],
fP@) =Y falo+ia) =Y [ 1,
=0 J=0 I

where I; is an interval of léngth |70n/gn — jot| < gnbn. Therefore,

k-1
|19@) = 3 fula +jo)| < @Ebasup i fill 0.
. i=0 "

Next, since 0" (¢n, ¥) < on-implies || frn — fl| < on, we get -
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k-1 k—1
5| Y fule o) = 3 f(o+ jo)| < guen — 0.

i=0 i=0
Finally, it is well known that if f is a 1-periodic O'! function then for any
irrational number «,

k—1 k—1

X fa+ia) = fly+ jo)| —0

=0 =0
uniformly in k and z,y such that 1 < k < g, |z — y| < 1/, (see [CFS],
16.3, Lemma 2). Consequently, the diameters of the sets C; tend to zero
uniformly in j as n — oo, This clearly implies &, — e. To estimate the
approximation error we note that it has two different parts, A = A, + As.
The first, Ay, is due to the fact that o # p,/g,. It is easy to see that each
of the ¢, columns contributes to A; at most 26,,, so

Ay £ 26nqn = 23n5nqz/Qn = G(E(Qn}/Qn)

The second part, Ay, is due to ¥ # ¢,,. Since, however, the distance is less
than g,, we get

2 )
4y < ani = 25n.0n = 0(e(Qn)/ Q).

n
This gives the required speed of approximation and ends the proof of the
case r < 00,

The proof for $§° requires a modification. Let f be in % and, for a
fixed 1 < r < oo, let fn be the sequence constructed before in C™ (ie.,
fn ~ fllor — 0 and f,&“’” = 1/s, mod 1.} To smooth the f,’s we use
a nonnegative C% function wu, such that fol tr = 1 and u,(z) = 0 for
z € (v, 1], where v, — 0. Now define f, = fn * 4. These are 1-periodic
C* functions and ||f, — f *u.|¢r — 0, while

flan) = 1/s, mod 1.
We do this for » = 1,2,..., which produces for each r a sequence of '™
functions approximating f *u, in C". Now select from the rth sequence an
approximating function £, in such a way that n,. — oo and || fn, — filgr — O
as r — oo, Now we simply write f,, for f,,., let dn = exp(2mifn), and repeat
in C® the argument from the first part of the proof.

If follows readily from Theorem 1 that, generically in &, we have

d(Ty) 2 d{a) — 1.
In particular, the Hausdorff dimension of the spectral measure is then <

1/(d{e) — 1) (see [13]). The following two corollaries are for “most” « in the
sense of measure or category.
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COROLLARY 1. For a.e. o the set of cocycles ¢ such that Ty admits c.q.
with speed o(1/{nlogn)) is residual in &}

Proof. We know from [Kh] that almost every & admits a rational ap-
)

O( T )
QH- q2 10g qn.

It suffices to let £(n) = 1/logn in Theorem 1.

COROLLARY 2. There exists a residual subset A C T such that for every
o € A the set of cocycles ¢ satisfying d(Ty) = oo 18 residual in $7.

Proof. Let 4 = {a : d(a) = co}. Given o € A, k > 2, we put g(n) =
n~*+2 and obtain a residual set ¥y of cocycles ¢ such that d(Ty) > k — L.
Now d(Ty) = oo for every ¢ € [pmy Fr-

Remark. In thesecond part of the proof of Theorem 1, the case r = oo,
we may define ¥(n) as the p,-neighborhood of () in $} for the C* distance
(actually it is only the uniform distance that is used to estimate A but we
need C* convergence to prove £, — €). Now ¥ becomes a Gy set in &
containing a dense subset of $§° and consisting solely of cocycles which
admit c.a. with speed o(g(n)/n). This implies that ¥ N @7 is residual in &)
for r = 1,...,00. More generally, if E is any topological space of cocycles
such that

P CEC &
with continuous identity imbeddings 5° — E — & then ¥NE is a dense G
subset of the space E and the theorem remains valid for £. In particular,

this applies to the spaces of C™"% cocycles of degree zero (0 < § < 1,
r=1,2,...).

3. Weakly mixing cocycles. In this section we show that for any
o with unbounded partial quotients most cocycles in #} are weakly mix-
ing. More generally, if o admits approximation of the type | — pn/¢n| =
o{1/gl*1) then the weakly mixing cocycles over o form a residual set in @},
A similar result for ergodic R-valued cocycles was obtained by Baggett and
Merill [BM2]. Our proof is based on the following result of Katok (see [K],
Theorem 12.7):

Suppose Y, <y |nan| < 00, where a_y = Tn. If | — pn/gnlgn = 0(lag,])
and infn(lag,!/ Y p>1 [Gke,|) > O then the cocycle

h(z) = exp (27r'i Z O exp(27r'inm))

i5 weekly mizing.
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We note that although the original statement in [K] requires that the
trigonometric series be a C? function, the proof uses only ¥ |na,} < .

THEOREM 2. Suppose |&~ pn/q,| = o{1/gitY). Then the weakly mizing
C" cocycles form a dense Gs setin @ (1 < r < 00). If d(a) = 0o, the same
holds true for r = oo,

Proof. First we show that there is at least one such cocycle. Assume
r < co. Without loss of generality

|Od - p'n,/q-u‘ < Ei/q#kr’

where the &, are positive numbers decreasing to 0. By passing to a subse-
quence we may as well assume )&, < 00 and gn/gnt1 < 1/2. Now let

0k = 3y = £/3)

if [k = gn (n =1,2,...}, and a) = 0 otherwise. The assumptions of Katok’s
result are satisfled. In fact, '

" o — 2
S ghog, = en < o0, & = pn/tnlgn o _En _ —
\ a’Qn qTa
n>1 n2 1, TG,
By, g 1
2 T > >1/2.
Dokt Fhan  2izn @ Lt Ga/Gntl F n/Gnaatoor T /

As a result we obtain a weakly mixing cocycle ¢ = exp(2nif), where

oo
flz)=2 Z E—f cos{2mgpx).
n=1 n
Since } e, < 00, we have f € C" s0 ¢ € &%, The same construction works
for &§° if r is replaced with a sequence r, — oo.

The rest of the proof is rather standard (cf. [IS], Theorem 4). Every
cocycle ¢{x) = exp(2wip(x)), where p is a real trigonometric polynomial
with ]01 p =0, is a coboundary (see [B]). The constant cocycles of the form
exp(2rina) are also coboundaries, so we deduce by the Weierstrass theorem
that the coboundaries are dense in @f (r = 1,..., oc). Therefore the cocycles
¢1p, where ¢ is a coboundary, are dense. Since they are all weakly mixing,
we get the denseness.

To show that the set iy Gs we just recall Theorem 4 of [IS], where it
is shown that in &y the weakly mixing cocycles form a Gy set for the uni-
form topology. Since the topology of #f is stronger, the result follows by
intersecting with the latter space.

It was observed in [BM2] that if the above approximation condition for
& 18 not satisfied then every cocycle in €3 is cohomologous to a constant. Tt
follows that the condition in the theorem is necessary and sufficient.

The following is an immediate corollary of Theorems 1 and 2.

e i e e
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COROLLARY 3. If o has unbounded partial quotients then a generic
CY cocycle of degree zero is weakly mizing end the associated skew-product
diffeornorphism admits c.a. with speed o{1/n). In particular it is rank-1 and
has a nondiscrete singular simple spectrum with the only eigenvalues of the
form exp(2mina).
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Compressible operators and the continuity of
homomorphisms from algebras of operators

by

G. A, WILLIS (Newcastle, N.S,W.)

Abstract. The notion of a compressible operator on a Banach space, K, derives from
automatic continuity arguments. It is related to the notion of a cartesian Banach space.
The compressible operators on F form an ideal in B(E) and the automatic continuity
proofs depend on showing that this ideal is large. In particular, it is shown that each
weakly compact operator on the James' space, J, is compressible, whence it follows that
all homomorphisms from B(J) are continuous.

Introduction. It is shown by B. E. Johnson in [BJo] that all homomor-
phisms and derivations from B(E), the algebra of bounded, linear operators
on the Banach space E, are continuous if E satisfies one of two decompos-
ability conditions. The first of these conditions is that F be cartesian, that
is, satisfy B = F @ E @ F for some Banach space F, and the second that
E have continued bisection, that is, E & Fy & Fo, where Ey & F3 @ F5 and
S0 o1,

The continuity of derivations can be proved for some spaces which do
not satisty either of these decomposability conditions and this is done in
[L&W] for the James space, J, and for C(£2), where §2 is the space of
ordinals less than or equal to the first uncountable ordinal. (However, it is
not regolved in {L&W] whether all homomorphisms from B(J) and B(C(12))
are continuous.) There are spaces E, whose construction is based on that of
J, such that all derivations from B(E) are continuous but for which there
exist discontinuous homomorphisms from B(E}, see [D,L&W)]. There are also
spaces for which there are discontinuous derivations from B(E), see [Re]. The
exigtence of discontinuous derivations implies the existence of discontinuous
homomorphisms. ‘

The question of the continuity of homomorphisms from B{C(f2)} has
been treated by C. Ogden, who has shown that they are all continuous,
see [Og). : ‘ :

1681 .Mathcmatics Subject Classification: Primary 46H40; Seconidary 46B03, 47D30.
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