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COROLLARY 3. If o has unbounded partial quotients then a generic
CY cocycle of degree zero is weakly mizing end the associated skew-product
diffeornorphism admits c.a. with speed o{1/n). In particular it is rank-1 and
has a nondiscrete singular simple spectrum with the only eigenvalues of the
form exp(2mina).
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Compressible operators and the continuity of
homomorphisms from algebras of operators

by

G. A, WILLIS (Newcastle, N.S,W.)

Abstract. The notion of a compressible operator on a Banach space, K, derives from
automatic continuity arguments. It is related to the notion of a cartesian Banach space.
The compressible operators on F form an ideal in B(E) and the automatic continuity
proofs depend on showing that this ideal is large. In particular, it is shown that each
weakly compact operator on the James' space, J, is compressible, whence it follows that
all homomorphisms from B(J) are continuous.

Introduction. It is shown by B. E. Johnson in [BJo] that all homomor-
phisms and derivations from B(E), the algebra of bounded, linear operators
on the Banach space E, are continuous if E satisfies one of two decompos-
ability conditions. The first of these conditions is that F be cartesian, that
is, satisfy B = F @ E @ F for some Banach space F, and the second that
E have continued bisection, that is, E & Fy & Fo, where Ey & F3 @ F5 and
S0 o1,

The continuity of derivations can be proved for some spaces which do
not satisty either of these decomposability conditions and this is done in
[L&W] for the James space, J, and for C(£2), where §2 is the space of
ordinals less than or equal to the first uncountable ordinal. (However, it is
not regolved in {L&W] whether all homomorphisms from B(J) and B(C(12))
are continuous.) There are spaces E, whose construction is based on that of
J, such that all derivations from B(E) are continuous but for which there
exist discontinuous homomorphisms from B(E}, see [D,L&W)]. There are also
spaces for which there are discontinuous derivations from B(E), see [Re]. The
exigtence of discontinuous derivations implies the existence of discontinuous
homomorphisms. ‘

The question of the continuity of homomorphisms from B{C(f2)} has
been treated by C. Ogden, who has shown that they are all continuous,
see [Og). : ‘ :
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She has further shown that the same is true for all the Banach spaces
C{wy), where w, is the nth infinite cardinal.

It is shown here that all homomorphisms from B(J) are continuous. As
in [L&W], the method of proof is based on that of Johnson. It turns out
that, although J is not cartesian, many operators on J can be factored as
though J were cartesian. This gives rise to the notion of a compressible
operator. The notion of compressible operator is thus a generalisation of
that of cartesian space and, in particular, if F is cartesian then the identity
operator on F' is compressible. Compressible operators do not appear to be
at all related to spaces with continued bisection. A key point in the proof
that all homomorphisms from B(J) are continuous is the fact that all weakly
compact operators on J are compressible.

Compressible operators are defined in the first section of the paper and
some connections with the structure of Banach spaces are noted. Facts about
compressible operators are used in the second section to prove the auto-
matic continuity of homomorphisms from B(J) and certain other algebras.
Throughout, elements of a Banach space will be denoted by z,y, ..., ele-
ments of its dual space by z*,%*,... and elements of the second dual by
z**,y**, ... We shall also make use of the idea of the continuity ideal of a
homomorphism, as defined in [Da).

Compressible operators

DEFINITION. An operator, T, on a Banach space, 72, will be said to be
compressible if there are an integer, n, and a sequence {Q4}§°,, of projections
on E™ such that

(i) @QmQr =0 if m # k; and
(if) T factors through Qy for each k.

PROPOSITION 1. The operator T in B(E) is compressible if and only if
there are an integer, n, and closed subspaces By, Fy,... and Dy, Dg, ... of
E™ such that

(i) E" = Fy & Dy and Fy, = Fyp1 ® Dy fork=1,2,..., and
(ii) T factors through Dy, for each k.

Proof. Suppose that 7' is compressible and let n and {Q k)i be as
in the definition. Setting Dy = Qu(E™), Fy = (I — @1)(E™) and Fiypy =
(7 — Qr+1)(F), we find that (i) and (ii) are satisfied.

Now suppose that (i) and (ii) are satisfied. Let Q, be the projection of
E™ onto Dy, with kernel Fi, @ Dg_3 @ ... ® D;. Then the sequence {Qu}i2y
sabisfies the conditions for compressibility of 7. w
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NoTATION. Denote the set of all compressible operators on B by M(E).

It is easily checked that M(E) is an ideal in B(E). Note that, if E is
finite-dimensional, then M(E) = (0). Before proceeding to the automatic
continuity results, we make some observations about the ideal of compress-
ible operators and its connection with the structure of Banach spaces.

PROPOSITION 2. The identity operator, I, on E is compressible if and
only if there is an integer n such that

E"= Do gttt
for some Banach space D.

Proof. Suppose that E" & D@ E™H.. Then E" = (D@ E*) @ EW,
where B 2 E, Set Q1 to be the projection onto E{1) with kernel D& E™.
Now, in turn, B* & (D & D& E™) @ E® @ EW), where E?) 22 B, and we
set @ to be the projection onto B2 with kernel (DeDaeE™) JolON
Continuing in this way we find that I is compressible.

Conversely, suppose that I is compressible. Then, by Proposition 1, there
is an integer n such that E" = F, 1 ®Dpp1 & D, @. .. @Dy, where I factors
through Dy for each k.

This means that I = STy, where T : B — Dy and Sy : Dy — E. Put

e L bl n+1 n+1

T=PT: B - @Dy and §=EPSk: Dy — E™.
k==l k=1 k=1 k=1

Then, regarding @y Dy, as a subspace of B we have T : E"™! — E™ and
S E" — E"TY such that ST is the identity on E™T1. It follows that 7'S is
a projection on E™ with range isomorphic to E"t1. =

It follows from this proposition that, if ¥ is cartesian, then the identity
operator on E is compressible. The notion of a compressible operator thus
extends that of a cartesian space. The classical Banach spaces are cartesian,
as is the recently constructed space which is not isomorphic to its square but
is isomorphic to its cube, thus solving the Schréder-Bernstein problgm, see
[Go] and [GM2], Presumably, there are non-cartesian spaces for which the
identity operator is compressible. The ideal M(E) can also be quite small,
ag the next result shows, '

PROPOSITION 3. Let E be a Bonach space such that S(E), the ideal
algebra of singular operators on B, has codimension one in B(E). Then
M(E) is the ideal of finite rank operators on E.

Proof. The codimension of S(B™) in B(E™) is n* and S(E") is a two-
sided ideal in B(E™) such that B(E™)/S(E™) is isomorphic to My, the al-
gebra of n x n matrices. Hence, if {Qr}je, i8 a sequence of orthogonal
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idempotents in B{E"™), then @} belongs to S(E™) for some k. Since a singu-
lar projection has finite rank, any operator factoring through () has finite
rank.

It is clear that each finite rank operator on E is contained in M(E) if
dim(E) = 00. =

Any space E such that S{F) has codimension one must be indecompos-
able and examples of indecomposable spaces have recently been found, see
[GML1]. It is not clear though that M(E) consists only of finite rank oper-
ators whenever E is indecomposable. Is there an indecomposable, or even
hereditarily irdecomposable, space F such that the identity operator on F is
compressible? More explicitly, is there a hereditarily indecomposable space
F such that E? contains a complemented copy of E37

NotaTION. (a) The ideal of approximable operators on the Banach space
E will be denoted by F(E). Recall that an operator is approzimable if it is
a norm limit of finite rank operators.

{b) The ideal of all operators on E which factor through £,, where 1 <
p < 00, will be denoted by Q,(F).

{¢) Cp, where 1 < p < o0, will denote the Banach spaces introduced by
W. B. Johnson in [WJlol] and [WJo02]. These spaces have the property that
each approximable operator on each Banach space E factors through C), for
each p.

That £, and Cp are cartesian spaces allows us to conclude that many
approximable or £y-factoring operators are compressible.

PROPOSITION 4. For each Banach space E,

A FEeC) CMEDC), 1<p<oo; and
(i) Qp(EB L) SMEDL), 1<p< 0

In the first case, the ideal of compressible operators is always strictly
bigger than the ideal of approximable operators because it also contains the
projection onto Cfp.

Recall that a Banach space is said to be quasi-reflezive if, when E is
embedded in the natural way into E**, it has finite codimension in this
space. It is well known that quasi-reflexive, non-reflexive spaces are not
cartesian,

PROPOSITION 5. If E is quasi-reflevive but not reflegive, then M(E) is
properly contained in B(E),

Proof. Let E be quasi-reflexive and suppose that M{E) = B(E). Then,
by Proposition 2, E" & V & E™t! for some positive integer n and Banach
gpace V. Hence

© dim((B™)"™/E"™) = diea(V**/V) 4 dim((E"+1)** /E™HL)
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and so
ndim(E*/E) > (n + 1}dim{(E** /E).
gl(ng; dim(E**/E) is a positive integer, this is impossible. Therefore M(E) #
. n

The first quasi-reflexive space to be constructed was the James space,
see [Ja]. The J ames space, J, is the space of sequences of complex numbers,
2 = ()52, which converge to zero and satisfy

!
a2 =
lz||* = sup{z (@ry = 2P 0 <L < ?”l+1} < 00.
J=1

The dual spaces J* and J** may also be identified with sequence spaces but
we shall not require any formula for the norms on these spaces.

In fact J** may be identified with J + Ce**, where e** is the constant
sequence with value 1, and so J has codimension one in J**.

When J, J* and J** are identified with sequence spaces duality is im-
plemented by summation, that is,

(=] [ o]
(@*, z) == Zm}‘ra and (z**,z*) = Zm;*gg;
i=1
We have

PROPOSITION 6. M(J) = W(J) = ideal of weakly compact operators
on J.

For the proof, all notation will be as in [L&W)].

We require the following

LEMMA. Let {yp}32., be a sequence in J* such that

() [lyill < 1 for all k;

(i) there is o sequence, {1}, of mutually disjoint intervals in N such
that supp(yy) G Iy for each k; and

(iii) (e*™,yp) = 0 for each k.
Then for each  in J, 3 qoy [wi, 2) |2 < |22,

Proof. Suppose for cach & that Iy = [px, qs] where p11 > qp for each
k. Let z be in J and let k be fixed for now. Define z** in J** by

&, ijel
e = u, ifj<py and
Zqy ifj > .

Then, since supp(y}) G Ik, _
(=™, yi) = (vk, =)-
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Now let z** = z** — 2, e*. Then, since {e**,y}) = 0,

4 (&, y0) = (™", y3)
and so

[y, ) = (=", 9} < |I2"*||  because |yl <1,

‘ 1/2
2.
< sup{ E gy — 2y IFrm <L < n+1}
—

!

1/2
SUP{Ziw"J‘ —m'f'j-l-1|2 P ST < < P S Q‘k} .
J=1

i

Therefore,

00 oo !
Z ‘(yzamnz < ZSHP{ZMW - m'f‘j.l_llz ‘P <rm<...< Tl < Qk}
k=1 k=1 j=1

< Ha:||2 because pr11 > g for all k. w

Proof of Proposition 6. Let T be in W(J). Then, by [L&W),
Lemma 2.1, T' = R + K, where K is a compact operator on J and R has
a matrix [F;;] with respect to the standard basis in J, such that there are
at most finitely many non-zero entries in each row and column of [R;;] and
(™, 7!} = 0 for each row, 7, of [Ry;]. (Note that the rows of [R;;] may be
identified with elements of J*,)

We will show separately that K and R belong to M(J) and the result
will follow. '

Proof that K is compressible. Let k! denote the ith row of K. Since X
is compact, ||| — 0 as ¢ — co. Cheose a sequence 41 < 15 < ... such
that 32,7 4 ||k}, || < co. Then the matrix which agrees with [Ki;] on its inth
row and is zero elsewhere is the matrix of a rank one operator with norm
[ k% ||. Hence the sum of these rank one operators converges absolutely to a
compact operator, L, whose matrix agrees with that of K on the i, th rows,
n=1,2,..., and is zero elsewhere.

Now, for any sequence of positive integers j1 < jo < ..., let S[f,] denote
the projection on J which in [L&W)] is denoted by S([jn],[jn]) (see the
paragraph before Lemma 2.5 in [L&W]). Then §]j,,] has matrix

I 1, jft—1<1:£_jna jzj'rh:
\Slin])ij = {0 otherwise,
where we suppose that jo = 0. It is easily seen that S[j,]J & J and so, if
ker(S[jn]) = D, then J = JoD & J@Da D = ... Hence any operator which
factors through the projection I — S[4,] is compressible. Now put § = S[z,]
where {in}72, is the sequence chosen above when defining the compact
operator L. Then, by the choice of this sequence, (I — S)(K — L) = K — L.
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Therefore K — L is compressible. Next, put § = § [in+1]. Then supposing, as

we clearly may, that in1 > ip+1, (/~8)L = L. Therefore L is compressible
and thus so is K.

Proof that R is compressible. Let r! denote the ith row of R. Fach rfis
finitely supported and {e**,7}) = @ for each i. Choose a sequence i1 < ip
< ... such that the r¥ ’s have disjoint support. (This is possible because
each column in [Ry;] has only finitely many non-zero entries.) Then the
matrix which agrees with [Ry;] in its i,th rows and is zero elsewhere is the
matrix of a bounded operator, V : J — £3, by the lemma. Since the set of
£y sequences is a subspace of J, we may suppose that V belongs to B(J).
Now put § = S[i,]. Then (I~ S)(R—V) =R~V and so R~V is in M(J)
as before. Similarly, V' belongs to M(J). w

The continuity of homomorphisms. The results of the previcus sec-
tion and refinements of standard automatic continuity techniques show that
homomorphisms from various algebras of operators are continuous. The au-
tomatic continuity techniques required are presented in the book {Dal}, which
is to appear soon. We shall use the notion of the continuity ideal of an al-
gebra homomorphisim 1 : A — C, where A and C are Banach algebras. The
condinutly tdeal, T, of ¥ is defined by

I={a€ A:br d(ab) and b — B¥(ba) are continuous}.

PROPOSITION 7. Let A be a Banach algebra which is an ideal in B(E)
and let ¥ : A — C be a homomorphism. Then AM(E)A CT.

Proof. Note first of all that for each n, B(E") & B(E) @ M,, that
A® M, is an ideal in B(E) @ M, and that 4@ I, : AQ M, - CR M, is a
homeomorphism. Furthermore, the continuity ideal of 9 ® I, is T ® M,,. For
each n, let E,, be the n x n matrix

10 0 ...\
E,=10 0 ... ..,
0 .

Then the map T' = T'® I, is a homomorphism from B(E) into B(E)® M,.
Now let T be in M{E}. Then there is an integer n and there are orthogo-
nal projections @y, @y, ... on E" such that T" factors through each Q. Thus,
for cach k there are Ry, and 9 in B(E) @ M,. such that T'® F,, = RyQyS%.
Define K = {9 € B(E) ® M, : (A® M,)S(A® M,) CT® M,}. Then,
by Theorem 4.4.4 in [Da], @y belongs to K for some k and so, since K is an
ideal, T ® E,, belongs to . Hence, in particular,

(A® E,)(T®E.)(A®E) C T8 M,
and it follows that AT ACT.
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ProPOSITION 8. Let J be the James space. Then every homomorphism
from B(J) is continuous.

Proof. Let 9 : B(J) — C be a homomorphism. Then, by Propositions 6
and 7, W(J) C Z, the continuity ideal of 9. Now W(J) has a right bounded
approximate identity, see [L&W], Corollary 2.4. Hence, by Cohen’s factori-
sation theorem, if {T}}$2, is a sequence in W{J) such that ||T%|| %0, then
there are T, and Ty, k = 1,2,..., in W(J) with T} = T;T for each k and
e £ 0. Since W(J) is contained in the continuity ideal, the restriction
of 9 to W(J) is continuous. Therefore, since W(.J) has codimension one in
B(J), ¢ is continuous. m

ProPOSITION 9. Let E be any Banach space. Then every homomorphism
from F(E & Cp) is continuous.

Proof Let 9 : F(E®C,) — € be a homomorphism. Note that, since ev-
ery approximable operator factors, as a product Qf approximable operators,
through C,, we have F(E & Cp)? = F(E @ Cy). Hence, by Propositions 4
and 7, F(E & Cp) C I. Now if {T%}72, is a sequence in F(E ¢ C)p} with
7%l % 0, then there are T, and T, k = 1,2,..., in F(E @ Cp) with
T, = TT}, for each k and || T} %, 0. (This follows from properties of Ch,

see [Wlol}].) Therefore ¥(Ty) = ¥(TT),), which converges to 0 because T
belongs to the continuity ideal. m

Note that, if F(E @ Cp) has either a left or right bounded approximate
identity, then F has the bounded approximation property. Hence some of
the algebras for which we have shown continuity of homomorphisms do not
have bounded approximate identities.

Every element in an algebra Q,(E @1y}, 1 < p < 00, is & product in this
algebra. Hence Propositions 4 and 7 imply that, if ¢ is a homomorphism
from Q,(E @ £,), then its continuity ideal is the whole algebra. However, it
is not known {to the author) whether null sequences in Q(E & £,)) factor in
the way they do in the last two propositions and so we cannot say whether
? is continuous.
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