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Nonatomic Lipschitz spaces
by

NIK WEAVER (Santa Barbara, Calif.)

Abstract. We abstractly characterize Lipschitz spaces in terms of having a lattice-
complete unit ball and a separating family of pure normal states. We then formulate a
notion of “measurable metric space” and characterize the corresponding Lipschitz spaces
in terms of having a lattice complete unit ball and a separating family of normal states.

Let (X, d) be a metric space. Then the Lipschitz space Lip(X, d) is the
Banach space consisting of all bounded scalar-valued Lipschitz functions
on X, with norm

Iz = max(]| fleo, L(£)).
Here || f||oo denotes the sup norm of f and L(f) denotes the Lipschitz number
of f,
L(f) = sup{|f(z) - f)l/d(z,v) : zy € X, = #y}.
Lipschitz spaces have been studied in [1], [3], [5], [8], [9], [10], [11], 112}, [13].

The real part of the unit ball of Lip(X, d) is a completely distributive
complete sublattice, and we showed in [11] that this fact characterizes Lip-
schitz spaces up to isomorphism. Qur first aim here is to give another ab-
stract characterization of Lipschitz spaces, this time in terms of order prop-
erties which may be more familiar. In the new characterization, complete
distributivity of the unit ball is replaced by the existence of a separating
family of pure normal states (Theorem 4),

This new result is somewhat unnatural, in that it juxtaposes pureness
and normality, two properties not usually seen together. This is actually an
advantage, because it suggests a direction for generalization. _

To see this, consider the space {* of bounded scalar-valued sequences.
It too has a separating family of pure normal states, namely the coordi-
nate evaluations. But [*° is merely a special example of the class of spaces
L*(X, u), which generally have a separating family of normal states (given
by integration against functions in L'(X,u)). Pure normal states exist in
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278 N. Weaver

abundance only when the measure p is atomic (every point has positive
measure).

Guided by this example, we formulate a definition of “measurable” metric
spaces (X, u,d) and characterize the corresponding “nonatomic” Lipschitz
spaces Lip(X,u,d) in terms of having a lattice-complete unit ball and a
separating family of normal states {Theorems 6 and 10).

In a subsequent paper we will use this result to show that the domain of
any unbounded derivation of abelian von Neumann algebras is isomorphic
to a nonatomic Lipschitz algebra. This corroborates Connes’ suggestion that
noncommutative metric spaces should be modelled by derivations [2].

1. An abstract characterization of Lip(X,d). Let £ be an ordered
Banach space, i.e. a real Banach space that is equipped with a partial order
such that for z,y,z € Land a € R, z > y implies az > ay and 42 > y+2.
(See [7] for general material on ordered Banach spaces.) We call £ an L-
lattice if every norm-bounded set of elements (z,) C £ has a supremum

V 2, and
| Ve

This implies the corresponding inequality for infima and is equivalent to
saying that the unit ball of £ is a complete sublattice,

For example, for any o-finite measure space {X, 1), the space L™{X, 1)
is an L-lattice; indeed, any abelian von Neumann algebra is an L-lattice.
(There do exist pathological measure spaces such that L (X, u) is not an
L-lattice, however. For example, let X be an uncountable set and let p
be counting measure on the class of countable and co-countable subsets of
X. Then the collection of characteristic functions {x, : £ € A} has no
supremum in Z°°(X, u) if A C X is neither countable nor co-countable.)

Denote the supremum of the unit ball of £ by e. A state on L is then a
positive linear functional g on £ such that p(e) = 1. Note that this implies
lel| = 1: we have ||gi| > 1 since ||e|| = 1 and |g|| £ 1 since ||z|| < 1 implies
—e £ 5 £ eimplies —1 < o) € 1. A state ¢ is pure if it is an extreme
point of the set of all states on £, i.e. it cannot be expressed in the form
agy + (1 — a)ps for g, p2 distinct states and 0 < a < 1. It is normal if for
any norm-bounded directed subset (z,) C £ we have

9( \V ma) = sup o(z.).

The following is an equivalent definition of pureness.

LeMmA 1 ([6], Lemma 3.4.6). Let £ be an L-lattice and p o state on L.
Then g is pure if and only if every positive linear functional v < p is a scolar
multiple of o.

< sup ||za|.
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Now we want to prove a crucial result about pure states on L-lattices.
The notation |z| stands for ¢ V (~z) (the supremum of z and —z), z+ for
V0, and 2~ for (—2) V 0. By [7], Theorem 11.7, we have |z| = z* + z~,

z=z%—27,and ¢ Az~ =0 (where A denotes infimum). We require the
following simple lemma.

LEMMA 2. Let x,y, z,w be positive elements of an L-lattice. Then

(a) (wAz}+(yAw) S (B+y) Az +w);
M) E+y)AzL (@Az)+(yA2); and
() ifzAy=0thenzAay =0 foralle € R

Proof (a) Since 2z Az <z and y Aw < gy, we have
(xAz)+(yAw)<z+y.
Similarly

(xhz)+(yAw) < 24w,
so that

@A)+ yAw) S (z+y)A(z+w)
(b) Observe first that
((z+y)Ar)~z=yA{z—z)<yAz
Hence
(z+y)Az)—(yArz) <Lz,
and as the left side is also < z, it is therefore < z A 2. So
(z+y)Az<(mAz)+ (¥ Az)
(¢) Ifa <1 then
zAhay <z Ahy=0,
and if & > 1 then
zhay<azrAay=alzAy)=0.
Since z and ay are both positive, z Aay > 0. Hence x Aay = 0.

PROPOSITION 3. Let £ be an L-laltice, x € £, and o a pure state on L.
Then o(|x]) = |o{(z)|. Pure states preserve the lattice operaiions V and A.

Proof For any positive element y € £ define
(y) = sup{o(y A az™) 1 a € RT}.
The sup is positive and finite sincé 0 < yAaxt <y. For any b > { we have
by A ezt = by A (a/b)z™),
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so 7(by) = b7{y). Also, for any positive y,z € £ and a,b € R*, Lemma 2(a)
and (b) imply that
(wrazt)+ (zA02") < (y+2) A{(a+b)zh)
and
(y+2) raxt < (yAazt)+ (2 Aaz™),

from which it follows that 7(y + 2) = 7(y) + 7(2).

We now define r{y — z) = 7(y) — 7(z) for any positive ¢, z € £; this can
be done consistently because if y,y’, z, 2’ are positive and y — 2 = 3’ ~ 2
then y + 2’ =y’ + 2 hence v{y) + 7(2') = 7(¥') + 7(2) hence 7(y) — 7(z) =
r(y') — 7(2’). Since every y € £ decomposes as y = y* — 4=, 7 is now a
positive linear functional defined on all of £.

Now 7 < g and 7(2%) = ¢(2T). Thus by Lemma 1 either o{z™) = 0 or
else 7 = p, in which case g(#~) = 0 by Lemma 2(c). But if g(z™) = 0 then

oflel) = e(@® + 27) = —p(a™ — 27) = —o(x),
and if o{z~) = 0 then
ofel) = e(z™ +27) = o(a™ - 37) = o(a).
In either case we get o(|z]) = |o(z)].

Preservation of the lattice operations now follows immediately from the
formulas zVy = (z+y+|z—y|)/2and zAy=(z+y— |z —y}/2 =

Now we present our new characterization of Lipschitz spaces. We say
that a family of linear functionals is separating if the intersection of their
kernels is 0. We assume real scalars.

THEOREM 4. Every Lip(X,d) is an L-lattice and has a separating Jamily
of pure normal states. Conversely, any L-lattice which possesses a separating
family of pure normal states is isomorphic to some Lip(X,d).

Proof. Let (X,d) be a metric space. The fact that Lip(X,d) is an L-
lattice is easy and standard [11]: for any collection of functions (f.) C
Lip(X, d) with uniformly bounded Lipschitz norms, the pointwise supremum
f satisfies

Ifllz < sep || failz- :
We claim that for each = € X, the linear functional 0g t f— flz) is a pure
normal state on Lip(X, d). This will suffice to prove the first statement of
the theorem, as this family is clearly separating.

It is easy to see that g, is a state, and it is normal since the supremum
of Lipschitz functions is taken pointwise. To show that it is pure, we uge
Lemma 1. Thus let 7 be a positive linear functional and suppose T < pg.
Then for any positive Lipschitz function f which vanishes at 2 we have

UST(f)ggm(f)—_‘O
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Taking linear combinations, we find that 7(f) = 0 for any Lipschitz function
which vanishes at z. Thus ker(g,) C ker(r), so 7 must be a scalar multiple
of gy By Lemma 1 it follows that g, is pure, so we have finished proving
the first statement of the theorem.

For the second statement, let £ be an L-lattice. Let X be the set of
pure normal states on £ and suppose X is separating. Now X is contained
in the dual Banach space £, from which it inherits a metric d, that is,
d(¢,7) = |l@ — 7||. Furthermore we have a natural map I" : £ — Lip(X,d)
defined by I'(z)(g) = o(z). We now aim to show that I' is a surjective
isomorphism.

It is easy to checlk that I' is nomexpansive, and it is 1-1 since X is
separating. Thus, by the open mapping theorem we need only show that it is
onto. To do this choose f € Lip(X,d) and without loss of generality suppose
I£llz < 1. Now for any distinct g,7 € X we have |f(o) — £(7)| < |lo — 7,
so there must exist z € £, ||z]| < 1, such that |o(z) — 7(z)| = |f(e) — F(7)].
Possibly multiplying by —1, we may assume that p{z)—7(z) = f (o)~ flr);
then the element

Zor = & + (f(7) — 7(z))e
satisfies o(zr) = f(0), T(@gr) = f(7), and ||z,]| < 3. (Recall that e is the
supremum of the unit ball of £ and g(e) = 7(e) = 1.)

Finally, define
=\ e
e 7T

Then [|y|| < 3. It follows from Proposition 3 that any pure normal state
preserves suprema and infima of norm-bounded subsets of £. (That is, nor-
mality plus preservation of finite lattice operations implies preservation of
infinite lattice operations.) Thus for any gp € X we have

20 ( A zar) = \ 0o(z00r) = fleo),
and for every g € X, 975790, '
20( A\%or) < 20(a0) = F(20):
S0 '

oo(y) =\/ Qo(/\ mgq-) = f(eo),

2 o - :
and we conclude that I'(y) = f. This shows that I" is onto and completes
the proof. =

The second part of this proof is quite similar to the proof of Theorem 2
in [11]. . : - T .



282 N. Weaver

Note that the proof shows that I' is not only an isomorphism, but ac-
tually satisfies ||| = |[I'(z)||r, > ||z||/3 for all z € £. The 1/3 lower bound
is best possible; to see this let £ > 0 and let £ be R® with coordinatewise
order and the norm whose unit sphere is a parallelogram with vertices at
(1,1}, (1,1 —¢), (-1,~1+¢), and {—1,—1). Then £ is an L-lattice and the
pure normal states on £ are the two coordinate projections; their distance
from each other is €. A simple calculation now shows that for ¢ = (1 —¢,1)
we have [|z]| =3 — ¢ and ||[I'(z)|; = 1.

Finally, we remark that the characterization of Lipschitz spaces given in
[11] is much deeper than Theorem 4. Indeed, the bulk of the proof of that
result is essentially a matter of constructing pure normal states.

2. Measurable metric spaces. In this section we define the class of
measurable metric spaces (X, u,d) and discuss the corresponding spaces
Lip(X, p, d).

Let (X, 1) be a measure space and let M be the class of p-measurable
sets of positive measure. We are really only interested in measure spaces for
which L®(X, 1) is the dual of L*(X, ), which is essentially equivalent to
saying that L°°(X, u) is a von Neumann algebra; this includes the o-finite
case and excludes pathologies of the sort mentioned in Section 1. However,
the following definitions are valid in general. We write A ~ A’ if 4 and A’
have null symmetric difference.

We define a measurable pseudometric on (X, p) to be a function d :
M x M -+ RT with the following properties: A ~ A’ and B ~ B’ imply
d(A, B) = d(4', B"); for all A, B,C € M,

(1) d(4,4) =0,
(2) d(A, B) = d(B, A),

(3) d(AU B,C) = win(d(4, C), d(B, C)),
(4) 44,C) < sup (d(4, B) +d(B',0))

and for any collection (4a) C M and any B € M there exists A € M such
that p(Ay — A) =0 for all & and

(5) d(A, B) = inf d(A, B).

(That d(A, B) < infd(Aq, B) follows from (3).} In the o-finite case axioms
(3) and (5) are equivalent to the single assertion that

d(UAn,B) = inf d(A,, B)

for countable collections (A,) C M, although we omit the proof of this. -
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A measurable metric is a measurable pseudometric with the additional
property that for any disjoint 4, B € M there exist A’ C A, B C B such
that d(A’, B') > 0.

If p is atomic, then any metric on X gives rise to a measurable metric
by the familiar formula

d(A, B) = inf{d(z,y) 1z € A, ye B},
and it is not hard to see that in the atomic case every measurable metric
arises in this way. Similarly, for some measurable functions F: Xt RY
the formula

d(A,B) = essinf(f[A,(B)
defines a measurable metric on a nonatomic measure space. However, not
even every measurable metric on [0, 1] with Lebesgne measure arises in this
way from a metric on [0,1]. For example, consider the measurable metric
defined by
0 otherwise.

If f:[0,1]* — Rt is any measurable function, then either it is > 1 on a set
of full meagure, in which case esginf (flaxa) = 1for any A, or else there exist
disjoint positive measure subsets 4, B C [0, 1] such that essinf(f|axz) < 1.
In neither case does d arise from f in the above manner.

{In general, any finite diameter measurable pseudometric on any measure
space (X, i) does arise from a pseudometric on the spectrum of L>(X, ),
i.e. the set of ultrafilters over the Boolean algebra of measurable subsets
modulo null sets. The relevant pseudometric is defined by

d{U,V} = sup{d(A,B): A€ U, B eV},
for any ultrafilters ¢ and V. However, we do not find this fact especially
useful.)

We now wish to define Lip(X, y, d). Let (X, g, d) be a measurable metric
space and let f € L*°(X, p). The essential range of f is the set of a € C such
that f~1(U) has positive measure, for every neighborhood U of a. Then for
A,B € M let dy(A, B) be the distance (in C) between the essential ranges
of fl4 and f|p. Alternately, '

dy(A, B) = essinf(F o (f x Haxs),
where F(z,y) = |& — y|. Then we define the Lipschitz number of f to be
L(f) = sup{ds(4, B)/d(4, B) : A,B € M, d(4,B) > 0},

and we say f is Lipschitz if L(f) is finite. Also, let Lip(X, g, d) be the set
of essentially bounded scalar-valued Lipschitz functions, with norm Ifilz =
max(|| fllos, L(f)). In the atomic case all of these definitions agree with the
usual ones. We call Lip(X, i, d) a nonatomic Lipschits space. S
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The following lemma and theorem establish one direction of the abstract
characterization of nonatomic Lipschitz spaces. Here we assume real scalars.

LEMMA 5. Let (X, u, d) be a measurable metric space qnd suppose A BC
X have positive measure. Then for every € > 0 there ezisis a positive meo-
sure subset A' C A such that A" C A" implies d(A", B) < d(A,B) +¢.

Proof. Let (C,) be the collection of all positive measure subsets of A4
with the property that d(C,, B) > d(A,B) + ¢. Then by axiom (5) there
exists C' ¢ X such that p(C, — C) =0 for all o and

d(C, B} = inf(d(C4, B)) > d(A, B) + .

Therefore also d(ANC, B) > d(4, B) + & by axiom (3), hence A’ = A._. C
bas positive measure. It follows that d{A”, B) < d(4, B) +¢ for any positive
measure subset A" of A’, since A’ is disjoint from C. =

THEOREM 6. Let (X, p,d) be a measurable metric space and suppose
L®(X, ) is the dual of L (X, ). Then Lip(X, u, d) is an L-lattice and has
o separating fomily of normal slates.

Proof Let S be a subset of the unit ball of Lip(X, , ). It has a supre-
mum f in L*(X, ) by [6], Theorem 5.2.1 and Exercise 5.7.14. We must
show that L{f) < 1. .

Let A,B € M, let ¢ > 0, and choose A’ C A as in Lemma 5, with
d(A’, B) < d(A, B) + . By shrinking A’ if necessary, we may suppose that
f varies by at most € on A’, i.e. for some a € R we have ¢ < f(z) < o t+e
for all z € A’. By shrinking further we may also suppose that there exists
g € S such that g(z) > a —¢ forall z € A’.

Reversing the roles of A’ and B, we can now find B’ € B, b € ]1?, and
h € S such that b < f(y) < b+eand h(y) > b~ forall y € B/, and
d(A',B) < d(A, B) + 2.

Without loss of generality suppose that a > b and note that g(y) <
F(y) < b+ & for almost every y € B’, We conclude that

ds(A,B)—3c _ dy(4",B') -3¢
(A, B)+2 = d4,B)
a—b-2 4B <

S AL B) S A B)

Taking € — 0 and letting A and B range over all positive measure subse'?s

of X shows that L(f) < 1, as desired. Thus, the unit ball of Lip(X, p, d) is

a complete sublattice. : : .

We have not yet shown that Lip(X, i, d) is a Banach space. This follows

from lattice-completeness by Proposition 1 of [11], and thus the proof that
Lip(X, i, d) is an L-lattice is complete.
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Finally, we must show that Lip(X, p,d)hasa separating family of normal
states. This immediately follows from the fact that L>°(X, 1) has such a
family, namely the states o(f) = S fgdu where g € INX,p), g > 0, and
Jodu=1.n

3. An abstract characterization of Lip(X, u,d). We now wish to
prove a converse to Theorem 6. To do this we need to use a standard op-
erator algebraic technique, the GNS construction. Thus, our proof requires
the existence of algebraic structure and the result, is therefore only approx-
imately a generalization of Theorem 4. Very likely the exact generalization
of Theorem 4 ig true, namely that any L-lattice with a separating family of
normal states is isomorphic to some Lip(X, ,d). On the other hand, while
our result assumes the existence of algebraic structure, isomorphism of that
structure is also part of its conclusion. Therefore it is probably the most
useful version for applications.

By “Banach algebra” we mean a complex Banach space which is also
an algebra, such that ||zy|| < Cliz|l{lyl| for some constant €' and all z, Y.
The stronger version of the Banach algebra law, with C' = 1, is clearly
unacceptable here as it does not hold in Lip(X, 4, d). (In general the best
constant for Lip(X,, u,d) is C' = 2.)

Let £ be a commutative Banach +-algebra. We define z < y to mean
that w{y — z) > 0 for every *-homomorphism w : £ — C. By a “preorder”
we mean & relation which is reflexive and transitive, but not necessarily
antisymmetric, and “preordered Banach space” is defined in the obvious
way (cf. the definition of ordered Banach space in Section 1). Let Re(L)
denote the self-adjoint part of £.

LEMMA 7. Let £ be a commutetive Banach *-glgebra. Then the relation
< s a preorder gnd with Re(L) a preordered Banach space. For every
z € L we have gx* >0, and if 2,y > 0 then zy > 0.

Proof It is clear that z < z for all z € Re(L). If z <y and y < 7z then
for every complex *-homomorphism w,

w(z - ) = w(z - ) + wly - x) 2 0,
80 that z < 2. So < is a preorder. '

Ifz,y,2 € Re(L), @ € R, and & < y, then w(y — 2) > 0 implies that
w(ay — azx) > 0 and w((y-+2)~(z+2) > 0,50 az < ayand z+z <y + 2,
and we conclude that Re(£) is a preordered Banach space, _

Finally, the last two assertions follow from the calculations w(zz*) =
wz)w(z) = w(z)® and w(zy) = w(z)w(y). =

We call a unital commutative Banach *-algebra £ an L-algebra if <
makes Re(L) an L-lattice and its vnit is e (the supremum of the wnit ball).
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Note that the first condition includes the assertion that < is a partial order,
not just a preorder. This is equivalent to saying that for every nonzero 2 € £
there is a complex *homomorphism w such that w(z) # 0, and is therefore
a sort of semisimplicity assumption.

It follows immediately from Theorem 6 that (with complex scalars)
Lip(X, u,d) is an L-algebra, provided L°°(X, ) is the dual of LYX, ).

We will call a linear functional on £ a normal state if its restriction to
Re{L) is a normal state in the original sense. In the following two lemmas
let £ be a fixed L-algebra and p a fixed normal state on L. Let (z,y) denote
the pre-inner product on £ defined by (x,y) = o{zy*), and let H denote the
Hilbert space formed by factoring out by null elements with respect to this
inner product, and then taking the completion.

LEMMA 8. For any x € L, the eguation w(z)y = xy defines a bounded
linear operator w(x) on H. Its norm is at most VO|z|.

The map w : L — B{H) is a positive unital x-homomorphism of norm at
most VC', If (zo) C Re(L) is a norm-bounded directed subset and z = \/ z,,
then (m(zs)) C Re(B(H)) is a norm-bounded directed subset and n(z) =
V7(2a).

Proof. That =(z) is well defined and that it is bounded follow from
the same calculation: zz* < ||zz*| e, hence for all y € £ Lermma 7 implies
(|zaz*|e — zz*)yy* > 0. Thus

lo2™[{y, ¥) — (=, 29) = e(([|72"[le — zz™)yy") 2 0,

and so {7 (z)y,7(zx)y) < |lzz*|{y,y) for all y, which implies that ||n(z)| <
ze*||"/? < VCz|. Linearity of w(x) is clear.
It is easy to check that 7 is a unital *-homomorphism, i.e.

m(zy)z = w(2)n(y)z,  (r(z)y, 2) = (y,m(z")2)

for all z,y,2 € £, and the norm estimate follows from the estimate on
7(x) just given. The map = is positive because if @ > 0 then (n{x)y,y) =
o(zyy*) > 0 for all y € £ by Lemma 7, hence m(z) > 0.

Now let (2,) C Re(L) be a norm-bounded directed subset and let z =
V zo. Then (n(zs)) is contained in Re(B(H)) since 7 is a *-homomorphism,
it is bounded in norm since 7 is bounded, and it is directed since 7 is positive.
Since A(z — zo) = 0, for all y € £ we have

0 < Al —2a)yy” < lyy*l| A= — wa) = 0.
Thus A(z — z4)yy* = 0 and so by normality of g,
inf(n(z ~ #a)y, y)) = inf o((z — 4 )yy*) =0
for all y, which inaplies that A 7(z — 2) = 0, Le. V 7(a) = 7(z). m

m(e)z =,
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LemMa 9. Let z,y,2 € Re(L). Then z Ay = 0 implies zy = 0, and
p{z7) > 0 implies w(z) 2 0.

Proof. Suppose 2 Ay = 0; then z and y are both positive and we have
zy 2 0 by Lemma 7. Conversely, for a = max(|/z[}, ||y||) we have = < ae and
y < ae, hence

vy LaxAay=alzAy)=0.
Thus zy = 0.

Now suppose o(z™) > 0. Then {z7,e) > 0, s0 2™ is a nonzero element
of H. Thus (w(27)z™,¢) = (z7,27) > 0, so that m(z}z~ is also a nonzero
element of H. But since m(27) > 0 (by positivity of 7), it then follows that
p{(z7)%) = (w(27)27,27) > 0. Finally, since 2+ A z~ = 0, the first part of
this lemma implies that zt2~ = 0, hence zz~ = —(27)?, s0

(m(2)z™,27) = —a((x)%) < 0.

This shows that 7(z) 2 0. =

With these preliminaries at hand we can now give the remaining direction.
of our characterization of nonatomic Lipschitz algebras.

THEOREM 10. Let £ be an L-algebra which has a separating family of
normal states. Then L is isomorphic to some Lip( X, p,d).

Proof. As above, for each normal state g form the corresponding Hilbert
space H, and =-homomorphism =, : £ — B(H,). Let H be the direct sum
of all the H,'’s and 7 : £ - B(H) the direct sum of all the 7,’s; then « is a
positive *-homomorphism of norm at most +/C. Since the family of normal
states is separating, for every nonzero z € £ we have (m,(z)e, e} = o(z) # 0
for some o, 80 7 is 1-1. Also, if z is not positive then z~ is not zero, so
¢(@z™) > 0 for some normal state g, which implies by Lemma 9 that #(z) is
not positive. So z > 0 if and only if w(z) 2 0.

Since the range of = is a commutative x-subalgebra of B(H), we may
consider 7 as taking £ into the weak operator closure of 7(£), which is an
abelian von Neumann algebra, without loss of generality L>(X, 1) by [4],
Theorem 7.3.1,

Now we wigh to show that m preserves suprema. Thus choose z,y €
Re(L} and let z = 2 V y. Now n(z) > m{z) V (y) since = is a positive map.
Suppose m(z) > m(x) V 7(y); then as the latter belongs to the C*-algebra
generated by (= norm closure of) (L), there must exist w € Re(L) such that
m(w) = w(x) V n(y) but m{w) Z n(2). Since 7 is an order-isomorphism, this
implies that w > 2 Vy but w ¥# 2, a contradiction. So m(zVy) = =(z) Vr(y).
By the last part of Lemma 8, it then follows that 7 preserves the supremum
of any norm-bounded set.
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- By the preceding facts, we are free to consider £ as being contained in
L*(X, u), with the inherited lattice structure. We continue to write || - ||
for the norm on £ and | - || for the norm on L*®(X,u). Now define a
measurable pseudometric on (X, p) by setting

d(A,B) = sup{d;(A4, B) : f € Re(L), ||If]| <1},
where dy{A, B) is the distance in R between the essential ranges of f |4 and
f|5. Since £ is weak* dense in L°°(X, p), d is a measurable metric, not just
a pseudometric.
It is easy to see that the identity map takes Re(L£) into Lip(X, 4, d) and
that L(f) < ||7]|, hence || fl|lz < VC||f|| for all f & Re(£). In fact, it takes
all of £ into Lip(X, u,d) with norm at most v/2C:

1£llz < V2 - max(|IRe(/)] o, | Im( )]l )
< V20 - max(||Re(f)], [Lm(£)]) < V2T £

for all f € L. Thus, by the open mapping theorem, to complete the proof
it will suffice to show that the identity map is onto, i.e. every function in
Lip(X, 4, d) belongs to L.

For each positive measure subset A C X, let f4 denocte the function

fA:\/{fGRB(.C):f|A == () and Il‘f“ < 1__|_\/’a}

Then fa € Re(L), fala = 0 almost everywhere, and ||faf < 1+ +/C.
We claim that, in addition, for any positive measure subset B © X we
have fa|p > d(A, B) almost everywhere. To see this choose £ > O and find
9 € Re(L) such that [|g|| < 1 and dy(A, B) > d(4,B) —e. Let R be the
essential range of g|4 and note that R C [—-\/5, \/5] For each a € R the
function

9o = |g — ael = (g — ae) V (ae — g)

has norm at most 1+ v/C in £ and satisfles g |p > d(A, B) — £ almost
everywhere. Thus f = A{g, : @ € R} has norm at most 1 4+ +/C and
satisfies f|4 = 0 and f|p > d(A, B) — & almost everywhere. Then f is in the
supremum which defines f4, hence falp > d(4, B) — . As this holds for all
positive & the claim is proved.

Now let f € Lip(X, 4, d) and suppose | is real-valued and |fllz < L For
each positive measure subset A C X let ky = essinf(f|4); then |ka] < 1
and 50 kae — fall £ 24 V/C. Also,

f=\ (hae— fa)

_ ACX
and this shows that f belongs to £ and has norm at most 2 + +/&. This
suffices to show that the identity map from £ into Lip(X, 4, d) is onto and
completes the proof. m
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