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Second order unbounded parabolic equations in separated form
by
MACIEJ KOCAN (Santa Barbara) and ANDRZEJ §WIECH (Atlanta)

Abstract. We prove existence and uniqueness of viscosity solutions of Cauchy prob-
lems for fully nonlinear unbounded second order Hamilton—Jacobi-Bellman-Tsaacs equa-
tions defined on the product of two infinite-dimensional Hilbers spaces H' x H", where
H" is geparable. The equations have a special “separated” form in the sense that the
terms involving second derivatives are everywhere defined, continuous and depend only
on derivatives with respect to o € H", while the unbounded terms are of first order and
depend only on derivatives with respect to z’ € K.

1. Introduction. Qver the last decade substantial progress in the theory
of Hamilton-Jacobi~Bellman-Isaacs equations in infinite-dimensional spaces
has been made due to the introduction of the notion of viscosity solution.
In particular, very general results have been obtained for equations with
“unbounded” terms (see [7]-{10], [12], [22]-[26] for first order equations and
(13], [17], {20], [21] for second order ones). In this paper we deal with special
Cauchy problems defined on products of Hilbert spaces.

Suppose then that a real Hilbert space H is written as the product of
two Hilbert spaces, H = H' x H”, where H" is separable. Let 4 be a
maximal monotone (equivalently, m-accretive) operator in H'. Then —A4
generates a strongly continuous semigroup S(t) of contractions on D(A),
where D(A) C H' denotes the domain of A. We refer the reader to [1] or
3] for the information on nonlinear semigroups. For the sake of simplicity
we will always assume that 0 € A0, Given & € H we will write z = (z', 2"),
where o' € H' and 2" € H”, Let T > 0.

Our Cauchy problem has the form

Uy + (A-’B’, D;yu) 4+ F(t, z, Dx’\'.l'., D?‘:uu) =0 (E)
(CP) for (¢,z) € (0,T) x 12,
u(0,3) =¢(z) forz e R,
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where {2 is a relatively open subset of D = D(A) x H” € H. All derivatives
are understood in the Fréchet sense and therefore F is defined on [0,7] x
2 x H x §(H), where S(H) stands for the space of all self-adjoint bounded
operators on H".

The definition of solution suitable for equationms containing terms
(Az', D,u)y with no additional assumptions on A besides maximal mono-
tonicity has been introduced by D. Tataru [22] and later refined by M. G.
Crandall and P. L. Lions [9]. The definition uses test functions which ave
merely Lipschitz and this makes it impossible to extend it to second order
equations. Equation (E) is of second order but the second order terms ap-
pear in the variable " which is “separated” from z', appearing in the term
{Az', Dyu) causing trouble, This suggests that Tatarw’s definition can bhe
combined with the usual definition of viscosity solution to give an effective
tool for investigating (CP). Our definition of solutions of (E) is based on
this observation.

In this paper we show that under appropriate assumptions problem (CP)
has a unique viscosity solution. To prove this result we first develop appro-
priate tools to deal with second order terms. A key role is played by 4 version
of a basic lemma of Lions (see [16], [6] and [13]). A perturbed optimization
technique appropriate for (E) was obtained in [15]. Once these tools are
available, the proof relies on techniques of Tataru, Crandall and Lions de-
signed for first order unbounded problems ([22], [8]) combined with (by now
standard) finite-dimensional methods, as extended to infinite dimensions by
Lions in [16}, and Ishii’s method of constructing solutions ([12]). In order to
malke this paper self-contained we tried to present full proofs, even though
some arguments follow closely those given in [9] and [12].

Finally, we remark that problems (CP) in separated form arise in finance
theory. We will come back to this issue and study specific examples in a
future publication.

2. Definitions. As explained in [22] and [9], for ¢ € CY(H') it is natural
to interpret the unbounded term (Aw’, Do) in terms of the derivatives of
¢ along the trajectories of §(t). This motivates the following definition.

DEFINITION 1. For a function ¢ defined on (0,7 x 2, where 2 C D,
and (¢, %) € (0,T) x £2, define

T foptty ;o
D4®(t,%) = lminf P(t, 2’ 2") — (1, S(h)a', 2")
(t,a:)—lro(f,ﬁ) A

h

and

icm

Parabolic equations 293

. Doy
DEEEE) = limsup S0eEr2) =8t S(ha' 2"

(ta)—(f,2) h
k1D

Note that B = {0} x A x {0} is an m-accretive operator in R x K
generating the semigroup I x S(t) x I and then D% = D%, where D* are
defined as in [9]. Therefore, for example, for any function @, D& is lower
semicontinuous. :

Let P denote the projection in H' onto D{A). We write BX (z) for the
closed ball in K of radius  centered at z. Vb and a A b stand for max{a, b)
and min(a,b). We will use standard notation to denote various function
spaces. For instance, BUC stands for the space of all bounded uniformly
continuous functions, and Lip denotes the class of Lipschitz continuous ones.
Given a Lipschitz continuous function 1, L(4) will denote its Lipschitz con-
stant. For less standard spaces we put

BUC,([0,T] x 2) = {» € BUC([0,7] x ) : u(t,) are uniformly

continmous in z, uniformly in ¢ € [0, T},

CUL2((0,T) x H' x H") = {u: u is once continuously differentiable

in ¢,2' and twice continuously differentiable in z"}.

DEFINITION 2. We say that $(t, ¢} = o(t, z) + ¥ (z') € CVL2((0, T) x H)
+ Lip(H") is a subtest (respectively supertest) function if
(1) ot Pz,a") <o,z 2") and ¢(Pz') < (2

for (t,z) € (0,T) x H,
respectively
(2)  o(t, Pa’,2") 2 p(t,2",0") and $(Px) > y(z')

for (t.2) € (0,T) x H.

In order to interpret the term “Dg 4" for merely Lipschitz v, for

(tz,p,¢, X) € (0,7) x 2x H' x H" x S(H) and A > 0 put
Fy(tz,p,q, X) = nf{F(t,z,p+rq,X):r € H', |r]| < A}

and 2

F‘\(tawap:%x) = Sup{F(trm’p”l”""Q'r X) re H’? ”TH <A}

The definition of viscosity solution, taken from [9], which we now adjust

to the current setting, is the following. S

DerintTioN 3. Let 2 be a relatively open subset of D. Then u €
USC((0,T) x 2) (v € LSC((0, Ty x 2), respectively) is a viscosity subsolution
(supersolution) of (E) in (0,T) x 12 if for every subtest (supertest) function
b=+ € CHL2((0,T) x H' x H"} + Lip(H") and a local maximum
(minimum) (1, %) of u + @ over (0, T) % {2 we have-. . ’ Cn
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@) @@ + D30 8) + FrpnE 8 Dap(,8), Do (£ 7)) <0,
respectively
(4) 0 (&%) + D58, 5) + FE (&, Do, &), Divp(t, 8)) 2 0.

A fanction u € C((0,T) x £2) is a solution of (E) if it is both a subsolution
and a supersolution.

3. Assumptions about F. Now we state various assumptions on the
function F appearing in (E). Suppose that 2 € D and F : [0,7] x 2 x
BFx&8H)—R
F1. F is degenerate elliptic, that is, F is nonincreasing in the last vari-
able with respect to the standard ordering on S(H).

F2. F is uniformly continuous on bounded subsets of [0, 7] x £2 x H x
S(H). Let wr denote the local modulus of continuity of F.

F3. There exists an increasing sequence {Hx }57—, of finite-dimensional
subspaces of H" such that Jp~; Hn is dense in H” and for every
(t,z,p) € (0,T) x 2 x H and R > 0,

Sup{lF(tJ$7p1X+ )‘QN) - F(t,m,p,X)| .

as N — oo, where Py and Qu denote the orthogonal projections
onto Hy and Hy, respectively.

F4. There exists a modulus o such that for t € (0,T), z,y € {2 and
a> 0,
P(t,y, 0z ~y),—Y) - F(t,z,a(z~y), X) < op(|a—y| +afz—y|*)
whenever

I 0y_(X 0 Io-I
(0 1)= (7 v)se(h 7)

F5. There exists u € C?(H) radial, nondecreasing, nonnegative, such
that Dyp, D2/ are bounded and limjz)—00 {2) = 400, and a
local modulus oo such that for (t,z,p, X} € (0,T) x 2 x H x S(H)
and r € R,

|F(t7m,P: X) - F(tw z,p+ TD:,,M(E),X -+ 'T'Daz':””(m))l

< Uoo(lria ||P|i + ”X”)
Condition F3 was introduced by Lions in [16]. F4 is needed to handle
the z-dependence, and F'5, or scme version of it, is required in proofs of

comparison on unbounded domains to localize things in order to produce
local extrema. Note that by Remark 3.4 of [5], F4 implies F1, and that
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given F2, F3 is equivalent to the following condition:
for every (t,z,p) € (0,T) x 2 x H,
F(t1$’P=')“F(t’$apsPN'PN) —+0 as N — oo
uniformly on bounded subsets of S(H").

Let us fix a sequence H; € Hy C ... asin F3. In what follows, Py and Qn
will always refer to the decomposition H” = Hy x Hp.

4. Main result

THEOREM 4. Suppose that F satisfies conditions F1-F5, where 2 = D,

Comparison: Let u, —v € USC([0,T) x D} and let u,v be respectively a
sub- and a supersolution of (E) on (0,T") x D. Let n € UC(D) and w1 be a
local modulus such that

(8)  ult,z)—n(z) <wiltllzl), vt e) ~nle) = ~wi(t, =)
for (t,z) € [0,T) x D. If v,—v are bounded from above then u < v on

[0,T] x D. Moreover, there are a modulus we and a local modulus ws such
that

6 ulta) ~ vls,y) < wallle = yl) +wsle — ol Izl + )
fort,s €[0,T), &,y € D.
Existence: Assume that ¢ € BUC(D) satisfies
(1) ¢(S()a',2") is uniformly continuous in t,
uniformly for bounded x € D,
and for every R > 0,
(8) sup{|F(t,a:,p, X)I : (t:m) € [OvT] x D, HPH: ”XH < R} = Kp < o0.

Then there exists a unique solution v € BUC,([0,T] x D) of (CP). More-
over, for every R > 0, u i3 uniformly continuous in t uniformly for z € D
2| < R.

5. Tools. Here we collect some tools and technical lemmas which will be
required in the proof of the main Theorem 4. It is assumed that the reader
is familiar with basic notions of the theory of viscosity solutions. For the
finite-dimensional theory see [5], for “bounded” second order equations in
infinite dimensions see [16].

LEMMA. 5. Suppose that o Hilbert space K is written as o product K =
Z x W, where Z is finite-dimensional. Let P and @ denote the orthogo-
nol projections onto Z and W, respectively. Let u,~v € USC(R x K) and
o, § > 0. Suppose that the map

(12, 8,5) 1 6(t, 5) — v(s, ) hallz — plP — 4Gt — 97
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has a local mazimum over B x K x R x K at (£,%,5,7). Then there erist
X,Y € 8(K) satisfying

X=PXP, Y=PYP

I0 X 0 I -
(o 1) = (5 v) =5 )

(BE-9),a(F ~§), X +20Q) € P“ (t3),
(B(E—3), (% —7),~Y ~2aQ) € 2=0(5 7).

For the definition of the second order pambohc jets P2T and P?™ see
[5]. This lemma is proved in [13]. The proof relies on a result fundamental
for the theory of bounded second order equations in infinite-dimensional
spaces, which can be found in [16] and [6]. Lemma 5 can also be deduced
from a general theorem in [6].

The next tool we will need to investigate equations in separated form is
an appropriate perturbation technique. For (z',4y') € H' x D(A) define the
Tatarw distance d (see [22], [25] and [9]) by

(9) d(z',y) = inf {3+ lz' ~ 5@yl }-

d is almost a metric (it lacks symmetry). It is Lipschitz but not differen-
tiable, and therefore is not suitable for second order equations. The follow-
ing perturbation technique is a combination of Tatarw’s ([22]) and Ekeland-
Lebourg-Stegall’s ([11], [19]) and can be used to generate perturbed minima
of a function defined on a product space. Its virtue is the property that the
perturbation is smooth in the z” variable. The following result is proved
in [15]:

LemMMA 6. Suppose that T ¢ I is closed and the projection of T onto
H'" is bounded, that is, sup{||z"|| : z € T} < co. Let & : T' — R be lower
semicontinuous and bounded from below. Then for every ¢ > QO there exist
T eT and pe H" satisfying |ip|| < & such that $(F) < infy & + ¢ and the
map

and

such that

z — $(x) + ed(z’, &) + (p,z")
has o strict global minimum over T' ot %.

In what follows we will apply this lemma repeatedly with H" replaced
by R x H".

The second order jets P2+ and P*~ are designed for “bounded” prob-
lemns and their elements cannot be just phugged in into “unbounded” equa-
tions. More precise information about these jets given by the next lemma
will, however, enable us to do that to some extent in certain cases.
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LeMMA 7. Suppose that u,—v € USC((0,T) x 2), where 2 C D is
relatively open. Suppose that o, 8 > 0 and that the map
(10) (tyz, s,y) = u(t,z) —v(s,y) ~ fal|z” — "% - 18(t — 5)*

has a strict local mazimum over (0,T) x 2 x (0,T) x 2 at (1,%,5,7). Then
for every N 21 there exist X,Y € S(H) sotisfying

{11) X=PyXPy, Y=PyYPy
and

I 0 X 0 I I
(12) "30(0 I)S(O Y)53a(—1 I)’
and

(anan), (g‘nsﬁﬂ) € (D:T) X2, pn,g, € H”: tn, b € R,
>0, @n,¥n € Cl’z(R X HU)

such that, as n — oo,

(13) (bnsBn) = (BE),  (Bn, ) = G0,

(14) u(fn,E,L) -t U(E Z),  v(En,¥n) — (5,7,

(15) [n [V lignlt V |an| V [ba] V vn — 0,

(16) (‘pn)((f;u ﬁl:i ) (%0 )4 (3n, :‘Tn,) - OB(?_ 3),

(17) Dpnpn(t mA;’m) Dyt (8n, ) — (3" ~ 7",

(18) D:J:”(PH(AW: A::;) — X +2aQnN, Dm”wn(sm yn) — =Y — 200N,

and for everyn=1,2,,

(19)  the map (¢, 2) = ult, 2} = 1nd(2’, Z},) — (Dn, 2"} — ant — @n(t,2") has
a strict local mazimum over (0,T) x 2 at (tn,%n), '

(20)  the map (s,y) — v(s,y) + v d(y', §,.) + (an, ¥} + bns — n(s,y") has
a strict local mindmum over (0,T) X 12 at (55, 0n)-

Proof. This proof uses ideas of [6], which was inspired by and simplifies
[16]. Choose r > 0 sufficiently small so that the map (10) has a strict global
maximum at {t,%,5,§) over

K = BR@) x (BE (@) n D) x B}3) x (BE(H)n D).
For (t,2") € BR(T) x BH" (3"} and (s,3") € BR(3) x BE"(§") define
at, ") = sup{u(t,z’, ") : 2’ € D(4), («',2") € BE(5)},
Bs,y") = inf{u(s,y',y") 1y € D{A), (¥',4") € BY @)}
Then the map
(t, 2", 8,y") > T, a") — Bu(s,4") — 2oz — ¢ | — 8t — 5)*
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has a strict local maximum over BR(F) x BE" (3"} x BR(8) x BHE"(§") at
(?, z",5,7"), where &@* and %, denote the upper and lower semicontinuous
envelopes of ¥ and ¥, respectively. Note that

(21) @Gz =ul3), 5.67) =v(7).

By Lemma 5 there exist

(tn, 30, 80, 4) € BR(T) x BE (") x BR(5) x BE" (3",
on,n € CV? (R H"), X,Y e S(H),

such that (11) and (12) hold, and as n ~ oo,

(22)

(23) (tn: Ty S0y Yp) — (ﬁﬁ”,ﬁ, 7'),

(24) W (tn, o) = TEE),  Bulon,vi) = %G T,
(25) Dm“‘Pn(tm m;;): Dw”qvbﬂ(smyg) - a(&:ﬁ - F"):
(26) (on)oltns @), (Ya)e(on, ¥7) — B(E - 3),

(27) Dlipu(tn.zn)— X +20Qn, DZipn(ss,ul) — -Y — 20Qy,

(28) themap (¢,z") — @*(t,2") — pp(t,2") has a strict maximum over
BY() x BE'(3") at (i, ap),

(29)  the map (s,9") — 0u(s,3¥") — ¥n(s,y”) has a strict minimum over
BE(E) x B (§") at (sn,y7).

We will see that ¢y, %n, X and Y from (22) have the desired proper-
ties. Given n, for ¥ > 0 use Lemma 6 to find a,b € R, p,q € H", and
(tn,%En, 8n, ¥n) € K such that

(30) lal VBl V lp[| v Hgll <,
and the map
(31) (t1 &, 8, y) L u(t: :L‘) — 'U(s7 y) - (pn(t, $”) + wn (3: y”)
—yd(2’, &) — vd(y', §,.) — at — bs — (p,2") — {q,¢/")

has a strict maximum over K at ('tvmfn'n,‘ﬁ'n', Un). For all (t,z,s,v) € K we
have

(32) @ (a, &) —Bu(Bn, T) — 0 (B BL) + (8, )
2 u(‘{m E-n} — v(8hn, gn) - ‘Pn(%“m Eﬁ) + Tr/’n(gnag;:)
2 ut,z) = v(8,9) — @nlt, 2"} + (s, y")
—{p 2" = &) — (g, y" —Tn) — a(t ~ ) ~ b(s — Fn)
—yd(a',Z5,) — ya(y', 7,)
2 u(t, ) — v(8,y) ~ @nlt,2") + Pu(s,y") — Cv,
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where &' = C{r) > 0. Take supremum over (2, y’ ) in (32) and then apply
semicontinuous envelopes to obtain

(33) ﬁ*(?mﬁg) - @*Gm@'ﬁ) - ﬁon(?n:%;i) +¢n("§’m ?ZD
> u(tnaﬁn) e ’U(E'n, gn) . ‘Pﬂ(tmi;:) +w"(§m@‘x)
2 Wt 20} = Bu(50, Y1) ~ @n(tn, 220) + Wn (50, 47) ~ C.

Now the strictness of the extrema in (28) and (29) together with (33) implies
that

(34) (tmiﬁ,gn:fa‘;’,) - (tn)wgasn:y:{)
and
(35) T (T, T) = U (tn, 2l0),  Ba(GaT) — Tul(8my )

as v | 0. This, together with the middle inequality in (36), implies that
(36) U(tn, Tn} — T (tn, 1), V(8nyUn) — Tul(Sn,4h) asy | 0.

Now for each n choose sufficiently small v, < 1/n so that (b B2, B, T
is at least 1/n—closeﬂto (tn,m;{,smy”), and corresponding an, by, Pn,qn
satisfying (30). Put (¢,, T, 8n,5n) = (tn:Zn,8n, Un). Then (16)—(18) follow
from (34) and (25)~(27). By construction and (23),

(37) (‘{n:?f;:a’s\na.a::) — (a 5”5'?1 :U”) ag N~ 0.

Now (21), (24) and (36) yield (14). Finally, the strictness of (%, 7, 5,§) with
respect to (10) together with (37) and (14) implies (13). Finally, (19) and
(20) follow from the extremization property of (31) and the proof of Lemma 7
is complete. m

6. Doubling lemma. Lemma 8 below is crucial for the proof of unique-
ness of solutions of (CP), It can be viewed as a restricted second order
version of the Doubling Theorem 3.1 from [9], with a very specific subtest
function for the doubled equation. See [14] for a general Doubling Theorem.

Suppose that 2 C D and F,G: (0,T)x 2 x Hx S(H) — R. For a > 0,
define a map H{a): (0,7) x 2 x (0,T) x 2 x H x H— R via

(38)  H(e)(t,z,8,9,p,¢) = inf{F(t,z,p,X) ~ G(s,9,4,~Y) :
X,Y € S(H) satisfy (11) and (12) for some N > 1}.

Note that if F' and G satisfy condition F2 then for every o > 0, H(a) is
uniformly continuous on bounded subsets of (0,T) x 2% (0,TYx 2 x H x H,

LEMMA 8. Suppose that 12 is relatively open in D, o, 8 > 0 and that F
and G satisfy conditions F1-F3. Let u,—v € USC((0,T) x £2) solve
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(39) us + (Az', Dgru) + F(t, @, Dyu, D20u) <0 for (t,2) € (0,T) x £2
and
(40) vy + (Az’, Dpv) + G(t, 2, Dpv, D2iv) 2 0 for (t,z) € (0,T) x 2.
Suppose that a,b € R, p,q € H" and ¢ € Lip(H' x H') salisfies

$(Pe, Py') <9(a',y)  forz'y € H.
If the map
(41) (t,z,8,5) = u(t,z) — v(s,y) — 3afz —ylI* — $8(t - 8)?

—at - bs — (p,z") — {g,y") — ¥(=",y/)

has a strict local mazimum over (0,T) x £2 x (0,T) x 12 at (E T,8,7), then
(42) a4+ b4+ D W (E.T)

”f'H(a)L(qp)(a Z,5,7,aE@~-§)+pal@-9)—q <0,
where H(a) is defined by (38) and for (t,z,s,4,p,q) € (0,T) x 2 x {0,T) x
NxHXxH and A> 0,

H{a),(t,2,8,9,0,9)
= inf{H()(t,2,8,,p +7, g+ 2) 1 rz € H', [|ri], {z]] < A}

Proof. We will follow the notation from the proof of Theorem 3.1 in [9}
as closely as possible. First of all choose r > 0 small enough so that

BEE35)C(0,T)x (0,T) and BE'(5,§)n 2 = BE (3,7) n D?
and the map (41) has at (4, %, 5,7) a strict global maximum over Bzuf (%, 8) x
(BE(&,9) N D?). Put

I=BY(&3), ¥=B&Hne® ad N'=BE @ 7)nDA) .

N’ can be desribed as the projection of N onto H' x H'.
For £,6 >0, (t,8) € I, (x,y) € N and (£,n) € N' define
u(h,z) = u(t,z) — (p,2") —at, wvi(s,y)=v(sy)+ g,y +bs,

Wt @, 8, y) = us(t, 2) ~ vi(s,y) ~ galle ~y|? - 360t - ¢) - (o', y),

Ws(t,m, Say1€7n) = ul(ta 'T') - 'L’l(S,‘y) - %OA”CC” - yHH2 - %ﬁ(t - 3)2
— 3 Il ~ € + [y = nll*) = Sallé = 0] —w(E,n),

Ve s(t, ., 8,4,6,m) = Uu(t, z, 5,9, €, 1) — 6| A€ — 6]l A°n]],

where

4% = {min{iiyu (& y) e A} HE e D(4),
oo ' © otherwise.
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Recall that the map & — ||4°¢| is lower semicontinuous. Put

stup!?=¢(£.’i,§,ﬂ), Me= sup ¥, M.;= sup Ves.

IXN IxNx Nt IXNxXN'
Clearly M < M, and M5 < M.. Exactly as in [9] one verifies that
(43) Mes T M as6]0 and M, M asell.

For every & > 0 use (43) and perturbed optimization (Lemma 8) to find
b= '5(5) >0, ac,b: €R, Pey g € H, (tmse) € I and (%1%555:"]&) € NxN'
such that |ag|V |be| V [|pe(| V lge]| <&, 6() [0 ase ] 0,

(44’) M, ~ g < Ws,é{s)(tsz Te, e, Yer €y 7e)

and the map

(45) (t.2:8,5,6,m) = Ve 50) (8,2, 8,4, £,7) — (pe, 5”") — (g, ") — et — b5
- Ed(m’: mfs) - Ed(y’: y.ls} - Ed(E, ga) - Ed(ﬂ, Ws)

has a strict maximum over T x N x N’ at (te, Te, 8y Ye, &, me ). Note that

gE:nE E D(‘A‘)
Next one shows exactly as in [9] that

(46) (t€!m€:351y615577]5) - (E?E,Eiﬂ EI:?) ase | 0.

Therefore from now on we can assume that £ > 0 is chosen so small that

(t,5) € BE (£3),  (2e,0) € BF'(8,5) n D?
and
(éerme) € B (8, §') N D(4)*.

Now fix £ = & and = 5, in (45) and observe that the map

(t, 2, 8,9) —(u1(t, ) — ed(a’, 2L) = (pe, ") — agt — sz’ — A

= (ni(s,y) +ed(y, ul) + {ge, 1) + bes + 272 |ly — 7. ]|?)

—V'I* - 380~ 5)?
has a strict local maximum over (0,T) x 2 x (0,T) x 12 at (tes Tey ey Ye )-

From Lenimna 7 for every N > 1 there exist X,V € S(H) satisfying (11} and
(12) and

(tmmn): (S'ri.:y'n,) e (07 T) x ‘Q} Zﬂm% = Hﬂa G"ﬂ':b’n E ]R'.'

- Jale’

Yn > 0, Py pr'n. € 01’2(R x H")
such that, as n — oo,
(47) (tns By 8y Yn) = (tes ey 86, Ye ),
(48) 2all V lgnll v an] V |bp| V 1 — 0, ‘
(49) (Wn)a(fn,ﬂi;{ :(’/’n)t(smy;ﬁ:) — B(te — 8¢),
(50) Dm”‘Pn(tm 33;:)7 D:u”*/)n(sm yg) — OA(:L"‘; - y;’):
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(51) DZpa(tn,zh) — X +20Qx, DZupn(8nsYn) — ~Y — 20Qy,
and such that for every n = 1,2,... the map
(t, ) —~ u(t,x) — (p,z") — at
— ed(z’, x¢) — (pe, @) —agt — %E”lllfﬂ' ~ &|?
— Yud(z', 20) ~ (P, ") ~ ant — on{t,2")
has a (strict) local maximum over (0,T) x 2 at (tn,2,) and the map
(5,4) = v(s,y) + (g.y") + bs
+ed(y, ) + (g, y") + bes + 57 Y = el
+7nd(y',4n) + (s ¥") + bns — Uuls,9")

has a local minimum at (55, ¥n)- .
From the extremization of u and (39) (v and (40), respectively) and
Lemma 2.2 of [9] we obtain

(‘Pn)t(tna 51:;:,) +a+ac+a, + 5_1<A°€s:5'5;m - ge)
+Fopy, {tns Tn,s 5_1(5; — &) + Do pn (ta, wﬁ) + 2+ e + D,y Di”@n(tmmﬁ))
SeEtTe
and
("/)n)t(smyg) —b—b;— by + E—I(Ao'rls: Me = y;’m)
+ GEtn (smym 5_1("78 - y:'a) + Dm”‘/}n(tm mg) ~ = e — Qn, Diu%(tm-’ﬂi{))
2 —E = Yp
Let n — oo and use (47)—(51) to conclude that
(52) ﬁ(ta _SE)+a+as+5_l<A°£‘s:z’5 “*65)
+ Fe(te,ze,e 7 (@l — &) + a(@l =) + 0+ pe X +20QN) < ¢
and
(53)  B(f: —se) —b— b + e A%, m: — yl)
+ GE(SE’ySs 5_1(”13 - y;) + a(m;" - yé’) =g g, =Y ~— 204QN) 2 —E.
From (44) and ¥, s < ¥, we obtain
Ws(tsamase:y: £, 77) < Ws(ts;wagseayeags,"’]e) +63. for (m,y,&,n) e NxN'.

Putting z == ®¢, ¥ = ye in this inequality, using the fact that v is a subtest
function, and arguing as in [9] (Lemma A.8 in [9]) we get

(54) liml‘%up lle™ (2% ~ €e vt — 1) — @l — ¥} < L(w).
£

From (54) it follows that e~1(2] ~ &, 4. — 7;) remains bounded as ¢ | 0.
Using this, F2, and F3 in (52} yields
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(65) PB(t:—3:)+a+ae +e‘1(A°£5,m’E — &)
+F(t57$£:5&1(-’52~ - EE) + a(xg - y.’sl) +p, X) Le+or (5) + 0'2(59 N)%

where for any fixed ¢, o9(e, N} — 0 as N — oo and o1(e) = 0ase | 0 and
is independent of N. Similarly,

(56) ﬂ(ts"”ss) —b—b +Eh1(AO775’ns_y;>
+Gse,yer €7 (e —v2) + ozl — ) — 0, ~Y) 2 ~e — a1(€) — aafe, N).
Putting ¢ = 1, & = z,, § = s, and Y =Y. in (45) yields
w(&n) + gallé —nl® + de= (|lal - €I* + [lyL —n)?)
+6(e)(||A°E] + [ A°n)) + ed(€, &) + d(n, n.)
2 P(€eme) + peel€e ~mel® + e (llwh — &% + 1yl — mel|?)
+ 6N A% + 1| A%ne )

for (§,m) € N' x N'. Arguing as in Step 5 of the proof of Theorem 3.1 in [9]
this implies that

(57) Dywa¥€e,ne) < 5—1(<AD§E:*’E’E — &) + (A%, YL — ne)) + 2e.

Subtracting (56) from (57) and using (57) leads to

a-Aar+b+b + DEXA"/-')(EE: ns)

+ H(@)(te: Te, 8¢, Yo 87 (20~ ) +eu(wl — 4l )+p, 67 (e =yl )+ a(al —y ) - q)
< dg +209(e) + 209(g, N).

But combining this with (54) yields

(58)  a+ac+b+be + D7, 49(ée, )

+H(Q)L(¢)+US(E) (te, Te, 8e, e, a(Tz — ye) + p, (s — Ye) = q)

< de+ 201(e) + 203(e, N),

where limg | o3(e) = 0. Since D3, 4+ is lower semicontinuous, from (46) we
have

(59) D;wa(Ef1v) S li%%)nfDZxA¢(§E:n£)'

Now let N — oo in (58) and then ¢ | 0. (42) follows from (46) and (59). w
7. Proof of comparison. It will be convenient to state the following

simple lemma separately. '

LEMMA 9. Suppose that p € C*(H) is as in F'5 and 6 > 0. Suppose that
u and v are o subsolution and a supersolution of (E), respectively. Define

(60) Ult, o) = u(t,z) = bp(x), T, z) = v{t, ) + Sp(z).
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Then
e + (Az’, Dp@) + F(t, 2, D, D2y <0  for(ta) e (0,7T)x 02

and
g‘t + <A.T,,,D:c’g> +E(t1$,Dma, D,%r.r’lj) 2 0 fo'r (lf.,.L') S (O,T) X ..Q,

where for (t,z,p,X) € (0,T) x D x H x S(H),

(61) F(t,z,p, X) = F(t,2,p + 6Dppl), X 4 ED% o))
and
(62) E(t,z,p,X) i= F(t,2,p — §Dap(c), X ~ 6D% (),

Proof. The lemma follows immediately from the results of [9], where it
is shown that p is a subtest function and D 2> 0 etc. =

Proof of Theorem 4. Comparison. We argue hry contradiction, Sup-

pose that for some (7,2) € (0,T) x D,
(63) w(r,z) — (T, 7) = 2y > 0.
Choose cg > 0 such that
(64) 20T < .
Tor v > 0 put
(t,2) = u(t, 2) — — vty @) = u(t, 2) + =
ULy Z) = UL, & T""‘tv A Rl e by L :r“_[;

Notice that v, and v, are a sub- and a supersolution of (E), respectively.
For o, 3,6 > 0 define @ : [0, 7] x D x [0,T] x D — ]RU{-—oo} by

B(t,2,5,y) = us(t,2) = vu(s5,9) — galo ~y|* - §6(t - s)*
— bp() — Suly) — eyt -+ 9),
where p is provided by F5. In view of (63) and (65), for 6, » > 0 sufficiently
small
(65) supd > B(r, 5,7, %) > .

@ is bounded from above by assumption. Since p(r) ~ oo as x| — oo,
for every 6 > 0 there exists B = R(§) > 0 hu(h that &(f, 2, 8,y) £ =7
whenever ¢,s € [0,T] and 2,y € D satisfy || Pt B o [0 T] X
(Dn BH (0)) For every £ = 0, by perturbed optnmmtmn (Lemma 6), there
exist (Z, a:) (5,9) € B,p,q € H" and a,b € Rsatisfying |p||V|g||Via| V[l <&
such that

(66) @(t,ﬁ,?, g) 2 sup ¢ - "5
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and the map
(67) BxBa(tms,y)wsP(tmsy)
- (px (q,
has a strict maximum over B x B at (t FRCRTI
If ¢ < then from (65) and (66), $(1,7,5,5) > v - 4e >
380 —35)° +6p(@) + 6u(F) < u(,B)

where C = sup(g 1y p 4 —inflo 7yxp v < 0o, Obviously 0 < £,5< T. If g > 0
is small enough (depending on R — R(8)) then ||Z]| V[|7]| < R. We will show
that for any fixed &, if o and § are sufficiently large, then 1,5 > 0. Suppose
for instance that ¢ = 0. From the middle inequality in (68) and (5),

(69) 57 < (@) —v(5,5) < 0@) — 9@ + e, |13])
S wn(iZ - 7)) + wn (5, 7).

where wy, denotes the moduius of continuity of . From construction it follows
that for fixed 6 > 0, ¥ remains bounded, uniformly in , 8,¢, and from (68),

sed(z’, 7)) — Led(y', 7)
" —at —bs

>3 L. Therefore

(68) v+ 30l —F%+ —-v(5,9) < C,

1E—FL,F-38 —0 asa,f— .

Hence (69) leads to a contradiction for o, § large, whence we can assume
that t > 0. Similarly one shows that ¥ > 0. We have shown that for «, 3
sufficiently large and 6, v, £ sufficiently small, £,5€ (0,7) and therefore the
map (67) has a local interior maximum at (%, %, §,7), relative to B x B. From
Lemma 9, Doubling Lemma 8 (applied with « = 4,, v = 7,, F = F and
G=F deﬂned as in Lemma 9, etc.) and computations in Lemma 2.2 of [9]
it follows that S

a+b+20—c+ Hia), 7570 —7) +pa@—7)—q) <0,

where H({a) is given by (38) with F = F and G = F as in Lemma 9. Using
F2, F4 and F5 to estimate H (o). leads to

(70) a+b+2cq0—6
< 2000(6, of|T — | + 26 + bor) + O'F(Ilff»‘ gl + ez - ?/H )
+ 2wp (2e + [T 81, 2| &) + 201§ + 28 = §]| + 25 + 12 + 2T).
By a standard argument (see e.g. [13]) one shows that

lim lm sup lim sup hm sup{aHm -7 +pE-572}=0.

4o g0 A—o0

We reach a contradiction with ¢g > 0 by taking an iterated lim sup in (70)
ase| 0, 8 — 00, § | 0, v — 00, in this order.
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The proof of (6) is standard if one notices that we have actually shown
that if ¢g = 0 then

lim limsup limsup limsup &(%,%,3,7) <.
oa—=oc A0 A—oo el

We refer the reader to [12}, [13], [9] or [20]. =

8. Proof of existence

Proof of Theorem 4. Ewistence. We produce a solution of (CP)
by Perron’s method as it was presented in [9] and which certainly applies to
the current situation. We will therefore be using without proof (see [9] for
the proof which, when combined with the usual Perron process, adapts to
our setting in an obvious way) the fact that if {2 is a relatively open subset
of D then

(71) the upper {lower) semicontinuous envelope of the supremum {infimum)
of a locally bounded family of sub(super)solutions of (E) on (0,T) x 2
is a sub(super)solution of (E) on (0,7) x £2,

and that

(72) if u,—v € USC((0,T) x {2), u,v are bounded, u is & sub- and v is a
supersolution of (E} on (0, 7) x £2 then sup {w € USC((0,T)x 2) : wis
a subsolution of (E) and & < w < v} is a solution of (E) on (0,7) x £2.

In what follows we imitate techniques used in [12]. To begin with we
need two straightforward lemmas.

LEMMA 10. Let & = o+ ¢ € CY12((0,T) x D) + Lip(H') satisfy (2)
(respectively (1)) and

ot ) + DEB(E, ) + FL) (t, 2, Do(t, z), D2 p(t, 2)) <0,
respectively

we(t, @) -+ DEB(t, 2) + Frgy (b, 2, De(t, z), D2vg(t, 2)) 2 0,
for (t,z) € (0,T) x £2. Then & is a viscosity sub(super)solution of (E).

Proof. See the proof of Lemma 1.4 in [10] which adapts with minor
modifications to our case. m

LEMMA 11. Let 4 € UC(D). Then the following are equivalent:

(1) ¥(S(t)a',z") is uniformly continuous on bounded sets in t, uniformly
for bounded x € D.
(ii) There is a local modulus ¢ such that

(@) — ¢ @) < old(@', ) + ||2” —y"|,R) forz,y€ D, |yl < R
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Proof. (i)=>(ii). The assumptions imply that there exist a local modulus
o1 and a modulus o9 such that

(50 ") — W S o1t B),  [9(2) - $(y)| < o2(flz - yll)

for z,y € D, |ly|| < R. Given such «,y, choose t such that diz',y) =
t+ ||&' — S(¢)y'||. Then

Wo(z) = vl < bblz) — v, 4") + B, ") — $ (S, y")|
+ (S, y") — ()l
< oa(le” = y"ll) + o2 (ll(z’,4") = (S, y")) + 01(2, R)
< aa(|l2” = y"If) + o2(d(2’,4)) + o1 (d(=',3/), R).
(ii)=(i). For £ € D, ||z]| € R, we have
[p(S(t)a’,2") ~ (o', 2")| < o(d(S(t)z',2'), R) < o(t, R),
which completes the proof since S() is a semigroup of contractions. =

Having these preliminaries in hand we can now start to construct a
solution. Let [|¢/|oc = M and let K = max(M, Ky, 1). Define ug, vy : [0, 7] x
D =R by

uo(t, ) = —K(1+1), wolt,z)=K(1+1).

Then, by Lemma 10, ug, vy are respectively a sub- and a supersolution of
(E) on (0,T) x D and

(73) —K(1+T) < up(t,z) < 9(z) < wolt,z) <K(1+T).

Fix R > K(2+ T). Lemma 11 implies that for every 0 < £ < 1 there is
a = a(e, R) > 1 such that

(74) [%(z) — %) < & + ale, R)(d(',y') + || — "|1%)
ifz,y € D and |ly]| < R. Define

Bf,={zeD:d(,BY (0)nD@A) <r, |z < R+r}.
For0 <e< 1,8 >0and € BE(0)ND we define
a5y 505 = $(E) - ¢ - ale R, E) + o7 - 3P) - o,
vi(t, 256, 6,%) = ¥(&) + ¢ + afe, R)(d(=", Z) + ||2" — 2"|1°) + Bt

The functions uy, vy satisfy respectively (2) and (1). If (t,z) € (0, T)xB% 55,
then o

(76)  (w1)e + Dhuy + FER(t, 2, —20(e, R)(z" — 2"}, «2a(e, R:)jé-,,)
< =B+ ale, R)+ Kopage,my < 0

if § = B(e, R) is sufficiently large. We can obtain a similar estimate for v,
and hence, by Lemma 10, u, is a subsolution and v; is a supersolution of (E)
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on (O, T) % B??,,?R for some ﬁ = ﬂ(E,R) If (t,.’fb‘) [ [O, T] X (D \ Bf?‘ﬂ) then,
by (73),
ur(t, %€, B(s, R), ) < $(&) — & — ale, R){d(«", &) + || - 2"|*)
<K-R<-K(l+Ih < uu(t,m).

Similarly,
v(t,x) < vyt zse, B(e, R),8) for (t,z) € [0,7] x (D\ BE »).
Define
uplt,z) = ug{t, 2}V ( 021;12] uy (t, w52, (g, R), B))",
seBE (0D
vt z) = vo(t,z) A ( Gingf‘:(l w(tz e 80, R), %))W
#eBF(OND

for (£,z) € [0, T]x D, where the upper and lower asterisks denote respectively
the upper and lower semicontinuous envelopes on [0, T] x D. We have just
shown that, if (t,z) € (0,T) x (D \ B$ ), then ugp(t,z) = ug(t,z) and
vg(t, @) = wo(t,z). Since D\ BY p is a neighborhood (relative to D) of
D\ B% 5, using the above and (71), we see that up and vp are respectively
a subsolution and a supersolution of (E). Finally, we define

V(t,e) = ( inf wp(t,x))

R K (241"

u(t,z) =( sup wugp(t,z))*,

R>K(2+1)

for (t,z) € [0,T] x D. Because of (73), 74), and the way & and T have been
defined, it is clear that

(1) —K(1+T) < urltz) < i(t, z)
<y(e) €Ut z) Svgt ) € K(1--T).
Also, if (¢,3) € [0,T] x (BE(0) N D), we get

Tt ) 2 ualt, 255, (e, B), @) > ¢(2) - & — Ale, R,
U(tz) S it mie, Ble, R),2) € 9(x) + & -+ B(e, R)L.

Now, it follows from (77) and (72) that there exists a solution u of (E) on
(0,T) x D such that % < u <. Therefore, from (78),

lu(t,z) —w(z)| Se+Ble, R}t if{t,0) € [0,7] x (BH(0)N D),

which implies that the assumptions of comparison are satisfied. Thus, in
virtue of (5), u has the required properties.

—

(78)

Acknowledgments. The authors would like to thank Prof. P. L. Lions
for bringing the problem to their attention and Prof, M. G. Cmndall for his
helpful comments and suggestions,

(10]

[11)
[12]
[13)
[14)
[15)
[16)

(17}

Parabolic equations 309

References

V. Barbu, Noplinear Semigroups and Differential Eguations in Banach Spaces,
Noordhoff, Leyden, 1976.

-—, The dynamic programming equation for the time optimal control problem in
infinite dimensions, STAM J. Control Optim, 29 (1991}, 445--456.

H. Brézis, Opérateurs Mexzimauz Monotones et Semi-groupes de Contractions dans
les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

P. Cannarsa, F. Gozzi and H. M. Soner, A dynamic programming approach to
nonlinear boundary control problems of parabolic type, J. Funct. Anal. 117 (1993),
2581,

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of
second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
M. G. Crandall, M. Kocan and A. §wiech, On partial sup-cenvolutions, a lemma
of P. L. Lions and wiscosity solutions in Hilbert speces, Adv. Math. Sci. Appl. 3
(1993/4), 1-15.

M. G. Crandall and P. L. Lions, Hamilton—Jacobi equations in infinite dimen-
stons, Part I'V. Unbounded linear terms, J. Funct. Anal. 90 {1990), 237-283.

—, —, Hamilton-Jacobi eguations in infinite dimensions, Part V. B-continuous
solutions, ibid. 97 {1991), 417465,

-, —, Homilton—Jacobi equations in infinite dirnensions, Part VI. Nonlinear A and
Tataru’s method refined, in: Evolution Equations, Control Theory, and Biomath-
ematics, Proc. Third International Workshop-Conference on Evolution Equations,
Coptrol Theory, and Biomathematics, Han-sur-Lesse, P. Clément and G. Lumer
(eds.), Lecture Notes in Pure and Appl. Math. 155, Marcel Dekker, New York,
1994, 51-89,

M. G.Crandall and P. L. Lions, Viscosity solutions of Harnilton—Jacobi equations
in infinite dimensions, Part VII. The HJB eguation is not elwoys satisfied, J. Funct.
Anal. 125 (1994), 111-148,

I. Ekeland and G. Lebourg, Generic Fréchet differentiability and perturbed opii-
mization problems in Banach spaces, Trans. Amer. Math. Soc. 224 (1976), 193-216.
H. Ishii, Viscosity solutions for o cless of Hamilton-Jucobi equations in Hilbert
spaces, J. Funct. Anal. 105 (1992), 301-341.

—, Viseosity solutions of nonlinear second-order partial differential equations in
Hilbert spaces, Comm. Partial Differential Equations 18 (1993), 601-651.

M. Kocan, Some aspects of the theory of viscosity solutions of fully nonlinear partial
differential equations in infinite dimensions, Thesis, UCSB, 1994.

M. Kocan and A. §wiech, Perturbed optimization on produet spoces, Nonlinear
Anal., to appear.

P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and op-
tmal stochastic control in infinite dimensions. Part Il Unigueness of viscosily
solutions of general second order equations, J. Funct. Anal. 86 {1989), 1-18.

-, Viscosity solutions of fully nonlinear second-order equations and optimal stochas-
tic control in infinite dimensions. Part I1. Optimal control of Zakai’s equation, in:
Stochastic Partial Differential Equations and Applications IT, Proec. International
Conference on Infinite Dimensional Stochastic Differential Equations, Trento, G, Da
Prato and L. Tubaro (eds.), Lecture Notes in Math. 1390, Springer, Berlin, 1989,
147-170.

H. M, Soner, On the Homilton-Jacobi-Bellman equations in Banach spaces, J.
Optim. Theory Appl. 57 (1088), 429-437.



icm

310 M. Kocan and A. Swiech

[18] C. Stegall, Optimization of functions on certuin subsets of Banach spaces, Math,
Ann. 236 (1978), 171-176.

[20] A. 8wiech, Viscosity solutions of fully nonlinear particl differential equations with
“unbounded” terms in infinite dimensions, Thesis, UCSB, 1993,

[21] —~, Unbounded second order partial differential equations in infinite dimensional
Hilbert spaces, Comm. Partial Differential Equations 19 (1994}, 1999-20386.

[22] D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded non-
linear terms, J. Math. Anal, Appl. 163 (1992), 346392,

[28]  —, Viscosity solutions for the dynamic programming equations, Appl, Math, Optim.
25 (1092), 109-126.
[24] —, Convergence resuits for Hamilton~Jacobi equations with unbounded nonlinegr

terms, in: Differential Equations snd Control Theory, V. Barbu (ed.), Pitman Res.
Notes in Math. 260, Longman, New York, 1991, 324-334.

[25] —, Viscosity solutions for Humilton-Jacoli equations with unbounded nonlinear
term: o simplified approach, J. Differential Bquations 111 (1994), 123-146,

[26] —, On the equivalence befween the dynamic programming principle end the dy-
nemic programming equalion, in: Estimation and Control of Distributed Parameter
Systems, Proc. International Conference on Control and Estimation of Distributed
Parameter Systems, Vorau, 1990, W. Desch, F. Kappel and K. Kunisch (eds.), In-
ternat. Ser. Numer. Math. 100, Birkhiuser, Basel, 1991, 331340,

DEPARTMENT OF MATHEMATICS SCHOOL OF MATHEMATICS
UNIVERSITY OF CALIFORNIA + GEORGIA INSTITUTE OF TECHNOLOGY
SANTA BARBARA, CALIFORNIA 93106 ATLANTA, GEORGIA 30332
U.8.A. .8.A

Recetved Decemnber §, 1994 (3382)



