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On termine avec une remarque que, bien sfir, les poids puissances de
Verbitski w?, o € R, vérifient les hypotheses du Théoréme 5.11.3.
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Characterizing spectra of closed operators through existence of
slowly growing solutions of their Cauchy problems

by

SENZHONG HUANG (Tibingen)

Abstract. Let 4 be a closed linear operator in a Banach space E. In the gtudy of the
nth-order abstract Cauchy problem w™ (¢) = Au(t), t € R, one is led to considering the
linear Volterra equation,

1
(AVE) u(t) = p(t) -+ A f a{t - e)u(s)ds, teR,
4]

where a(*) € Li,.(R) and p(-) is a vector-valued polynomial of the form 2(8) = Yoheg dut?
for some clements @; € . We describe the spectral properties of the operator A tth:ough
the existence of slowly growing solutions of the (AVE). The main tool is the notion of
Carleman spectrum. of a vector-valued function. Moreover, an extension of a thecrem
of Pélya in complex analysis is obtained and applied to the individual “Az = 0" and
Tz = 2" problem.

1. Introduction. Let 4 be the generator of a bounded Cp-semigroup
(T(t))tz0 on a reflexive Banach space E. It is shown in [Vu, Cor. 2.6] that,
if (T*(t})iz0 is not asymptotically stable, ie, ||T*(t)foll 4 0 as t — oo
for some fy € E', and if o(A) 2 R, then the full time Cauchy problem
u'(t) = Au(t), t € R, u(0) = ug, has a mild, bounded solution for each
up € E. This vesult implies (roughly speaking) that the spectral structure
of the generator A can furnish a non-trivial, slowly growing (e.g., bounded)
solution for the Cauchy problem /(1) = Au(t), t € K.

In this paper we study the converse aspect, i.e., describing the spectral
properties of A through the existence of slowly growing solutions of the
corresponding Cauchy problems, Generally, we take A4 to be a closed linear
operator in a Banach space &. In the study of the nth-order abstract Cauchy
problem 1™ (2) = Au(t), t € R, one is led to considering the linear Volterra

1991 Mathematics Subject Classification: Primarjr 45N05, 47D03; Sec.ondary 44A10,
30D15.
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equation (see [Pr] for more information)

:
(AVE) ut) =p(t) + 4 [ a(t—sjuls)ds, teR,
0

where a(-} € LIDC(R) and p(-) is a vector-valued polynomial of the form
p(t) = Zj:@ X 0 for some elements w; € E. In Theorem 2.5 we show,
under certain bypotheses on a(-), that the approximate spectrum oo(4)
must intersect some curve described by a{-), whenever for some p(-) # 0 the
corresponding {AVE) has a solution u(-) satisfying certain growth conditions
(e.g., lu(t)]| = Q™) as t — co for some 0 < o < 1). In particular, we
show that if the nth-order abstract Cauchy problem u{™ (#) = Au(t), t € R,
has a non-trivial bounded solution, then o,(A) Ni"R # 0.

As consequences of these results we find that o, (A)NR = @ if A generates

a Co-group T = (T(t))ien satisfying either
T log(1+ | T (t)wo|)
, * 106 E
_f T+ dt < oo forsome 0 # g €
ar
o0 !
f log(1 ~|; E_Tg) tol) dt < oo for some 0 # ug € E.

In the third section we consider the individual “dxz = 0" problem, We
show, for instance, that A%zg = 0 if o(A) € {0} and (AVE) for a{t) = 1
and p(t) = zo has a solution u(-) satisfying ||u(t)|| = o{t") as t — oo
and log™ |[u(t)|| = o(|t|*/?) as t —+ —co. These results are based on a new
theorem {Theorem 3.1) in complex analysis which extends old theorems of
Pélya [H-P, Theorem 3.13.5 and 3.13.8] and Shah [Sh, Theorem 1], and is of
independent interest especially in the operator theory context (see Zemdanek
[Ze]).

2. Existence of spectrum. We recall briefly some basic facts from
complex analysis. As a basic tool we take the weighted Banach spaces L (R)
given by

21) Lo(R):= {f € MR : | f = T\f(t)\w(t) dt < oo}

for measurable, locally bounded functions w : R — R such that

(2.2) 1Lw(t) and sullro{w(s +t)/w(s) <oo forallte R
s€

For fixed w the space L, (R} is the L'-space L*(R,w(t)dt) and thus its dual,
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denoted by L., (R), is the set of all measurable functions g such that

(2.3) s 8up [9(£)] /w(t) < oo.
tER
The Fourier transform of f € L,(R) is now defined as (see [K, p. 120])

(24) Flo) = f fe7™dt  (seR),

and if F & L'(IR) we have the inverse formula (see [K, p. 125])

(2.5) (1) = == [f et ds

for almost every ¢t € R.

Later we will be 111terestec1 in the subspace
Ly(R)o = {f € L,(R) :  has compact support}.

Using (2.2) it is easily verified that L, (R)y is invariant under translations
and multiplication by functions e*** (A € R). So, if g € L, (R) annihilates
L, (), then

j? Fl5+tgt)et dt = 0

for all f € Ly,(R)o, 8 € R and A € R Fix f and s. By the uniqueness
theorem for the Fourier transform. we find
J{s+t)g(t) =0
Therefore the existence of 0 % fy € L, (R)p implies g = 0 and we have the
following lemmma.
LemMa 2.1, L, (R)g 45 dense in L, (R) if and only if L,(R)o # {0}

Conditions guaranteeing that the subspace L,(R)y is non-trivial have
been found by Beurling and Malliavin,

Lemma 2.2 ([B-M], Theorem 1). The space L., (R)o s dense in Lo (R) if
the weight funclion w satisfies condition (2.2) and

, log w(t
(2.6) f lg+ tz) dt < oo

for almost all t € R.

‘or the sake of convenience we shall call a weight w satmfymg conditions

(2. 2) and (2.6) a weight of Beurling-Molliavin type and write w € BM(R).
It should be pointed out that (2.6) combined with (2.2) implies

1

(2.7) Jim =

£ r 00

logw(t) = 0.
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To see this, let o(t) := logw(t), t € R. As shown in [B-M, p. 306] we can
assume that o(0) = 0 and

lo(t) — e(s)] < Mt —s|,  ts€R,

for some constant M > 0. Consider the function f(t) := o(t)/t, t > 1. Then

8

)~ (o)) < L=l :

1]

Thus f(£) is a feebly oscillating function as t — oo (cf. [A-P, Theorem 2.4]).
Moreover, for 1 < s < 1, we have

5.
i

“1'.?_(_‘3)_52114
8

&

t 4
ff(u)du+f %%Qdu.
1 k]

Fixing s and letting £ — oo, we find

o] =

%!ﬂwws

hmsup f flu)d Sjo%%bldu

t— o0

Letting s — oo and using (2.6) we find

tl_1+r£10 fluw)du=0.

-
e,

Therefore, by [A-P, Theorem 2.4] we have
ok _ o loguw(t)
0= :;l-l-»lglo 1) = tl—glo Ty

Analogously, lim;_, o, (logw(t))/t = 0. This gives (2.7).

We need some more notations. Let E be a Banach space and let x(-)
be a measurable E-valued function on R such that ||z(-)|| is dominated by
some w € BM(R). By (2.6) the Carleman transform of x is defined as

crn | o e Mat)dt,  ReX>0,
(28) X(A) - { f— ---)W t f, Re ) < 0’

and is holomorphic in €\ iR, A point Ag € iR is called a regular point of x
if X(A) has a holomorphic extension in a neighborhood of Ay. The Carleman
spectrum of x, denoted by Sp(x), is defined as the complement in iR of the
set of regular points (see [Vu], [Pr, Sect. 0.5 and 0.6] and compare [K, pp.

179-181]).

LemMMA 2.3. Under the above assumptions Sp(x) = 0 implies z(t) =0
almost everywhere.
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Proof Let f € Lu(R)y. For § > 0, we have by (2.7) and Parseval’s
formula (see [K, p. 132])

o0

) J st o [ o] fevtethag i a
= _L%; T F(=8)[R(6 +is) — X(—6+1is)]ds

Since fha,s compact support, the assumption Sp(x)
that

= { implies for § — 0+

(2.10) j?f(t)m(t) dt=0 forall f € L,(R)q.

Since the linear functional f — [ f(t)z(¢) dt is continuous in L, (R) and
the subspace L, (R)o is dense in L, (R) (see Lemma 2.2), from (2.10) we see
that 2(t) = O almost everywhere. m

Remark. The notion of Carleman spectrum has along history; see [A1],
[C], [D], [Pr, Section 0.5], [K] and [Vu]. In [Vu, Prop. 3.2] it is shown that the
Carleman spectrum for x € L®(R, E) coincides with the classical Beurling
spectrum (see [K, Chap. VI, Theorem 8.2] for the scalar case) and thus
the Carleman spectrum is not empty for such functions. In fact, according
to Atzmon [Al, Lemma 2.3] the equality of the Carleman spectrum and
the Beurling spectrum for x satisfying certain growth conditions can be
dated back to Carleman [C] for the scalar case and to Domar [D] for the
vector-valued case. The present Lemma 2.3 gives a new (and weaker) growth
condition guaranteeing the non-voidness of the Carleman spectrum. It might
be hoped that Lemma 2.3 remains true for weight functions w only satisfying
(2.2) and the weaker condition (2.7). But this is not true as the following
example shows,

ExaMPLE 2.4. As seen in the proof of (2.7) we only need to con51der w
for which the function ¢(t) 1= logw(t) (t € R) is positive,

fl+ﬁﬁ

and |g(t) ~ o(a)| < M|t — 8] for some M > 0, t, s € R. Moreover, we assume

that ¢ is an even function. The following eonstruction is.given in [V, Lemma
3.1] to which we refer for more details. For z := z + iy, y > 0, define

v T R T PN
ulz) = %_cfg ((t—- z) +yt 2 1)9@) at.
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Then u is harmonic in y > 0 and has boundary values equal to ¢ on R. For
y>0,h €R, we have

r 1
u(iy-%—h)-—u(iy):% f ((t—-h)12+y2'_t2+y2)g(t)dt

=Y j‘o 1 - L ,)Q(t—l-h)dt
mJ N+ (ErhP 4y

y T 1 1 )
- %_{o ((t+h)2 +y? +y2)9(t) @
We have used the fact that ¢ is even. Therefore,
|uliy + ) — u{iy)]

£ ) ete ) = o0

ijo 1 _ 1
ar Y \P+y? (AP +y
v 7 M y T Mlh _
Szw;!o 2y Bt o f(t+h)2+y2 dt = MR

So
lu(iy + h) ~u(iy)| < MR,  y>0, heR
Let v be the conjugate harmonic function of w satisfying v(i) = 0 and
define G(z) = exp(u(z) + iv(z)), ¥ > 0. As a consequence of Fatou’s

Theorem the boundary values G(z) := lim, o+ G(x -+ 4y) exist a.e. and
|G(z)| = e#®) = w(z). The condition [ %% dt = oo implies that G{iy}

{y > 0) decreases faster than exponentially and hence
100
e(N) = [ e0(2)dz
0

is an entire function. Through the contour integration used in [V], but using
the inequality for u established above instead of using Lemma 3.2 and (1.6)
of [V], we find that the Carleman transform G()) of the boundary function
G(z) (z € R) is equal to @(A} for A with large [ReA| and thus for all
possible A. This implies that G has an analytic extension to C. So Sp(G)
=0 u

Now we give some applications of Lemma 2.3. Consider the following
linear Volterra equation (see [A-P] and [Pr] for more information):
t
(AVE) u)=pt)+ A [ a(t-shu(s)ds, teR,
0
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where A Is a closed, not necessarily densely defined linear operator in a

Banach space £ with domain D(A), a(-) € Li,(R) and p() is an E-valued
polynomial of the form '

T

pt) = Z }Mmjtj

J=0 J‘!

for some @y € E. A function u € C(R, B) satisfying a*u € D(A) and (AVE)
is called a mild solution. We make the following assumptions on a(-):

(h1) a(:) is subexponential, i.e., sup,ep e~ la(t)] < oo for all 6 > 0.

(h2) Sp(a) consists only of poles of @(z) and @(z) # 0 for all z
iR\ Sp(a).

(h3) zp = 0 is a pole of order € n+ 1 of the function G(2).

Remark. Typical examples of a(-) are a,(t) == t"/n! for n = 0,1,...

THEOREM 2.5. Assume the hypotheses (h1)—(h3). If the equation (AVE)
for some p(t) # 0 has a mild solution u(") such that the norm function
[u()l| can be dominated by some w &€ BM(R), then

oa(A)N{d(z)~1 : z € iR\ Sp(a)} # 0.
Proof. Assume conversely that
(2.11) oa(A)N{a(z)~1 : 2 € iR\ Sp(a)} = 0.
Then by (h3) we find that
(2.12)
For the palynomial ¢(z) := Y

0 & aa(A).

023277 we have

[ ) &

f e” % u(g) dg = f g™ [p(s) + A f a(s — T)u(T) d'r} ds
0

t} 0

3 3
o z“""““”lq(z) + A f ds f e“”a(s "“'T)U(T) dr
0 0
o0
- f g‘””p(.ﬁ) da

:
| ¢ ¢

=2""" () + A f dr f e" (s ~ r)u(r) ds
1] T

- f e~ *p(s)ds

4
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Since ||u(-)|| is dominated by some w &€ BM(R}, by (2.7) we find that [[u(-)|| is
subexponential. In the above equality we let ¢ — oo for z € C with Rez > 0
and let £ — ~—o0 for z € C with Rez < 0. Then, by the closedness of A and
by (hl) (compare the proof of Theorem 1.3 of [Pr]) one has

i(z) = 27" () + B AT(2)
for all z € C with Rez # 0. Thus
(2.13) (I —a(x)A)t(z) = 27" *q(z) for Rez 0.
On the other hand, by (h2) and (h3) we find for zp € iR that

lim 3(z)"" =0 and lLm 27" G@(z)"" exists.
z2—zg z—+20

Moreover, by (2.13) we have
(@(2)"t - A)i(2) = 27" E(2) 2g(2)  for Rez # 0.

Hence by using (2.12) one can easily verify that %(z) is bounded in a neigh-
borhood of z. This implies that zp & Sp(u)} and thus Sp(u) = . But from
Lemma 2.3 we derive a contradiction that u(t) = 0 and hence p(¢) = 0. This
finishes the proof. m

This result will now be applied to {AVE).

ExampLE 2.6. We take for p(t) an F-valued polynomial of degree less
than or equal to » and a,(t} = ¢"/n! for some n = 0,1,2,... Then the
corresponding (AVE) is

1 P n
u(t) = p(t)+ A | (¢ f) u(s) ds,
J nl
We have G, (z) = 27" for all z # 0. Hence an(-) satisfies the hypotheses
(h1)~(h3). If go{A) Ni"T'R = @, then Theorem 2.5 implies that equation
(2.14) for p(t) # 0 has no mild solution u(-) such that ||u(t)]| (t € R) can
be dominated by some w € BM(R). In particular, (2.14) has no bounded
solution for p(t) # 0 if o,(A) NI"T 'R ={. w

Another application is obtained by taking 4 to be the generator of a
Co-group T = (T'(t))scr on a Banach space E. Denote by A’ the weak-star
generator of the weak-star continunous group 7/ = (T'(t)')ter on the dual
space E'. Then A’ is closed and o(A’) = o(A) (see [N, p. 16]). For z € E,

(2.14) teR.
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u(t) == T'(t)x (t € R) is the unique mild solution of the equation
u(t) =z + A f u(s)ds, tel,
0
and for p € E', v(t) 1= T(t)'s (¢ € R) is the unique mild solution of the

equation
¢

v(t) = y+ A’ f v(s)ds, telk
a
For z ¢ & and u € £, we consider the conditions
(2,4 .
log(1 + ||T(t)z|)
2.16 w2 B
(2.15) f e dt < co
-
and
o
Jog {1 4 || T'(t) ul|)
.16
(2.16) :!; o dt < oo.

It is easily verified that (2.15) and (2.16) imply w;,ws € BM(R) for
wi(t) =1+ |THz|, ¢teR, and
wa(t) s= 1+ |T(t) |, teR.

PropoSITION 2.7, Let A be the generator of o Co-group T = (T'(f))ter
on o Banach space E. Then the following assertions hold.

(1} ould) NIR # O if cither (2.15) or (2.16) holds for some non-zero
element. '

(ii) Assume that either (2.15) holds for oll T in o weakly total subset
Ey C E or that (2.16) holds for all u in o weak-star total subset F C E'.
Then A is bounded if and only if o(A) is bounded,

Proof. (i) follows immediately from Theorem 2.5.

To show (ii), assume that ¢(A) is bounded. We only consider the case
where (2.15) holds for all @ in a weakly total subset Fy. The proof for the
second case is similar. Since o(A) is bounded, by the spectral decomposition
theorem [N, Theorem 3.3] we obtain a projection P € £(E) commuting with
T such that AP € L(F) and o(41) = §, where Ay 1= Aj;;_p)p. For 2o € Hy,
let yo == (I — P)zg. Then wu(t) = T(t)yg is the unique mild solution of the
equation S

1
u(t) = yo -+ Ay f u(s) ds,
0

_tEE]R‘

We have
(@)l = |(I = PYT(®)zoll < NI = P+ 1T ()l
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for all t € R. This shows that ||u(-)]| is dominated by some weight of
Bewrling-Malliavin type. But o(4;) = @, hence by Theorem 2.5 (see also
Ex. 2.6) we find that yo = 0, i.e., (I — P)z = 0 for all z € Ep. Since Ey is
weakly total, this implies I — P = 0 and thus A is bounded. w

Remark. If the Ch-group T = (T'(t))sen satisfies the growth condition

f log(1 -+ | T(£)1))

o dt < o,

—Q0
then it is shown in [Ly, p. 201, Lemma 3] (see also [N-H, Cor. 3.3]) that
the generator A is bounded if and only if its spectrum is bounded. Our
Proposition 2.7(ii) improves this result.

As an interesting application we have the following.

ExaMPLE 2.8. We consider a Cop-group T = (T(¢))ier of disjointness-
preserving operators on Co(X} given by
T)f=hy-fody, [feCHX).
{For more details we refer to [N, pp. 148-160]). For the generator A of T it

is not known whether o(A) # (. For ¢ € X we consider the corresponding
Dirac measure 8, € Co(X)’. We have

1T(t) 6z || = sup{|he ()£ (e ()] : [ F]| < 1} = [he(z)].
By using Proposition 2.7 we find that

(i) oa(A) NiR # @ if for some zg € X the function |h(wo)| (¢t € R) is
dominated by some w € BM(R).

(ii) If o(A) is bounded and if for all  in a dense subset of X the function
\he(2)| (¢ € R) is dominated by some w, € BM(R), then A is bounded.
Thus the flow {¢;} is trivial and A is a bounded multiplication operator on
Ch(X). m

3. Existence of eigenvalues. We start with a new result on rational
functions with values in a Banach space which yields Pélya’s theorem [H-P,
Theorem 3.13.5] as a consequence (see Theorem 3.2); it also improves the
theorem of Shah [Sh, Theorem 1]. (I thank Prof. Zemének for drawing my
attention to the paper of Shah.)

THEOREM 3.1. Let E be u Banach space and g{z) an E-valued function
which s holomorphic in the entire plane including infinity except for a subset
5 in the unit circle. Assume that there exists k € N such that

() l9(2)]| = of(1 = J2)™*) as Jo] — 1~ and

(it) log™ llg(2)|| = (2] = 1)) as |2] — 1*.

We have the following assertions.
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(1)} Every isolated point in S is a pole of 9(2) of order not exceeding k.

(2) If the set 5 is finite, say § = {z1,..., 2z}, then g9(2) is a rational
Junciion. More precisely, let

g(z) 1= { Ei‘;o anz’: for small |z|,
| b0 = e oo GnZ™  for large |2|,

be the expansion of g(z) near the points z = 0 and 2 = o, respectively.
Then there exist polynomials p;(z) of degree smaller than k and elements
yi EE for j=1,...,1 such that

{
an =Y P77y forall || 2 1.
jam]

Proof First we prove (1). Let 2y be an isolated point in the subset S
of singnlarity. It is not hard to see that it suffices to show the result in the
case B = C and zp = 1. We obtain the proof by modifying the proof of a
theorem of Pélya given in (L, pp. 151-152],

Assume E = C and 1 is an isolated singularity of g(z). Let C be the
class of positively oriented Jordan curves around the point z = 1 but not
enclosing the points {0} U .S\ {1}. Using Cauchy’s theorem we see that the
integrals

1 z
-%—z,c %dz, CelC, weC,
do not depend on the choice of the paths ¢ € C. Let G{w) be this cormmon
value. Then G(w) is an entire function. We will show G{w) is a polynomial
of degree <k.

Let 6 > 0 be so small that the circle of radius § around the point z = 1

belongs to C. If we take C to be this path, then

Gl = | L [ 42 \ :

2mi o gkl T o
I

o f g(l42)(L+2) "% dz

2]t

S [l + 2|1+ g+ da| < [ g1+ 2)| [d2.
|| = |#|=6

This shows thai ((w) is an entire function of exponential type zero.
et 0 <o <1<b<3d Takefy > 0 to be so small that the path

C = -[a',tta"”'(17 D18 £ 6} U {bem 116 < 8}
U{te® o<t <bU{te™ 1a <t <b)
belongs to C. Then for w € R we have
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|G(w)| =

1 e g(2)

omi f zwtl dzl
c

D

<5 [ (0 lglac)i+ 5|06 ) a0
-8

__]"__ w1 —~8a B0
+ o aft (lg(te=%)| + [g(te™)]) dt

<bv sup lg(z}] +a™" Sup g{2)| + —(a™™ = b ) M,
2|=b zim=a

where M := supD<T<3(\g(re”°)| + |g(re=®)|) < oo. Consequently,
(3.1) |G(w)| €7 sup {g(2)| +a™ sup |g(2)|

= jel=a
+ a(a‘“”’ —b™YM  for all w € R,
Consider w > 2 and let a:= 1 — 1/w > 0 and b := 2. It follows that

(G(w)| <const- (14 sup |g(z)}]).
|z|=1-1/w
Assumption (i) yields that
(3.2 |G{w)| = o(w®)  asw — oo,

On the other hand, consider w < —1. Fix 1 < b < 2. By letting @ — 0" in
(3.1) we find

| Glw)] <b7*(M + [SI!l_pblg(Z)l)- |
Fix 0 < ¢ < 1, and consider b = by, 1= 1 + (g/|w[)*/2. Then we obtain
Clw)] < ™ (M + sup lg(2))).

z|=bw

But assumption (ii) implies

log™ §Up|4j=, [9(2)]

lirn su : = ().
. w—+-—c£ |'l.'i.’|'|'/:a 0
So we have
o
- limsup log™ |G(w)| < gl/?
W00 |'U)|1/2

for all 0 < e < 1. Thus
{3.3) logt1G(w)] = o(Jw[*?)  as w — —o0.

Estimates (3.2) and (3.3) make it possible to apply the result of Zarrabi [Z,
Cor. 2.2] to conclude that G(w) is a polynomial of degree < k.
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To finigh the proof of (1), let
ez ~1)7

be the Laurent series of g(z) in some neighborhood of the point z = 1. We
want to show that ¢, = 0 for all n < —k. To this end, we note for very small
& > [ that

L I (9(1+Z) d

; )
2m|zl:a 1+ z)w
o
1 2"
=3 g f(1_|_z)w+1d

=00 ‘ |

Since G(w) 18 a polynomial of degree < k, its kth derivative is zero. There-
fore,
= 1

> g

T == OO0 |2]=6

f z"[log(1 + z))* de=0

(T+ 2t

It follows that ¢, = 0 if n £ —k — 1. Furthermore, using assumption (i) one
has ¢..p = 0. This finigshes the proof of the assertion (1).
To prove (2}, we take & > 0 so small that the positively oriented circles

Ci={zeCilz—z|=6}, jF=1,...,1
are disjoint from each other and far from the origin. Let

1 g(z) dz )
(w T —_— T, i=1,...,L
271'@6{ (22; Mutl gz
Then from (1) we find that each p;(w) is-a polynomial of degree < k. Let
r > 1 and take the path

Cr 1= {Jd = r} U {2 =7},

Let n e Z. By C‘auchy’s 'l:hem‘em we have

: z
P G z” ' 1 271'?

ip

—_ — Z z‘"p,

'n-H
Z J=t

On the other hand, by using the oxpanaion of g{z) near z = 0 and z = 00
given in the theorem we have

On == Qm f zgrg-lzl Zzunpf

for all n € Z with |n| > 1. Usmg this relatton one sees that g{z) is a rational
function. m T
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Remark. The example go(z) := exp (£t) shows that (ii) of Theorem
3.1 cannot be weakened to an O-growth condition.

Theorem 3.1 has some important applications.

THEOREM 3.2. Let x = {x, : n € Z} be clements in o Banach space E
satisfying

(i) lznll = o(n*) as n — co for some k € N and

(it) log™ |lzal| = o(y/=7) as n ~» —o0.
If the Corleman transform

SE(Z) . Z;O:i m'"'zn’
= 0

- ):-n.m-—-oo .'JJT,,Z“,
has o holomorphic extension to the unit circle except for o finite subset

8§ =A{m,..., 21}, then there exist polynomials pj(2) of degree smaller than k
and elements y; € B for 5 =1,...,1 such that

2] < 1,
2] > 1,

i

in = Y _pi(n)e; "y

i=1

for allm € Z.

Proof. The result will be obtained if Theorem 3.1(2) can be applied to
the function X(z). It is not hard to verify that condition (i) above implies
condition (i) of Theorem 3.1 with & + 1 replacing k. Moreover, (ii) implies
condition (if) of Theorem 3.1, and ¥(z) is holomorphic at infinity (for a more
careful computation we refer to the proof of Theorem 3.4). m

Theorem 3.2 extends Theorem 3.13.5 of [H-P] due to Pélya and Hille.
More interesting, we have the following discrete version of Corcllary 2.2 of
[Z] and Theorem 3.13.8 of [H-P] due to Pélya.

COROLLARY 3.3. Let f be an E-valued entire function of exponential
type zero such that the sequence {f(n)}nez satisfies

(@) [1£()]} = o(nk) as n — 0o for some k € N and
(ii) log™* || f(n)]| = o(v/=7) as m — ~o0.
Then f is a polynomial of degree smaller than k.

Proof. Replacing f by the function

1 k-1 f(J)(O) ‘
P ;E(f(z) —jgoTza)

we reduce the problem to the case k
)

1. 8o we may assume k = 1 and
f(1) = 0 and want to show that fz
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To this end, consider

1 2f(2)
Flw) == wE
(w) 2’5_;{csin7rze dz

As shown in [L, p. 128], F(:) is holomorphic in the strip {w € C : [Im wf <7}
and

F(w) = - Z?;;:J (~L)"nf(~n)e~™Y, Rew > 0,
Cimen (1) Rf(~n)e™, Rew <0,

Let @, = (~1)"nf(-n), n € Z, and x ;= {zr, : n € Z}. Then for the
Carleman transform X(z) of x we have X(e*) = —F(w) for Rew # 0
and [Imaw| < 7. This shows that ¥(z) can be extended holomorphically to
C\ {~1} by defining ¥(e*) := —F(it) for ¢t & (—m, 7). Therefore, Theorem
3.2 yields that z,, == (—1)"ny, (n € Z) for some yp € E. But w_y = flLy=0
implies yo = 0, and hence 0 = z, = (—1)"nf (=n) for all n € Z. Turning
to I'(-) this implies F(:) = 0. By the uniqueness of Laplace transforms
[H-P, p. 126] we find that f(z) = 0 for all z € {R. As a consequence of the
Phragmén -Lindeldf principle we conclude that f(z) = 0 as desired. m

Remark. The reader ghould be aware that an essential ingredient of
the proof of Theorem 8.1 is [Z, Corollary 2.2] which has been extended
to our Corollary 3.8. So all of the results (Theorems 3.1-3.2, Cor. 3.3 and
[Z, Cor. 2.2]) are equivalent. The following is another equivalent form for
vector-valued functions on the real axis.

THEOREM 3.4. Let f(t) (t € R) be o continuous E-valued function sat-
isfying
() (| F(EH = o(t*) as t — co for some k € N and
() log™ || f(1))] = o(\/A) as t — —o0.

If the Carleman transform

{ Jol e fydt  for Red >0,

f) = __ffm e M) dt  for Re X <0,

has @ holomorphic extension to the imaginary axis escept for a finite subset
8= {A1, ..., A1} CIR, then there exist polynomials p;(z) of degree smaller
than k and elements y; € E for j=1,...,1 such that

!
f(t) = ij(t)e)‘”yj forallteR.
= _ g
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Proof. Let ReA > 0. By (i) we have

o0
IFN)]| € const - f £¥e™ 22 df = const - (Re A) ™!
0
Fix ¢ > 0. Then (ii) implies for Re A < 0 that
[+ o]
IFOI| < comst - [ exp(Re At -+ et'/%) dt
0

_ T L i a1/2Y e { E
= const - bfexp(wz—Re)\t-{»at )cxp(zﬁc)\t dt

< const - exp(e®(~Re A)™) f exp (—;— Re At) dt
0
= const - (—Re A) " exp(e?(—~Re \)™1),

where we use the inequality —at + et1/2 < £2/(4a) for a,t > 0.
To finish the proof we consider the function

o) = F(122).

Then g(z) is holomorphic in the entire plane excluding infinity except for
finitely many points in the circle. Moreover, the above estimates imply that
9(z) satisfies conditions (i) and (i) of Theorem 3.1 with k + 1 replacing %.
Theorem 3.1(2) can be applied. =

In conclusion we give two applications of the above results to operator
theory. The following results refine previous theorems by Atzmon [A, Cor. 1],
Esterle [E, Theorem 9.12], (Z, Theorem 4.3] and [Ze, Theorem 9].

COROLLARY 3.5. Let T € L(E) have spectrum in the unit circle. Let

zg € E. Assume that there exists some k € N satisfying
|Zwoll |, log™ [T o]l _

nk vn '
Then (T'— I)*zo = 0 if and only if the local resolvent R(z, T)xzo (2| # 1)
has o holomorphic extension to C\ {1}.

Proof. Let z, = Ty and consider x = {z,, : n € Z}. Assume that
the local resolvent R(z, T)zo has a holomorphic extension to C\ {1}. Since

o(T) is contained in the unit circle, it follows that the Carleman transform
X(z) satisfies

lim
P O

X(z) = —zR(z, Txy for |z} # 1.
So X(z) can be holomorphically extended to C\ {1} and Theorem 3.2 is
applied to obtain a polynomial p(z) of degree smaller than k and an element
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Yo € E such that
T =ty =p(n)yy foralln e
To show that ('~ I)*zo = 0, one uses the equalities

> ()i =0,

J=0

I=0,1,... k-1

They can be established by differentiating the equality
b= (K
(1-t)*= () (=1)749,
2\

Since the degree of p(2) is smaller than k, from the above equalities we have

(T—-r)*=mo-z()(1:'fo0-2()— pl=)0 =0,

The converse implication is clear. m

CoRrOLLARY 3.6. Let A be a closed linear operator in a Banach space F
with spectrum contained in the imaginary azis. Let u(-) be a mild solution
of the equalion

w(t) =30 + A f s)ds, tel,

satisfying
Ju(t)]| = o(t*)  as t — co for some k € N and
log™ lu(e)ll = o[¢*'*)

If the local resolvent Rz, A)zg (Rez # 0) can be extended holomorphically
to C\ {0}, then 2g & Deo(A) 1=, en D(A™) and AFzg = 0.

Proof. Asseen in the proof of Theorem 2.5 (see also Ex. 2.6) we have
{(z— A)u(z) =2y for Rez#0

a5t — —o00.

and thus
U(z) = R(z,A)zp for Rez 0. _
Since the local resotvent R(z, A)zo has a holomorphic extension to C\ {0},

the above shows Sp(u) C {0}. By Theorem 3.4 we can find a polynomlal
p(t) of degree smaller than k such that

u(t) = p(H)zg forallt € R. .
From this one easily derives that 29 € Dyo(A) and A*zg = 0. w
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Tt is shown in [A-P, Theorem 3.11] that if A generates a Cp-group 7 =
(T())ser such that sup,eg [|T(#)z| < oo for all # € Doo(A), then o(A) =
{0} implies A = 0. Using Corollary 3.6 we refine this result as follows.

COROLLARY 3.7. Let A be a closed linear operator in a Banach space B
such that o(A) C {0}. If for each z¢ in a dense subset By the equalion

[
w(t) =2+ A [ u(s)ds, teR,
Q

has o bounded mild solution u(t), then A= 0.
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