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The functor o2 X
by

STEVO TODOROEVIC (Toronto, Ont., and Beograd)

Abstract. We disprove the existance of a universal object, in several classes of spaces
including the clags of weakly Lindeldf Banach spaces.

It is well known that the Tikhonov cube is an injectively universal com-
pact space in a given weight. Surjectively universal compact spaces can also
be constructed for certain weights (see [5]) but frequently one would like to
know whether there can be universal objects in some more restrictive classes
of compacta such as, for example, the ¢lass of first countable compacta or
one of the classes of compacta which naturally oceur in functional analysis
(see [14; p. 620]). The purpose of this note is to answer a number of ques-
tions of this sert by introducing a new topological functor which might be
of independent interest. The following is an example of a result which can
be obtained by the new method.

THEOREM. For every compact countably tight space X of weight contin-
uum there is @ first countable retractive (*) Corson compact space Y which
i8 not o continuous tmage of any closed subspace of X.

It follows that a number of natural classes of compact spaces mentioned
in Question 10.6 of [14] have neither injectively nor surjectively universal ob-
Jects. Similarly, this shows that there are neither injectively nor surjectively
universal objects in the class of Corson compacta of weight continuum. In
particular, the class of first countable compacta does not have such universal
objects. The fact that there is no injectively universal fixst countable space
follows from an earlier result of Filippov [6] (see also [20]) who showed that
there exist more separable perfectly normal compacta than closed separable
subsets of a given first countable space.

To state the dual form of our result let us recall that a Banach space 2
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(l) A space X is retractive if every closed subset of X is a retract of X.
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is said to have the property (C) of Corson if every family of convex subsets
of F with empty intersection contains a countable subfamily with empty
intersection ([4], [13]). So, the property (C) can be thought of as a convex
analogue of the Lindeldf property since clearly every weakly Lindelsf Banach
space has the property (C).

THEOREM*. For every Banach space E of size continuum and with prop-
erty (C) there is a weakly Lindeldf Banach space F of size continuwm which
8 not isomorphic to o subspace of any quotient of E,

In fact, the space F is a member of the smaller class of so-called weakly
Lindelsf determined spaces ([18], [1]) for which a substantial theory has
been developed similar to that of the better known class of weakly countably
determined spaces ([9], [19]). Thus we are going to show that none of the
three well-known classes of Banach spaces contain universal objects.

1. Free sequences of regular pairs. In this section we describe a
functor which associates a tree o X with every space X, while in the next
section we describe a version of its converse. If X is a topological space, let
1p(X) be the set of all regular pasrs in X, ie., the pairs (F,G), where F
is closed, G is open and F' C G C X. If B is a given bagis of X, which we
always assume to be closed under finite unions and intersections, let rp(B)
denote the set of all regular pairs of the form (U, V), where U and V" are
elements of B. We shall always assume that X is at least a regular space so
there will be many regular pairs in rp(B). A sequence (Fy,Ge) (€ < «) of
regular pairs is free if for any two finite sets I" and A of indices from o such
that £ < for every £ € I' and n € A (written as I < A), the intersection

(N (N6
gerl nea
is not empty. Let 0 X denote the set of all free sequences of regular pairs of
X. If B is a given basis of X closed under finite unions and intersections let
opX denote the set of all free sequences of regular pairs from rp(B) rather
than rp(X).

LEMMA 1. If X 45 a compact countably tight space and if B is its basis
of size continuum then opX is a tree of size ¢ without uncountable chams.

Proof. By using the compactness of X, an uncountable free sequence
{Fe,Ge) (§ < @) of regular pairs would give us a sequence zq (o < wr)
of points of X by simply choosing z, to be an arbitrary element of the

intersection _
(N 7)n (N X\ Gy).
(<a :

n2e B
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This sequence has the property that
{wg:é<al CX\Gy and {z¢ 1 € > a} CF,

for every o < wy. Thus if » is a complete accumulation point of z¢ (£ < wy)
then no countable subset of {x; : € < w} would accumulate to z, and this
would contradict the countable tightness of X .

2. The space of paths. In this section we shall describe a version of
the functor sigma which for every tree T' gives us a compact space ol with
very strong topological properties. At first sight, order-theoretically o7 does
not look as it should if we are to follow the idea of §1. In §4, however, we
shall show that the difference is unessential (from the order-theoretic point
of view).

If T is a tree, let o1 denote the set of all paths of T, i.e., downward
closed chains of T, We shall consider ¢7' as a topological space with the
natural Tikhonov topology induced by the sets of the form

[t(]={peol:tep} (e

as clopen subbasis. Since o7 can naturally be identified with a closed subset
of {0,1}7 the topology of o7 is always compact.

LemMA 2. Every closed subset F' of T is its retract.

Proof. We may assume that § € F. Then the retraction r : o7 — F
is defined by simply letting r(z) be equal to the maximal path p € F such
that p C .

From this one can easily deduce that o7 is a hereditarily normal and in
fact monotonically normal compact space. It car also be shown that oT is a
continuous image of a compact ordered space, giving us further explanations
for the strong topological properties of ¢T. On several previous occasions
we have shown that spaces of the form ¢ can be relevant to some problems
from function space theory. For example, note the following straightforward
fact.

LEMMA 3. The space oT' 48 o Corson compactum iff T has no uncount-
able chaing,

Another interesting property of compact spaces of the form oT is given
in the following proposition which essentially appears in 8, §3].

LeMMA 4. If T' has no uncountable chains then every positive Radon
megsure on ol has separable support.

Proof. Given a positive Radon measure ponel, let S ={seT:
#([s]) > 0} and prove that § must be countable. From this the conclusion
follows eagily. - P o
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This shows that if T has no uncountable chains then the Banach gpace
C(aT) of all continuous real-valued functions on ¢T is weakly Lindeldf-—a
property of considerable interest (see [1]}. To describe some stronger proper-
ties of C{o'T) in terms of properties of T, for £ in T let x; be the characteristic
function of the subbasic clopen set [t]. Then

T* = {x, : t € T} U{0)

is a closed subset of C; (¢T") with the single ncnisolated point 0 which gener-
ates the subspace of all continuous {0, 1}-valued functions on T, [The index
p here stands to indicate that we are looking at C(eT') with the topology of
pointwise convergence.] Standard restrictions on a compact space X in that
subject start with the strongest one stating that X is a uniform EBberlein
compactum, i.e., a weakly compact subset of a Hilbert space ([3]); then there
is the restriction that C(X) is K-analytic in the weak topology (see [16]), and
then the restriction of being countably determined, i.e., a continuous image
of a closed subset of some product of a separable metric space and a compact
space (see [9] and [19]). Since this last property is preserved by closed sub-
spaces, countable preducts and continuous images it follows that C(¢T) is
countably determined iff T* is countably determined, which in turn is easily
seen to be equivalent to its o-compactness. But clearly T* is g-compact iff
T is the union of countably many antichains (see [12]}. On the other hand,
if {A,} is an antichain decomposition of T, then [t] (£t € Ap, n € N) isa
a-digjoint Ty-separating family of clopen subsets of o', which means that
oT' is a uniform Eberlein compactum (see [3]). This shows that all these
restrictions are equivalent in the class of path spaces o7

LEMMA 5. A tree T is the union of countably many antichains iff o1 is
homeomorphic to a weakly compact subset of a Hilbert space iff the Banach
space C(oT) is countably determined.

3. The functor o2 X. Recall that if X is a topological space, ¢ X is the
tree of all free sequences of regular pairs of X. So we can consider its path
space ¢(oX) which we shall denote simply by 0?X. The following is a basic
property of the functor ¢2X, making it very relevant to many guestions
about the existence of universal objects.

LEMMA 6. 02X is not a continuous image of any closed subspace of X.
Proof Suppose Y is a closed subspace of X, that f : ¥V — 02X isa

continuous surjection, and let us look for a contradiction. For every ¢ in X,

let

F=f] and Gy=X\(Y\F)
{Recall that [t] = {p € o(0X): t € p} is the subbasic clopen subset of
o?X.) Then F} is closed, G, is open in X, and F, C Gy, ie., (Fy, Gy) s &
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regular pair in X. Define
8 0rd — rp(X)

by the recursive formula

s(€) = (Fy1e, Gype).

It is easily checked that s is well defined, i.e., that s]¢ € X for all £. The
existence of such an ¢ is the desired contradiction.

A gimilar fact can be proved for the relativized functor 03X = o(opX),
where B ig a fixed basis of X To make the proof of Lemma 6 go through we
need to agsume that X Is a compact space in order to find for every ¢ in opX
a regular pair (U, V;) from rp{B) such that U;NY = V,nY = f~1[t]. Then
the recursive formula 8(§) = (Us¢, Viig) works as in the proof of Lemma 6.
So we have the following relativization of Lemma 6.

Levma 7. Let X be o compact space and let B be a basis of X closed
under finite unions. Then o} X is not a continuous image of any closed
subspace of X.

To prove the Theoremn, let X be a given compact countably tight space
of weight ¢ and let B be a fixed bagls of X of size ¢ which is closed un-
der finite unions. Then opX is a tree of size ¢ without uncountable chains
(Lemma 1), so 0 X is a Corson compact space (Lemma 3). By Lemmas 2
and 7, Y = cr'fiX satisfles all the conclusions of the Theorem except of be-
ing first countable. To get the first countability we modify the tree opX by
ingerting a binary tree of height w between every node of ¢ X and its im-
mediate successors, i.e., we find a binary tree 53X such that ogX is equal
to the set at limit nodes of 7gX. It should be clear that for the tree so
modified the path space o(GpX) satisfies the conclusion of Lemma 7. But
now the space ¥ = o(FxX) is first countable and we are done.

Question 10.8 of [14] also asks about the existence of universal objects
in some subclasses of the class of Corson compacta; for example, the class of
Eberlein compacta, or the class of compacta X for which €(X) is K-analytic
in the weak topology, or even the wider class of compacta X for which C(X)
is countably determined. So it is natural to ask whether the functor 2 X can
be pushed down to work also for some of these smaller classes. It turns out
that the answer to this question is negative. To see this recall the result of
(2] which says that every uniform Eberlein compactum X of a given weight
§ is & continuous image of & closed subset of A(8)N, where A(#) is the one-
point compactification of the discrete space of size 8. So, for X = A()N
the space 0% X (or one of its relativizations) cannot be'a uniform Eberlein
compactum since by Lemrma 6 {(or 7} it is not a continuous image of any
closed subset of X, In fact, by Lemma 5, not only is ¢?X not a uniform
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Eberlein compactum but even its function space C(c?X) is not countably
determined. This does not mean, however, that the universality questions for
these classes of spaces cannot be answered by some other methods leading
perhaps to some weaker disproofs of the existence of universal objects. In
fact, this has already been done for the class of Eberlein compacta in [0]
using a very interesting argument which involves a variation on the Szlenk
index of Banach spaces ([15]).

4. Sigma of a Banach space. A sequence z¢ (£ < &) of elements of a
Banach space F is free if for any two finite sets I' and A of indices from o
such that ' < A there is an z* in E* such that ||z*|| < 1 and

(1) (@, e) 21 foralll el
(2) (z*,m¢) <0 forall (€ A,

Let oFE be the set of all free sequences of elements of F considered as a
tree ordered by inclusion.

LemmaA 8. If E has the property (C), then there are no uncountable free
sequences of elements of E.

Proof Otherwise, fix an uncountable free sequence z¢ (£ < wy) of
elements of E. For o < wy, set

Ko =tomv{z: : { <a} and L, =tonv{z: &> a}.

Cramm: Ky N Ly =0 for all a.

Proof It suffices to show that for every £1,...,6m < o and 0 <
Ay Am <1 with 3570 Ay = 1 and for every my,...,7, > @ and 0 <
Voo M S 1with 300 1y = 1, 3f

m ) n
r = Z )\,,;.%'gi and Y= Z Vil s
=l t=

then [z —yll > 1. Let I' = {£,...,&x)} and A= {5,...,7,} and choose an
z* in B* with [|z*|| < 1 such that (1) and (2) above are satisfied. It follows
that («*,2) > 1 and (z*,y) < 0, so that

1< @z —y) < la*] - fiz =y < llz—~yil,
and so we are done.

Note that |J, K. = Lg so by the Claim we have Mo Lo = @ and this
clearly contradicts the property (C) since the sequence {L,} is decreasing.
This finishes the proof of Lemma 8.

It follows that the tree ¢F has no uncountable branches so its path
space o(0F) = ¢’F is a Corson compactum whose Wweight is equal to the
size of ¢ F, which in turn is equal to the size of E. Moreover, o2 E has all
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the pleasant prope:rties of §2 shared by all path spaces. In particular, its
function space C(a*E) is weakly Lindelsf. So Theorem* will follow from the
following analogue of Lemma. 6.

LEMMA 9. The Banach space F' = C(a?E) is not isomorphic to a subspace
of any quotient of E.

Proof. Otherwise, we can find a Banach space M and a surjective linear
operator T': F — M of norm 1 such that F is a subspace of M. For £ € o E
let 2y € F' C M be the characteristic function of the clopen subset

Cr={pec*E:tep)

of 0?E. Let vy € E be an arbitrary element such that ; = T(y;). Define
s : Ord — E recursively by the formula

s{a) = Ysta-
Clearly, this will be the desired contradiction once we show that this is
indeed well defined. In other words, we have to show by induction on « that

Yste (§ < ) is a free sequence of elements of E. Note that since ||T]| =1 it
would be sufficient to show that

waje = T{ysre) (E< )

is a free sequence in the range space M, or equivalently in its subspace F'.
Let I' and A he two given finite subsets of o such that I' < A. Let p be
the minimal path of o /' containing s1¢ (¢ € I'). Note that, by our inductive
assumption, sf¢ (§ < ) is a chain of oF enumerated increasingly so it
follows that p € Csp¢ for all § € I and p & Cypyy for all n € A, Hence if
6y € F* is the point mass measure at p, then :

bprzspe) =1 and  {fp,Lepy) =0

forall ¢ € I" and n € A. So a* = §, satisfies the conditions (1) and (2)
from the definition of a free sequence. This shows that ¢ (£ < o) is a free
sequence in F' and finishes the proof.

5. Concluding remarks. The fanctors sigma of this paper are members
of a rather long list of similar functors in various other categories. For exam~
ple, in the category of sets they correspond to the Hartogs number ({10]),
which in turn is very closely tied to Zermelo’s proof of the well-ordering
theorem ([21}). In the category of posets they correspond to the functor
wP considered by Kurepa [11] or some of the weaker forms considered by
Gleason and Dilworth [7]. Note that if we take the category of posets where
the embeddings are the strictly increasing functions, then o P should be the
set of all strictly increasing maps from the ordinals into .P. (Indeed, this is
exactly the functor wP of Kurepa [11].) If one applies this definition to a
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tree T' then one obtains T which looks differently than the set of paths of T
considered in §2. However, these two objects are only unessentially different
(from the point of view of this particular category) since they are easily seen
to be embeddable in each other. This explains the reason why we have kept
the notation ¢T" also for the path space of T A fuller explanation of the
operator sigma in the categories of sets and posets is given in [17]. Find-
ing analogues of this functor in other categories may be a rewarding task.
For example, what should the functor sigma be in the category of adequate
families of sets (see [16])? A right answer to this question might give us
another (perhaps stronger?) proof of the result of [0] as well as answers to
the remaining questions about the existence of universal objects in classes
of compacta occurring in functional analysis ([14;Q.10.6]).
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