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On the maximal Fejér operator for double Fourier series
of functions in Hardy spaces

by

FERENC MORICZ (Szeged)

Abstract. We consider the Fejér (or first arithmetic) means of double Fourier series
of functions belonging to one of the Hardy spaces B0y, Hfo'l)(’ll‘z), or H(l’l)(TZ).
We prove that the maximal Fejér operator is bounded from H{1:0) (T?) or H(O’l)('ﬂ‘z) into
weak-L'(T?), and also bounded from H (1'1)(’11‘2) into L1(T%). These results extend those
by Jessen, Marcinliewicz, and Zygmund, which involve the function spaces Lt log* L(’H’a),
LHlog™ L)2(T?), and LHTY with 0 < p < 1, respectively. We establish analogous results
for the maximal conjugate Fejér operators. On closing, we formulate two conjectures.

1. Introduction. Let f{z,y) be a function, periodic in each variable and
integrable in Lebesgue’s sense on the two-dimensional torus T2 := [—m, 7)) x
[—,7); in symbols: f & L* (T%). The double Fourier series of such a function
f is defined by

(L1) SO F ket

(:k)e?
where

J?(j: k) == .4-:-;[]'_2- ff Flu, v)e w5 gy gy,
Tl

We shall consider the Fejér (or first arithmetic) means pm(f) of the
rectangular partial sums s;;(f) of the Fourier series (1.1) defined by

(L2)  omn(fiz,y) = mz > si(fioy)
F=0 k=0
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90 F. Mbéricz

We shall be interested in the behavior of the maximal Fejér operator o..(f)
defined by
(1.3) o {fizy) = sup  oma(fiz,y)l-
{m,n)EN?
Jessen, Marcinkiewicz, and Zygmund {5] (see also [9, Vol. 2, p. 308])
proved that for all 0 < g < 1 we have the following estimates:

04) oDz ={ [ [ lonlfimp)doay}
TZ
< Cu+Cu [ [ 1£(2,0)(l0g™ |f(=,y)]) dz dy,
T2

(1L8)  fou(Pllzs < CL+Cr [ [ 1F(21)|(log™ |£(z,y)))* da dy,
Tﬂ

where by logt |f| we mean log|f| whenever |f| > e, and 1 otherwise; and
the constants C), depend only on p. :

For the sake of brevity, denote by L*(log* L)?(T?) the class of measur-
able functions f such that

[ [ 1#(z p)l0og™ | £(z,y)))? de dy < 0.
T?
Actually, we shall use these classes only in the cases 8 =1 or 2.
Marcinkiewicz and Zygmund [6] (see also [9, Vol. 2, p. 309]) later deduced
that if f € L'log™ L{T?), then the Fejér means Tmn(f; 2, y) converge in
Pringsheim’s sense {that is, as m — oo and n — oo independently of each
other) at almost all points (z,y) € T? (cf. Corollary 2 below).

2. Main results. We recall that the conjugate function f(10) of a func-
tion f € L} (T?) with respect to the first variable is defined by

FLO (g, y) = (P.v.)2—17; [ #(z - u,y)cot(u/2) du
T

= - —1—111'11 f flx+uy) ~ flz —u,y)]cot(w/2) du.

2 zlo
I

It is known that f(19)(z,1) exists for almost all (z, y) € T2, but F1.O ¢
LY(T?) in general.

This gives rise to the definition of the two-dimensional hybrid Hardy
space

g 0)(T2) {f € Ll(TQ) }-"(1,0) € LI(TZ)}

icm

Mazimal Fejér operator 91

endowed with the norm

[l ey == (1 Fl]ze + 1 FD 2.
We note that the dyadic counterpart of this space H1% has been introduced
in [8].
It is also well known that if f € H(9(T?), then the double Fourier

series of (") coincides with the conjugate series to {1.1) with respect to
the first variable, i.e. with the series

2.1 ZZ(*&: mgng
(4.k) €22

Our first main result states that the maximal Fejér operator o.{f) is
bounded from A0 (T?) into weak- Ll('li’z) or briefly, o.(f) is of type
(H0) | weak-L1).

TuEOREM 1. If f & HOO(T?), then
(2'2) ilip() )\I{(may) € T2 : 0'*(f; T, y) > )‘}I < OHfHH(l-O)v

ke i(dotky)

where | - | means the Lebesgue measure on the plane, and the constant C
does not depend on f.

We point out that inequality (2.2) is more general than (1.4), because
(2.3) L' log™ L(T?) ¢ HOO(T?)
and this inclusion is strict. However, if f € LY(T?) and f > 0, then f €
L'og™ L(T?) also follows from f € HLO(T?). (See, e.g., [3, pp. 84-85].)

The symmetric counterpart of 1) (T2) is the other hybrid Hardy space
HOL(T?) defined by

HON(T? = {f € LNT?) : fOV e LY(T?)}

endowed with the norm

£ 1|0y = 1 Fllze + 1FOD| 20,
where

FOD(,y) f F(eyy = v)cot(v/2dv
is the conjugate function of f € Ll(']I'z) with respect to the second variable.
In case f € H(O1(T?), the double Fourier series of f(%) coincides with the
conjugate series to (1.1) with respect to the second variable, i.e. with the

series
(2.4) Z Z (—isignk)F{j, k)etiake)

(4, k) €2
The symmetric counterpart of Theorem 1 reads as follaws
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CorOLLARY 1. If f € HOL(T?), then
sup Al{(z,y) € T? : 0. (f; 2,5) > A} < C|lf | reems,
A>0

with the same constant C as in (2.2).
The pointwise convergence follows from Theorem 1 and Corollary 1.
COROLLARY 2. If f € HMO(T2) U HOA(T?), then

(2.5) Iimw omn(fi 2, y) = f(2,y)

L,n—
at almost all points {z,y) € T2.

Finally, we introduce the two-dimensional Hardy space H (1:1)(T?). To
this end, we start with a function f € HOUO(T?) n HOD(T?). Then it
makes sense to define the conjugate function f(1) of f with respect to both
variables as follows:

FED (@, y) = (FN) O (g, ),
which turns out to be equal to the following:
(FON) O a,y)
= (P.V.)L—lﬁ f f fl@—u,y — v)cot(u/2)cot(v/2) du dv
TZ

l i nom
= E%ﬁl f f [f(a:+u,y+?)) —f(:n-u,y+’u)
glo 6 &
— e+ uy —v) + flz— u,y — v)]cot(u/2)cot(v/2) dudo
for almost all (z,y) € T2 Again, it is known that f1.1)(z, y) exists for
almost all (z,y) € T%, but f4Y & L1(T?) in general. Thus, we define the
Hardy space H(:1)(T?) as follows:
H(l,l)(TZ) - {f e LI(TZ) . f(l,O)’ f'((),lj,f(l,l) € Ll(T2>}
endowed with the norm
1A ey o= Nl zx A+ (TS0 g A 1FOD] g 4 | F0 o

It is also known that if f € H™D(T?), then the double Fourier series of F-1)
coincides with the conjugate series to (1.1) with respect to both variables,
i.e. with the series
(2.6) >N (—isign j)(~isign k) F(j, k)eilmhn),
(§,k)cn?
We encountered the notion of the multi-parameter Hardy space
H®D(T?) the first time in [4], where we denoted it by HYT x T). Also
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in [4] we introduced the space J(T x T), which is identical with & (10 (T?)n
HOD(T?) in our present notation. We note that the roots of the spaces
HOO(T2), HOL(T?), and HIY(T?) in the notation of the present pa-
per actually go back to the papers by G. H. Hardy and J. E. Littlewood,
J. Marcinkiewicz and A. Zygmund, and R. Fefferman [2], etc.

Our second main result states that the maximal Fejér operator o.(f)
defined by (1.3) is bounded from H™Y(T?) tnto L}(T?), or briefly, ox(f)is
of type (H(Y)| L1y, '

TueoreM 2. If f & HOU(T?), then

(2.7) lox(Nllzr < ) fllgam,
where the constant C does not depend on f.
We emphasize that inequality (2.7) is more general than (1.5), since the
gtrict inclugion
Llogt L)*(T%) ¢ HU(T?)

can be proved by the same sort of argument as the analogous inclusion (2.3).
(See, e.g., [3, pp. 84-85].)

3. Auxiliary results. We shall need the corresponding results for single
Fourier series. So, we present a concise summary of them.

We remind the reader that the conjugate function g of a function g €
LY(T) is defined by

3(z) = (P.V.)-2~1~7F [ (s — w)coi(w/2) du,
T

which exists for almost all z € T, The familiar Hardy space H'(T) is defined
by
HYT) := {g € LYT) : 5 & LY{T)}
endowed with the norm
llglarn = llgllzr + (1§l 22

(See, e.g., [1, pp. 372378, Theorem 6.14].)
We note that in this section, the integrals in the norms are taken over
the one-dimensional torus T := [—m, 7). For instance,

lgilzs = [ lg(=)] da.
:

If g € L*(T), then its single (ordinary) Fourier series is given by

¢ i ey L —iju
(3.1) égmef, where  §(j) -—2—,;Tf g(w)e™9" du.
3
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We consider the Fejér means o, (g) of the partial sums s;(g)} of (3.1) defined
by

1 5 - 51 Ny is
om(g; ) ==m+1zosj(g;m)=jz (1—m—;—1 gli)e?®, meN,
j= =

Tn Section 4, we shall rely on the following two results proved in [7].

LemMA 1. If g€ LYT), then for all A > 0 we have
(9}
(3.2) {z € T sup lom(g32)l > A} < Lol

where this time | - | means the Lebesque measure on the real line, and the
constant Ci does not depend on g or A.

As a matter of fact, Lemma 1 is essentially already contained in [9, Vol. 1,
pp. 154-156 and Vol. 2, p. 308], however not stated explicitly there.

LEMMA 2. If g € HY(T), then
(3.3) | Sue%lffm(g)lﬂm < Collgll g

where the constant Co does not depend on g.

4. Proofs of the main results

Proof of Theorem 1. (i) We start with the representation

omnlf5w3) = = [ [ F,0) Kol = 1) Knly — v) du v,
TZ

where

2 (sin(m+1E/2D\?
K"’“(t)’_mﬂ( 9 5in(t/2) ) mn el

is the Fejér kernel (see, e.g., [9, Vol. 2, pp. 302-303]). Since this kermel is
positive, we may estimate the maximal Fejér operator o.(f) defined in (1.3)
as follows:

(41)  ou(fizy)

1
gsup—f{sup
T

s

1
- iy, ©) K (2 — u) du
nel T meN W.ﬁ,ff( M )

This motivates the introduction of the auxiliary function

%ff(u,v)](m(mmu)du
T

(4.2) h(z,v) = sup
mei
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The key point is that the right-hand side here can be viewed as the maximal
operator of the Fejér means

(4.3) ol (f;0) = ;rl— f Flu, v) Ko (- — ) du
T

of the function f(-,v), which clearly belongs to L'(T) for almost all v € T.

(i} We claim that h(z,-) € LYT) for almost all z € T. To see this,
we first observe that from the assumption f € HUO(T?) it follows that
f(,v) € HYT) for almost all v € T Consequently, we may apply Lemma 2
in the first variable of f. As a result of (3.3), we infer that the inequality

J|h(m,v)}dm§02{ f‘j’(w,v)[dw+f If(l’o)(z,v)Jd:c}
T T

holds true for almost all v & T. Integrating with respect to v yields
@4 [ [ |z v)dzdv < Cof || fllzr + [ FEO 5} = Callf o < oo
'l[‘2
It remains to apply Fubini’s theorem in order to conclude that h(z,)) €
LY(T) for almost all z € T.
{iif) Returning to (4.1) and (4.2), we may write

1
(4.5)  ou(fiz,y) <sup = f h(z, v) Koy ~ v) dv = sup oV (h; z, 1),
neN T o neN

where

O-',gm,o,l)(h; :L',-) = f h(mav)Kn(' _1") dv

T

1
g

can be viewed as the Fejér mean of the function A(z, ). Since h(z,-) € L*(T)
for almost all z € T, we may apply Lemma, 1 in the second variable of h. As
a result of (3.2), we deduce that the inequality

{4.6) {y & T:supo""(h;z,y) > A} < G f |h(z, v)|dv

holds true for almost all z € T and for all X > 0.

(iv) We recall that given a measurable subset E of T2, the planar measure
of £ can be computed by means of the linear measure of the cross-sections
as follows: '

Bl= [ {y € T: (¢, y)-€ E}| dz.
T
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Combining (4.4)—(4.6) with Fubini’s theorem yields

I{(:c,y) S5 Tz : a*(f;:c,y) = )‘}!
< |{(z, ) € T : sup ol (B m,y) > A}
nelN

Oll

< %rf dz ! Bz, )| dv < £ 1| s o0

for all A > @, which is (2.2) to be proved. m

Proof of Corollary 2. The two-dimensional trigonometric polyno-
mials are dense in the Hardy spaces H (19 (T?) and H(®Y(T?). The Cesro
Mean pmn(f;2,y) clearly converges at all points as m,n — oo in the case
where f is a trigonometric polynomial in its variables. Thus, we may apply
the usual density argument due to Marcinkiewicz and Zygmund [6], which
povides (2.5) to be proved. =

Proof of Theorem 2. It runs along the same lines as the proof of
Thecrem 1 above.

(v) We begin with inequality (4.1) and introduce the auxiliary function
h(z,v) defined in (4.2).

(vi) We claim that this time h(z,-) € H'(T) for almost all « € T. In
part (i) of the proof of Theorem 1, we have shown that h(z,-) € LT for
almost all « € T. Also, we have to prove that h(®V(z, ) € L(T) for almost
all z € T.

To see this, we first notice that from the assumption f € HLH(T?) it
follows that fO1{. v) € HY(T) for almost all v € T. Consequently, we may
apply Lemma 2 in the first variable of f(O1). As a result of (3.3), we infer
that the inequality

an teup o O(FON; 2,0)|} do
T ™

<af [IFO e )lde+ [ I (,0)|do)
T T
holds true for almost all v € T. On the one hand,
PO FON; o) =~ [ FOD () Ko~ )
T
(¢f. (4.3)). On the other hand, from (4.2) it follows that

RO v} = sup

f F1O, D, 0) Ko (- — w) du|.
meN

Magimal Fejér operator 97
Consequently, (4.7) can be rewritten into the form
J B @) de < G f1FOV (a0 do+ [ 1700 (@,0)]deo},
i T T

which holds true for almost all v € T. Hence
(48) [ [ ROV (@) dzdy < Co{ | FOD | 1 + [ 7Y 11} < co.
.ﬂ-'l

It remains to apply Fubini’s theorem in order to conclude that A0 D, ) e

LY(T) for almost all z € T. Thus, we have completed the proof of our c1a1m
that h(z,-) € H(T) for almost all z & T.

.(vii) Consequently, we may apply Lemma 2 again, this time in the second
variable of h. As a result of (3.3), we deduce that the inequality

/ {sup oD (k2 y)}dy < Cof [ bz, )l dv + [ KOV (z,v)| do}
T T T

holds true for almost all z € T. Taking into account (4.5), it follows that
(4.9) [ [ eulfso ) dody < Coflim] s + 1RO 1),
T2

Combining (4.4), (4.8), and (4.9) yields

Iz < CEUALL+ 1T s+ FOV g+ F 12} = CEY v,
which is (2.7) to be proved. =

0? On the maximal conjugate Fejér operators. Denote by a(l D)(f)
U?(m)( ), and Eﬂnl)( f) the Fejér means of the rectangular partial sums of

the con:jugate series (2.1), (2.4), and (2.6), respectively. We have mentioned
in Section 2 that if f € H™*0)(T?), then the conjugate series (2.1) is the
Fourier series of the conjugate function f(l . Consequently,

G'rrjim,f)(f) = Uv'n.'n,(f 1'0)), (m,n) e N2,
Hence, for the maximal conjugate Fejér operator Eﬁi}?)( f) defined by

~{1,0
() = sup ERD (e,

(m,n)eN

we have
(5.1) A =auo).

Analogous statements are valid also for the other two maxmal c:onjuga»te
Fejér operators 7o () and F“ 1)(f) L ot

.
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Next, we introduce two functions r and s of one variable by letting

(5.2) r(z) =-ﬁffmy)dy and s(y) := 5 ffx'g)dw

It is plain that r, s € L*(T); their Fourier series are given by
Zf(j, 0)e®  and Z Fl0, k)e'™,
JEZ kel
respectively; and the corresponding conjugate functions # and § are given

by

~ N 1 -
Ho)= o= [ Oy dy and )= o [ O,y e
T T

for almost all z € T and for almost all ¥ € T, respectively. Hence it follows
immediately that if f € HL0(T?), then » € H*(T); and if f € HOH(T?),
then s € H*(T). _

By the completeness of the trigonometric system, it is not difficult to
deduce that the relations

(5.3)  (FOOY~ OO (g ) = —f(z,y) + s(y),

(FO O g,9) = ~f(z, ) + r(2)
(5:4) (OO (z,y) = (FON) O g,y) = f(“),
(5.5)  (FROy D a,y) = (T 0O (g, 9) = — O (a, )+ 5(y),
(FORy W0, ) = (FE) O, y)—-f““)(m y) +7(a),
and

(FEIY D (@, y) = fla,y) - r(z) - s(y) + F(0,0)
hold true for almost all (z,y) € T?, where r and s are defined in (5.2).
These relations have remarkable consequences:

(i) By (5.2) and (5.3), if f € HWO(T2), then F1 ¢ HMLO(T?) as
well, and

(6.6) 1FC N gae < [ fllges + [1£]z-

(ii) Similarly, if f € H(O1(T2), then FO) € HOD(T?) ag well.

(iii) If f € HY(T?), then each of FL0), FO1 and fL) algo belongs
to HY(T2). The norms || f9 | ey, |70V 5o, and (I F&8| ey may
increase in comparison with || f]| g2, but each of them remains equivalent
to || f|| 0. For instance, by (5.3)—(5.5), we may estimate as follows:
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(5.7) IFE gan € 1FY ) n + 1 fllz: + s ze
I FE D e 4+ 170D e 4 )13]

= Ao + Isllar < 2| gen,
suce
[l < Wfllpr + 11791 za
Now, Theorem 1 implies via (5.1) that the maximal conjugate Fejér
operator 5579 (£) is of type (H19), weak- Ll) while Corollary 1 implies via
the symmetric counterpart of (5.1) that Fo ( f)isof type (H 1) weak-L1).

COROLLARY 3. If f € HLO(T?), then
sup M{(,y) € T* : 59 (f52,) > W} < 2 £l oo
while if f e HON(T?), then
sup A{(@,9) € T2 507 (52,) > A} < 20 o,
with the same constant C in both cases as in (2.2) (cf. (5.6)).

The pointwise convergence follows from Corollary 3 exactly in the same
way as in the cases of Theorem 1 and Corollary 1.

COROLLARY 4. If f & HWO(T?), then
lim FLO(f,9) = FOO (z,y)

MO0
at almost all points (z,y) € T2 while if f € HOY(T?), then
(5.8) Wi FON(f2,5) = FOV(2,9)

at almost all points (z,y) € T2

Finally, Theorem 2 implies via (5.1) and its counterparts that each of

the maximal conjugate Fejér operators & ’”(1 0 ( i3k o 1)( f), and A 1)( f) is
of type (H\-Y), LY).

CoROLLARY 5. Assume f € HD(T?), and denote by 5.(f) one of the
mazimal conjugate Fejér operators - D)( f), & F0 (j or E(l 2 (). Then
15" ()] 2 S3C’HfHHu 05

with the same constant C' as in (2.7) (cf. (5.7)).
Hence the pointwise convergence follows again.
CoRoLLARY 6. If f & HL 1)('11’2) then

(8.9) lim FN(fi2y) = fle,y)

TN 00

at almost all points (z,y) € T?,
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On closing, we mention two conjectures concerning the maximal conju-
gate Fejér operators which we are unable to prove or disprove.

The first of them lies in the positive direction. We guess that 5,(,1‘1)( )
is bounded from H{0)(T2) N HO(T?) into weak-L' (T?).

ComIECTURE 1. If f & HWO(T?) 0 H{®1(T?), then we have
sup A{(z,) € T2 7Y (Fim,0) > MY < C(If | oo + [ o),
A0

where the constant £ does not depend on f.

If this conjecture were true, then (5.9) would hold for almost all (z,y) &
T? under the assumption that f € HMO(T2) n HO(T2), which is clearly
less restrictive than the requirement f € H(WU(T?),

The second conjecture lies in the negative direction. We guess that Corol-
lary 4 is the best possible in a certain sense.

CONJECTURE 2. There exists a function f € H 1 (T?) such that each of
the relations (5.8) and (5.9) is no longer true at almost all points (z,y) € T2,
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