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The basic sequence problem
by

N J. KALTON (Columbia, Mo.)

Abstract. We construct a quasi-Banach space X which containg no basic sequence.

1. Introduction. It is a classical result in Banach space theory, known to
Banach himself [1], that every (infinite-dimensional) Banach space contains
a closed linear subspace with a basis, or, in other words, a basic sequence,
The corresponding question for quasi-Banach spaces (and more general F-
spaces) has, however, remained open. A number of equivalent formulations
are known ([11], [14], [16], [17]); the question is also raised in a slightly
disguised form in [28], p. 114.

In [11] and [17] it is shown thet a quasi-Banach space X contains a basic
sequence if and only if there is a strictly weaker Hausdorff vector topology
on X. Thus the existence of a space with no basic sequence is equivalent to
the existence of a (topologically) minimal space (i.e. one on which there is
no strictly weaker Hausdorff vector topology). See [3) and [4} for a discussion
of minimal spaces. It further follows that X contains a basic sequence if and
only if there is some infinite-dimensional closed subspace with separating
dual ([11], Theorem 4.4). Several positive results are known. For example,
the work of Bastero [2] implies that every subspace of L,[0,1] (0 < p < 1)
contains a basic sequence, while the author’s results in [12] imply that every
quotient of L,[0, 1] contains a basic sequence. Bastero’s result can be lifted
to the wider class of so-called natural spaces and has further been extended
by Tam [30] who shows thal every complex: quasi-Banach space with an
equivalent plurisubharmonic norm contains a basic sequence. These results
suggest that almost all “reasonable™ spaces contain a basic sequence.

In this paper, we will prove

THEOREM 1.1. There is a quasi-Banach space Y with a one-dimensional
subspace I so that
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(1) if Yy is o closed infinite-dimensional subspace of Y then L C Yy,
and
(2) Y/L is isomorphic to the Banach space £;.

In particular, ¥ contwins ne busic sequence and is minimal.

It is clear that (1) would make it impossible for ¥ to contain a hasic
sequence.

There are other applications of this space. A topological vector space X
is said to have the Hohn-Banach Extension Property (HBEP) if whenever
Xy is a closed subspace of X and f is a continuous linear functional on
Xy then f can be extended to a continucus linear functional on X. The
author showed in [11], answering a question raised by Duren, Romberg and
Shields [5] (see also {25], [29]) that for an F-space (complete metric linear
space) (HBEP) is equivalent to local convexity. It was very well known that
metrizability is necessary in this theorem, but some partial results of Ribe
[25] suggested that completeness might not be required. Ribe showed that
if X is a metric linear space so that X is isomorphic to X @ X then if X has
(HBEP) it must be locally convex. More recently, the author [14] extended
Ribe’s result to show

THEOREM 1.2. Let X be a decomposable quasi-Banach space {i.e. there
is a bounded projection P on X so that neither P nor I - P has finite rank).
Suppose X is o dense subspace of X. Then Xy hos (HBEP) if and only if
X is locally convex.

A proof of Theorem 1.2 is included in Section 6. The Hahn—Banach ex-
tension property for metrizable spaces is also discussed in [10].

However, if ¥ is the space constructed above, we will show that any
algebraic complement Yy of L has (HBEP). Thus we have

THEOREBM 1.3. There is a non-locally conver metric linear space Yy with
the Hahn~Banach Eztension Properts.

In 1962, Klee [18] asked whether for every topological vector space (X, 7),
the topology T can be expressed as the supremum of two not necessarily
Hausdorff. vector topologies m and 7 so that (the Hausdorff quotient of)
(X, 1) has a separating dual (i.e. is nearly convex) and (X,7,) has trivial
dual. Recently Peck [22] has shown this to be true for certain twisted sums
of a Banach space and a one-dimensional space (see also [23]). The space
constructed here, Y, turns out to be a counterexample to Klee's problem.

THEOREM 1.4. There is o gquasi-Banach space Y so that the topology
on Y is not the supremum of a trivial dual topology and a nearly conver
topology.
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The construction of our example depends heavily on the recent remark-
able developments in infinite-dimensional Banach spaces due to Gowers,
Maurey, Odell and Schlumprecht [7], [8], [9], [20], [21]. It is perhaps a little
ironic that the basic sequence question for quasi-Banach spaces turns out to
be so closely related to the unconditional basic sequence problem for Banach
spaces. However, it should be stressed that we use an example of a Banach
space with an unconditional basis, very similar to that used by Gowers in
[7); the fundamental estimates we need are in [9].

Let us conclude this introduction by explaining the shortcomings of the
example. It is still an open question whether every quasi-Banach space (or F-
space) must contain a proper closed infinite-dimensional subspace. A space
with no proper closed infinite-dimensional subspace is called aiomic. The
existence of an atomic quasi-Banach space is known to be equivalent to the
existence of a quotient minimal quasi-Banach space, i.e. a space X so that
every quotient is minimal (this concept is due to Drewnowski [3]). See [14]
or [16] for a discussion. Our example is quite far from an atomic space,
and it is not clear at present whether it can be used towards making such
a monster. We remark that Reese [24] has constructed an example of an
“almost™ atomic F-space, i.e. aspace X with a sequence of finite-dimensional
subspaces Vy, with dim V,, > n so that if z, € V, is any sequence which
is non-zero infinitely often then [z,] = X. It is still unknown whether even
this phenomenon can be reproduced in a quasi-Banach space. We suspect,
however, that an atomic quasi-Banach space will eventually be found.

We would like to thank several colleagues for helpful comments and re-
marks during the course of this work, in particular P. Casazza, D. Kutzarova,
M. Lammers, M. Mastyto and N. T. Peck. We also want to thank B. Maurey
for a substantial simplification of the last part of the argument which we
have incorporated into the proof. We also wish to thank the referee for many
very helpful suggestions and comments on improving the presentation of the
paper.

2, Idea of the construction. In this section, we introduce the hasic
ideas and notation and prove that the space ¥ which will be constructed
in Sections 3-5 yields solutions to the problems mentioned in the intro-
duction.

We denote by cop the space of all finitely non-zero (real) sequences. If ¢ &€
con we denote its co-ordinates by {z(y) Jey. We let a(z) = min{j : z(j) 5 0}
and b(x) = max{j : 2(§) # 0}. If A is a subset of N then Az(j) = =(j)x ()
where x4 is the characteristic function of 4. If E;, B, are subsets of N we
write By < By if max By < min Es. We shall also write for 2,y € cop that
z < yif b(x) < a(y). On the other hand, the natural co-ordinatewise order
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on g will be denoted by z <y, i.e. ¢ < y if and only if 2(j) < y(5) for all
7 €N. Let ¢y = {z €cgp : x > 0}.

For z,y € oo we will write {(z,7) = 2_?11 2(Hy(5). We will also use the
same terminology when z € ¢, and y = logv for some sequence v € chy; in
this case it will be understood that the pairing can take the value —co and
that 0log 0 = 0. :

By a sequence space X we will mean a subspace X of the space w of all
sequences equipped with a lattice norm || ||x so that

(L) coo C X,

(2) if j=] < |yl € X then 2 € X and ||z||x < |yllx, and

(3)if 0 < 2, Tz and z,, € X with sup [|z,|x < oo then 2 € X with
llzllx = sup [l#s]|x (the Fatou property).

The canonical basis vectors {e,}?%; then form a I-unconditional basis
for the closure Xy of ¢po. For convenience we will write X* for the Kothe
dual of X, which coincides with the Banach space dual of X. We will denote
the closed unit ball of a Banach space X by Byx. We denote the canonical
norm on £, by |||\, for the cases p = 1 and p = 0.

Consider a map & : cop ~ R. For any uy,. .. ,u, we define Ap(uy, .oy uy)
=301 Pluy) — B30 wi). B is called quasilinear if

(4) Plow) = au for « € R, u € egg, and

(5) for a constant § = §(®) we have [A(u,v)| < §(l[ully + |v]|1) whenever
u, ¥ E Cyp.

Given a quasilinear map @ we can form the twisted sum ¥ = R Do £y,
which is defined to be the completion of R coo under the quasinorm

(e, wille = lor = S(w)] + [lull1.
It is readily verified that if L is the span of the vector eq = (1,0) then Y/L
is somorphic to £;. This construction was first used in [13] and 126] with

explicit non-trivial twisted sums of R and £, to deduce that local convexity
is not a three-space property; see also [27].

THEOREM 2.1, Let @ : cog — R be a quasilinesr map and let ¥ = Rdgf.
Then the following conditions are equivalent:

(1) Y contains no basic sequence.

(2) If Yy 3s an infinite-dimensional closed subspace of Y then Yy con-
tains ep.

(3) The quotient map 7 :Y — £, 4s strictly singulor.

{4) Y is topologically minimal.

(5) There is no infinite-dimensional subspace F of cqp so that for some
constant K we hove |$(u)| < K||ul|; for all u € F.

(6) If T:81 —Y is o bounded operator then T is compact.
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(M T:Y =Y is a bounded operator then T = AT+ § where A € R
and S 18 compact.

Proof. The equivalence of (1} and (4) is well known (see Theorem 4.2 of
[11] and Theorem 3.2 of [17], or see [16]). (2) is clearly equivalent to (3) and
implies (1). Conversely, if (3) fails then there is an infinite-dimensional closed
subspace isomorphic to a subspace of #;. Thus (1)-(4) are all equivalent.

Next we prove (2) implics (3). Suppose F is an infinite-dimensional sub-
space of con so thal [#(u)] £ Kjul), for u € B, Let ¥y be the closure of
the subspace of all (0,z) for x € E. Suppose (0,zy) converges to ey. Then
1w @y )| and ||, |1 converge to zero, which is a contradiction.

Next assume (5) and suppose Y contains a basic sequence. By a per-
turbation argument we can suppose it containg a normalized basic sequence
of the form (aw,, un) Where u, € ¢y, By passing to a subsequence we can
suppose that u; < wg < ... and that e is not in the closed linear span
of (@, 1,,). Tt follows that 7 is an isomorphism on the span of this basic
sequence 8o that for some K we have

" n T
' Z ity — fp(zti'ﬁbi) < KH Ztiui”l
s 1 =] i=1
for all #1,...,4n. Let Fy be the subspace of the linear span of the ()22
consisting of all 370, tju; with 357 ety = 0. Then |#(u)| < K|ul|; for
u € Fy, Thus (5) implies (1), :

(8) implies (6). X T": £; — ¥ is bounded then #7" is strictly singular and
hence compact. If {(z,,) is a sequence in the unit ball of £, then by passing
to a subsequence we can suppose that =7z, converges. Hence there exist
Yn € Y so that (y,) converges and «Txz, = 7y,. But then Tz, — UYn € L
and so has a convergent subsequence.

(6) implies (7). If T': Y — Y is a bounded operator then since L is the
intersection of the kernels of all continuous linear functionals on ¥ we must
have T(L) € L. Thus Te = Ae for some A. Let § = T — AI; then § = Sy
where Sy : Y/L — Y is compact by {6).

(7) implies (3). If 7 is not strictly singular, there is a subspace ¥y of ¥
of infinite codimension and ispmorphic to £;, Hence there is an isomorphic
embedding V' : #; — ¥, Then suppose Vo = Al + § where § is compact.
Let my 0 ¥ — Y/¥,) be the quotient map, Then Amy = —Sng is compact.
Hence A = 0, but this contradicts the fact that V is an isomorphism.

THEOREM 2.2, If Y salisfics the equivelent conditions of Theorem 2.1
then any algebraic complement of L has the Hahn-Banach Extension Prop-
erty.

Proof. Let Z be an algebraic complement of L. The continuous linear
functionals on Z separate points, so that any linear functional on a finite-
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dimensional subspace can be extended continuously to Z. Now let Zy he
a closed infinite-dimensional subspace of Z and suppose f is a continuous
linear functional on Zg. Let W be the closure of Zy in ¥ and let f denote
the extension of f to W. Then W and f~!(0) contain L by (2) and so f
factors to a continuous linear functional on W/L C ¥/ L, which is a Banach
space. Hence by the Hahn-Banach theorem f can be extended continuously
to ¥ and hence also to Z.

TeEOREM 2.3. If Y satisfies the conditions of Theorem 2.1 then the
topology T on Y cannot be the supremum of two vector topologies Ty,7Ty o
that (Y, 1) is nearly convez and (Y, ™) has triviel dual.

Proof. Clearly ey must be in the closure of {0} for 7. Let £ be the
closure of {0} for m. If eg € E then Theorem 2.1 implies that F is finite-
dimensional and that Y* separates the points of E. Hence Y =Y, & E for
some closed subspace Yy of Y. Now Yy contains no basic sequence and so its
topology is minimal; however, 7 is Hausdorfl on ¥; so that it must agree
with the original topology. This implies that Y3 = {0}, but in fact Y is
infinite-dimensional. This contradiction establishes the theorem.

We now review the method of approach to the example. Theorem 2.1
reduces the problem to a type of distortion question expressed by (4). The
recent results of the author [15] show that there is a close relationship be-
tween quasilinear maps on cgg and sequence spaces (see Theorem 6.8 of [15)).
We will explain the connection in the next section and show how the recent
spaces discovered by Gowers and Maurey ([7] and [9]) enable us to construct
a pathological €.

3. Indicators of sequence spaces. We now introduce some ideas from
[15]. Suppose X is a sequence space. We define the indicator $x (called the
entropy map in [21]) on coo by $x(v) = (u,logz) where u = z*z is the
(unique) Lozanovskii factorization of u, i.e. € By and 2* € X* satisfy
{z,2*) = [lz*||x~ = |Jull; and suppz, suppz™ C suppw. The Lozanovskil
factorization originates in [19].

Clearly & x (au) = ad x (u) for u € cog. Furthermore, if u, v € egn we also
have

(1) |4

where A = Ag, (see Lemma 5.6 of [15}). If u € ¢y then we can characterize
the Lozanovskil factorization as the solution of an optimization problem so
that

(wo) < = —(full + liel)

(2) ' Px(u) = max ('u, log x}.
.’.L‘EB
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This idea originates with Gillespie [6]. Furthermore, for uy,

. - '-':unecg‘lowe
have the inequalities

(3) 0 £ A(ula " ,'Ufn < Z Hu””l 10g

where § = 3 i\, Hu,]lj, see 5] Lcmlna
Suppose f: [1,00) — [1,00) is any mcreasmg map with f(1) = 1 and so

that f(f) < ¢ for all £ = 1. We will say that a sequence gpace X has a lower
f-estimate on blocks if, whenever z) < ... < 2, € cgo, then

Z”mv’

and an upper f-estimate on blocks if, wheuever Ty <.
flzy + .

I IH

s+ .0 e lix >

. < &n € Cop, then
-+ 2nllx S fln) max IIanx

LeMmaA 3.1. Suppose X salisfies an upper f—estzmate on blocks. Then for
L < ... < Uy 0 Cy we have

Alua, . yun) <log Fn)(Jlurlls + ... + Hun ).

Prool Let w; = 22} be the Lozanovskil factorizations. Then since
Fn)~Yay - ...+ @,) € Bx we have by (2),

Py(ug+ ... +uy) > <Zu,,10g(

so that the lemma follows,

3 e)

i=1

The following is a special case of Lemma 5.8 of [15]. Unfortunately, as the
referee has pointed out, Lemma 5.8 in [15] is misstated with the inequality
reversed, and in the proof the maximum should be replaced by the minimum.
This lemma. is used in Theorem 5.7 of [15], which is correct although an
inequality is again reversed. In view of this we will sketch a simple direct
proof.

LemMA 3.2, Suppose 91, ..
S b =T, Then

n

Z(q%lcag-—jﬂmn—w lo g,‘%:?ti) < Slog

fem]

G Enit, ooty 2 0 and let Y0 8 = S and

S+T S+T

Remark. The summand is zero if either s; or ¢; vanishes,

8 + t?:)
i

Proof, We will seek to maximize the function

7 st
u(slw--:gmtl:---:tn):Z('gilog —

: +t; log
=]
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subject to the constraints >, 8; =S and >0 ti =T and 5, 2 0, £; > 0
for 1 €4 < n. By continuity, there is a point where the maximum is attained.
We can suppose s;f; > 0forl <i<mand s =0ifm+1 <7< n By
the method of Lagrange multipliers it is easy to show that s;/¢; is constant
for 1 €4 < m. But then

So + Ty

So+ 1o
w81,y 8ty o tn) = Solog A

Ty
where Sp = > 1., 5 < § and Ty = ¥ iy t; < T. This expression is mono-
tone increasing in Sy and Ty and so the result follows.

Let D = By, Ncgp.

LeMMma 3.3. Suppose X satisfies an upper f-estimate on blocks and sup-
poseu € D, Letu =737, u; where uy < ... < up. Let A be any subset of
N and let t = ||Aul;. Then

Ay, .. otn) — (L—1t)log f(n) — o) < A(Aua, ..., Auy)
< Al un) + 0(2),
where w(t) = tlog(1/t) + (1 —£)log(1/(1 — t)) (< log2).
Proof Let N\ A= B. Then
AlAuy, ..., Auy, Buy, ..., Buy,)
= A(Auy, ..., Atg) + A(Buy, ..., Buy) + A(Au, Bu).

-+ Ty log

Similarly
T
A(dug, ..., Aug, Buy,. .., Bun) = Alus, .. up) + Y AlAu;, Buy).
=1
Since A(Buy,...,Buy), A(Au, Bu) > 0 we deduce

n
A(dug, .., Aup) < Aluy,. . wn) + Y Aldug, Buy).
i=1
Now we use (3) and Lemma 3.2. We have

Th

- Uil Uil
> A(dug, Bu) <y (||Aui|illog IIL;illil + || Bug )y log Wal'ﬁ"ﬁ%lﬂ_l)

i=1 i=1
< tlog = + (1 — ) log
For the former inequality we observe that A(Bug,...,Bu,) <
log f(n)|| Bul|. Hence
Aldus, .., Aup) > Alur, .., un) — (1 — ) log f(n) — A(Au, Bu),

and the second inequality follows.
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LEMMA 3.4. Suppose v € cfy with lully < 1. Suppose u = za* where
3 € B, o € BX.. Then @x (u) — (u,log ) < |luly log(1/(JJull1)) (< 1/e).

Proof. We can suppose that the supports of x, ™ coincide with the
support of u. Define Z by |\z]|z = max(||z||x, e {(|2], 2*)). Then Izl x <
lzllz € flull~"=zllx so that &x(v) + |v vlogllully € Sz(v) < Bx(v) for
v € cfy. However, ||lz]lz € 1 and f|l2*|z < llull1 so that w = xz* is the
Lozanovskil factorization for w. Thus $z{x) = (u,logz) and the lemma
follows,

The next lemma i3 essentially due to Odell and Schlumprecht [21].

LeMMmA 3.5, Given £ > 0 and n € N there exists n > 0 so that ifu <
v < are in Dw= (L/nlui 4. ) and § = (1/n)Aluy, . . g} <1
then for the Lozanouskii faclorizations u = za* and u; = e} we have
[Aully < & where A= {j:y(j) > (L+e)2(j)} andy =z +... L x,,.

Proof. By Proposition 2.3 of Odell and Schlumprecht [21], given € > 0
there exists v > 0 so that if v € D and z € By are such that {v,logz) >
Px(v) — v then if v = zy2§ is the Lozanovskif factorization then || Bu|; < ¢
where B = {j : 29(j) > (L +¢€)2(j)}. Let 9 = v/n. Then if § < » we have

s
> (Baclus) = {ui,ogz)) < v
i=1
and since each term is positive we conclude that |[Au||, < ¢ where 4; =
{i:2:4) > (1 4+ €)e(7)}. This quickly implies that || Aull; < e.

4. The Gowers—-Maurey space. At this point we let f(z) = log,(z+1)
and introduce as in [9] the class F of functions g : [1,00) — [1, 00) having
the following properties:

(1) g(1} = 1 and g(z) <« for 2 > 1.

(2} g 1s strictly increasing and unbounded.

(3) limkp oo ™9y (@) == 0 for any ¢ > 0.

{4) x/g(2) is concave and non-decreasing,

(5) ¢ is submultiplicative, i.e. g(zy) < g(x)g(y) for z,y > 1.

Clearly f € F and so iy /7.

Now suppose X is a sequence space. If n € N and & > 1 we define
Ax(n.k) to be the set of € ¢y so that ||z]|x = 1 and # = (1/n){z; +...
oot @) where 2y < ... <z, and [[mllx € kfor 1 €4 < n. (Thus
is an £, average with comstant k, in the sense of [9]: note that we restrict
ourselves to non-negative sequences and to spaces X for which the canonical
basis is unconditional.)
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We then define RIS x (n; &) to be the collection of sequences Ty < ... <,
in cfy satisfying @; & Ax(M;, k) where My > drp~12%%27" anq Miyr >
246(=4)°0™" for & > 1 where g = min(k — 1,1). We next define Ay (n; &) to
be the collection of z € ¢y of the form & = |lzy + ... + @[5 (o1 + ...
oo+ 2n) where (21,...,2,) € RISx(n, ). This definition differs slightly
but inessentially from that of [9]. In fact, we will only really require the case
K 2 2 when ¢ = 1; this is in contrast to (9] where values of & close to one
are important.

At the same time if g € F we define Hx(g;m) to be the collection of
(m, g)-forms, i.e. z* € Hx(g;m) if and only if * = gm)~ et 4.+ )
where 7 < ... < 2}, are in ¢y and ||z} ||x. <1 for L <i < m,

We will require certain lemmas from [9].

LEMMA 4.1 (Lemma 4 of [9]). Suppose z € Ax (N, k) and z* € Hx(g: M)
where g € F. Then {z,a*) < r(1+ 2M/N)g(M)~1.

LEMMA 4.2 (Lemma 5 of [9]). Suppose X satisfies a lower J-estimate
on blocks and g € F with g = f*/2. Suppose N € N and > 1. Suppose
M 2 2907 ang that & € AN, k), 2* € Hx(g, M). Then (z,2*) <
(r+ @) f(N)/N < (s + 1) f(N)/N.

Remark. For our statement of Lemma 4.2, observe that since X has
a lower f-estimate, for any {z.}, € RISx(N, &) we have HZ:’L zillx >
Nf(N)~2.

Our next lemma is a slight modification of Lemma 7 of [9].

LeEMMA 4.3. Suppose X satisfies o lower f-estimate on blocks and g € F
with g > f1/2. Suppose k > 2 and (T1;...,2x) € RISx(N, k). Let z =
Efil &; and suppose that for every interval B with |Ezilx > 1 we have

(*) |Bzllx < sup{(Ez, 2" :2* € Hx(g; M), M > 2}
Then [|zllx < (k4 1)N/g(N).

Proof We introduce the length of an interval E as in [9]. Let ©; €
Ax(ng, k) for 1 < i < N. Suppose z; is written as (1/ng) Ef;l @4 where
Tig < oo < Typg and (logllx € snpt If B is any interval which intersects
the support of Zfil #; we let k <1 be the least and greatest indices 1 such
that Ez; # 0. Then we let p be the least index such that Fzy, # 0 and ¢
the greatest index such that Ezy # 0. Define {(E) =1~ k + gn;’t — gt
I E' does not meet the support of Zqul x; then £(E) = 0,

Now our hypotheses differ from Lemma 7 of (9] in that we assume (%)
whenever [Ez||x > 1, while [9] assumes () whenever £(E) > 1; we, however,
assume # 2> 2. Our hypotheses imply that (*) holds if £(E) > 2 since then
there exists at least one z; with support contained entirely in E. As in [9]
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let G(t) = 1/g(t) for t > 1 and G(¢) = ¢ for t < 1. Then if sn! < 4(E) < 1
we have ||Ez|x £ (k + 1)G(UE)) as in {9]. We claim the same inequality
if 1 < #(E) < 2;iu fact, in this situation we can see that F intersects the
supports of at most three 2; and so | Bz x <3 < (k+1)G({(E)). The proof
can now be compieted by applying Lemama 7 of [9].

We will now define a Gowers-Maurey space Z, very similar to the con-
struction in [8; in fact, essentially the same space is considered by Gowers
in [7] as a counterexample to the hyperplane problem, and also as a space
in which all operators are strictly singular perturbations of a diagonal map.
We will suppose that P = {p,}32, is an Increasing sequence of natural num-
bers satisfying f(p1) > 256, logloglogpy > 4p?_,, px > k821006" g all k,
We shall also require that f (pgk)p,;,j < k372, which doubtless follows from
our other hypotheses. For convenience we suppose each py is a square. We
partition P == P1 U 'PQ where Pl = {pgknl}ﬁll and 'Pg == {_’pzk}i‘;l.

Let Q4 denote the countable collection of u € ¢y which have only ra-
tional coeflicients and let o be an injection from the collection of all finite
subsets of Q.., {z1,...,24} Wl‘xe{?e z1 < ... < 2 to Py which satisfy the
condition o(zy,...,2,) 910b(z)*

We then define Z implicitly by the formula

liell 7 = max{|al|oc, 1z ]fas [2g)

where
”w”ﬂ = sup{(]ml, ﬂ;”“) : m* S HZ(f; _Mf), M 2 2}:
Jalls = sup { £())2 3 (lal,20) },
i=lL
with the supremum being over all k € Py and special sequences (z3,...,2}),

i.e. such that 2} < ... <}, with 7 € Q. N Hz(f;p2x) and then for 5 > 1,
i € QuNHz(fio(xt, ... 2)) ' _ ‘ '

This implicit definition can be justified by an inductive construction as
in [9]. Precisely we set ||z z, = |2/ for & € cop and then define for N > 1,

]l zy = max(|z

Zes 18 n sy 12| vs)

where
2wt € Hyo(fi M), M 22},

an = sup{{|z
k
ol g = sup {£(6)7/2 Y flal, =5) }
() ’
with the supremum being over all k € Py and (27,... ,:232‘)?'1.@. s;ch; that
o] < ... < g}, with 27 € Qu N Hazy(fip2x) and then for'j > 1, x5 4 €

€
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Qi NHzy(fiolaT,...,27)). It is then easily verified that || ||z, is an in-
creasing sequence of norms, bounded above by the £i-norm, and that the
sets Hz, (f; M) also increase in N. We set [z)lz = limpy oo ||2] 2, -

We emphasize that this space is an unconditional version of the coun-
terexample constructed in [9], but shares some of the same features. We will
need versions for Z of certain lemmas proved in [9] for the Gowers-Maurey
space. Fortunately the same bagic techniques go through more or less un-
changed.

Let us note first that Z satisfies a lower f-estimate. This follows immedi-
ately from the definition of ||z||». We also note that, by induction, it follows
that |len]|z = 1 for all .

LEmMMA 4.4. Suppose (x;)}_, € RISz(n; &) where k>1. Then [y
<1

Proof. We have z; € Az{M;,x) where M; > 4x by the definition of
RISz(n; k). Hence ||z;]|cc < Mj"ln < 1 and the lernma follows.

It now follows as in Lemma 10 of [9]:

LEMMA 4.5. Suppose k > 2. Suppose N € Py and logN < n < exph.
Then if {z1,...,2n} € RISz(n, 5) we have |0, 2|z < (5 + Dnf(n)~".

Proof. The key point, proved in [9], Lemma 9, is that there exists
g € F with f1/2 < g < f such that g(z) = f(z) for log N < z < exp N and
glk) = f**(k) when k € Py. Thus if = € cop and ||z]|z > ||z]|0 then
" € Hz(g; M), M > 2}.

Now, by the preceding lemma if x = E;”zl x; and E is any interval then
[ Bzlloo < 1. We can therefore apply Lemma 4.3 to obtain the result.

|zl z = sup{{Ez, z*) :

The next lemma is simply a cruder form of Lemma 11 from [9].
LEMMA 4.6. Suppose & > 2 and N € Po. If z € Az (N,kg) then z €

AVN,2(k + 1))

Proof. Suppose {z;}/L, € RISz(N,x) and that « = |5V, 2,5 x
SoIL) @i We break [1, N] into v/ intervals E; each of length IV, which
is an integer by hypothesis. Note that {#i}icr, € RISz (vVN, k). Iy =
E‘I‘-EEJ‘ x; then, by Lemma 4.5, [ly;{lz < (& + VN, Also HZ;;\;lmj 7 =
N/F(N), by the lower f-estimate on X. Now z = (1/+/N) Eﬂ z; where

;JE = (}“)Zf—_}_ 552"‘2)“1\/?\{“3/;{. But ”ZJ“Z < (ﬁ; + 1)(Nf(N))/(Nf(\/—N)) <
K+ 1}

Our next result is a modification of Lemma 12 of 9]. In fact, this lemma
appears to be incorrectly stated in [9] and so some modification is necessary.
In the proof of the lemma in [9] it is claimed without justification that
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{z1,..., x5} 1s a RIS of length k and constant 1 + &. For the applications
some modification similar to that given below seems adequate, however.

LeMMa 4.7, Let & > 2. Suppose k ¢ Py with Jlk) > 100&2. Suppose
By, By are intervals with By < ... < By, Let {z?,.. XL} be a special
sequence with swppxt C By, Lel My = py, and My = o(m{,...,m;f) for
L<jsk~1 Lel A be any subset of {1,2,...,k} and suppose for each
j € A we have vy & cfy with supp r; C By so that xy, xi are disjoint and

z; € A(M;, k). Then,
e

igA

Prool, We have w; € Ag{ /M, 4x), by Lemma 4.6. Note that M, =
Pk 2 4K279%* We also have VMgl > ib(e})?

Now asswine A contains no two consecutive integers. Then if 7 € 4 we
have /Mj > 24%=0% for j > 2 and so {a;}e4 € RISz(|4[,4k). As in [9]
we use Lemma 4.3,

Note first that there exists b € F with /F < b < f, so that h(n) =
VIn)ifne P\ {k} while h(n) = f(n) if n € Py U {k}. This fact follows
from Lemma 9 of [9].

Let z = 3. 4 x; and suppose that for some interval £ we have | Bzl z
=1, and

;S 16kkf (k)L

td

[ Ezllz > sup{{Bz,z*) : z* € Hz(h,m), m > 2}.

Since h < f this implies that |Ez||z > ||Ex|l,. On the other hand, since
{#;};e4 € RISz(|A|, 4x) we can apply Lemma 4.4 to deduce that |Ez|lz >
| B2l|so. The conclusion is that |[Ez|z = | Ez||s. Thus there is a special
sequence {zf,..., 2}, with { € Py, so that :

!

2= 0B, 2.

je=1

However, f(I)'/* = h(!) wnless { = k. We conclude { =  and

k
ESIORE PP

igd g1

|| Lo

1< || Ba

Let ¢ be the greatest integer so that 2z = 2} (with ¢ = 0 if no such
integer exista). I{ 4 < ¢ it is clear that (w, zf) =0 for all 5. Similarly if j < ¢
it is also clear that (m,z‘;*) = () for all 4. If ¢ = ¢, then (x,;,z;?) = (} unless
J=1t+1 when of conrse (x4, 20} <L Mt+1<ic dandt+1<7<k
then, unless ¢ + 1 = 4 = 7, we have 2; € Az(M;, %) and z} € Hz(g; M)
where M;, M} € Py are not equal. It follows from the separation’ conditions
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o Pq that we can apply either Lemma 4.1 or Lemma, 4.2; if M Jf < M;, then
by Lemma 4.1,

(@i, 2]) < 24 f(M[)™" < 24nf (par) ™7,
or if M} > M, then M 2 2%5% and by Lemma 4.2,
(wi, 25y < 26 f (M) /M < 26 (par )Py

In either case we have (s, 2) < kk™ If = j=t+ | then (x, zf) £ L.

Hence 7
k‘
<Zm“Zz;‘> <24+ k< 3K

iEA =1
This implies that
1Bz < 3nf(k)"/2 < 3/10
contrary to assumption. The conclusion from Lemma 4.3 is then that
lzllz < B AJR(IA]) ™" < Brkf (k).

The general result follows by splitting A into two subsets obeying the con-
dition that no two consecutive integers are contained in either.

5. The main result. We now let X = Z* and consider the indicator
@ x. We will need the elementary fact, which follows from duality, that X
satisfles an upper f-estimate, i.e. if 1 < ... < =z, € gy then |z +... +
Zalx £ f(n) maxi<icn |2 x. It also follows from the definition of Z that
if £1,..., %y is a special sequence (with n € P,) then lor + ... + zalix <
Fn)t2.

Our main result, which combined with the results of Section 2 establishes
Theorems 1.1, 1.3 and 1.4, is the following:

THREOREM 5.1, For every infinite-dimensional subgpace G of coy we have
sup{|Px(u)| : |ufly =1, v € G} = o0.

Remark. The following proof has been substantially simplified accord-
ing to a suggestion of B. Maurey.

Proof of Theorem 5.1. We will start from the agsumption that
there is a subspace G of infinite dimension so that |& x(w)| € K||uly for
% € (. We may suppose that if v € G then {u,x) = 0 where x iy the
constantly one sequence. Then by induction we can pick £; < oy < &3 < ...
in @ with ||€; |z = 2. We split ¢; into positive and negative parts: §; = £ ~¢£/,
where £, £ are disjoint and non-negative. Then £,& € D. We let R be the
union of the supports of the ¢/ and § be the union of the supports of the
£i'. Let W be the linear span of {[¢;]}32,.
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Notice first that X satisfies an upper f-estimate on blocks where flz) =
logy(z + 1). If v > 0 and n € N we define I'(n,v) to be the set of w € D
guch that there exist w; < ... < w, € D with w = (1/n)(w; + ...+ W)
and (1/n)A(wy, ... wy,) < 1.

LeMMA B.2. Given any m,n & N and § > 0 there evists w € W 0.I'(n, 6)
with < a{w).

Proof. For n & N let ¢, bo the infimum of all constants v so that if
m € N there exists w € W I'{n,y) with m < a(w). It is easy to see that
Cap 2 Cn + oy for any n, p and that {rom Lemma 3.1, ¢,, < log f(n). Hence
pey < oy < log f{n?) and so letting p - 0o we obtain ¢, = 0 for all n and
the lemma follows,

We now turn to estimates on the Lozanovskil factorization of w € I'(n, ).

LuMMA 5.3. For fised n and 0 < € < 1/2 there ezists p > 0 so that if
w € I'(n,n) and w = ga”™ is the Lozanovskil factorization of w, then there
exists A C [a(w), b(w)] with ||Awlly > 1 — ¢ and such that Azx*/||Az*||z €
)\z(’n, 2).

Proof If w € I'(n,6) then w = (1/n)3 7, w; where wy < ... <
wn, € D are such that (1/n)A(wy,...,wy) < 6. Let w; = mz! be the
Lozamovskil factorizations of each. Let ¢ = w1 + ...+ 2. If ¢ > 1 let
A= {j:y(f) < ex(f), 2(j) > 0}. Then Az* < ecntA(z}+ ... +2%) and
hence if Ay = AN [a(wy), b(w;)] then ||Ajz*| 2z € ¢/n. Now ||Az*|z > || Awl1
and so || Az*| 7' Az* € Az(n,¢) where ¢’ < ¢ Awl||7". Now, according to
Lemma 3.5, if 6 > 0 is sufficiently small we can choose ¢ close enough to 1
so that the conclusions follow.

Using the preceding lemma we describe a constructgon. Suppose N € P»
and & > Q, Then given any m € N and any My > 2%+ we can conﬁ;uruct
two sequences {w;},, and {¢;}}.; and a sequence of integers (A;)¥; so
that

() m < alw),

2) w < <uy<l <. <wy <Ny

(8) wy & I(Mjy,m) N W where 0 < 15 < e is sufficiently small so
that there exists A; < [a(wy), b(w;)] with |4;wify > 1 - and
g = || Agad|l5  Aay € Ag(M],2) where wy = ;2] is the Lozanovskir
factorization of w;,

(4) ¢ e rg(My,2),

(5) Aﬁfj+1 P Q‘I‘MCJ)H.

We will call the regulting sequence {w;,-};j-‘.’__ y an (N, e)-sequence, and w =
(1/N)wy ... 4+ wy) the assoclated (N,e)-average. The sequence {;}HL,
is enlled the ballust sequence; it is present simply for technical reasons to
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provide ballast in the argument. Let H be the union of the supports of the
ballast sequence.

LemMMA 5.4, Suppose {w1,...,wn} i an (N, c)-sequence as above with

associated (N, €)-average w and ballast {¢;}Y.,. Then there is a subset A of

[a{w),b{w)] and © € Myz(f; N) N Q. with suppx C suppw so thoet

6) ||lAwls >1—e¢,

() if B C A there emists z € Ag(N,4) supported in BU I so thal Bw <
10z z,

(8) if B C A then (Bw,logz) > &x(Bw) — 4.

Proof. Notice that y = (1/f(N))(z1+.. .+an) € Hz(f; N} and ||y||x <
1, since X has an upper f-estimate. Choose z with rational coefficients so
that /2 <z <y Let A= A4, U...U Ay =0 that (6) immediately holds.

We recall that z; € Az(M;,2) (condition (3)) for 1 < j < N. It follows
easily that if B is a subset of A then we can find 0 < o; < 1 0 that || B} +
oj(;llz = 1 and then Bz} +a;(; € Az(M;, 4). The sequence {Bz}+o ,CJ}J 1
thus belongs to RISZ{N 4) (since My > 236N°+4) and so HZJ (B +
o;C) |z < BN/ f(N), from Lemma 4.5.

Let 2 be the normalized vector 2 (Z 1 Bei+a;(;) where, by the above,
B > f(N)/(5N). Then » € Az(N 4) and 72 > y2/2 > Buw/10. This
proves (7).

For (8) we notice that Lemma 3.4 now implies that & 5 (Bw)—
< 10/e < 4.

Let us suppose that n € Py is fixed and large, say f(n) > exp(8K 44000),
and let & = (log f(n))~!. Let My = pan; we can construct an (M, e)-
sequence {wy; };\41 with (Mi,s)-average wy = M lZJ L wi; and ballast
{413} -1 Let 21 € Q0 Hz(f; M1) and 4; C [a(wy), b{w;)] be such that
the conclusmns of Lemma 5.4 hold.

Next let My = o(Rz;) and construct an (Mp,e)-sequence {ng}?ﬁl
with associated (Ma,e)-average we and ballast {(y; };‘i‘l s0 that Ciar, <
uz. Repeating this construction for n steps we obtain sequences (wiy)
(C,;j)?ﬁl fori=1,...,n, (wy)l,, (M), (A%, and ()%, so that

(9 (wij}j@l is an (M, €)-sequence with associated (M;,e)-average w;
and ballast {Cij}?’i"l for1<i<m,

0) w1 <l <wa <oty <-.. < Wy < Cuddys

1 A Clafw),bw;)] for 1 <4< nand |[4uw)1 > 1— e,

2) suppx; C suppwi, %3 € Hz(f; M;) N Q, and so ||z;]lx <1,

4

(Bw,logz)

M,
d=lr

) {(Bwi,logz;) > x(Bw;) — 4 whenever B C A;,
) for any B C A; there exists 2 € Az (M, 4) with Bw; < 10z;z2,
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(18) My = o(Req,...
We also have
(16)  (Rzy,...,

Let H; be the union of the supports of the ballast at the sth step. Let
A= U 1 A and then set P == AN R and Q@ = AN S. We also define u; =
2Ry, vy = 2‘:wz (so that ug,v; € D) and then set w = (1/n){u; + ... +ua),
ve= (1/n)(o) + .. 4 wy) and w = (l/n)(wl W)

If wo set @ = (f(n))"V2EE | Re; then H:L||x < 1, since by (186),

{Rey,..., Ra,} is a special qequmcc Hence, using (13) above,

JRa) for 1<ign—1,

Rz, ) is a special sequence of length n in X = 2*,

! ZGT’ (Pwg) — -10gf(n)HPw|[1 — 4.

'r~1

Thus (1/n)A(Puy, ..., Pun) < (1/2)log f(n)}48. Now (1/n) > 1, || Puslly >
1 — 2¢ so that by Lemma 3.3, and the choice of €,

Py (Pw) > (Pu,logx)

(17) -1-A(u1,... llogf(n)+11.

3 ’u’n) <

On the other hand, by Lemma 5.4 we can find 2; € Az (M;,4) supported
on ((supp w;) N QYU H; so that Qw; < 10z;2;. At this point we can invoke
Lemma 4.7. Let B; = [a(w;), b(Gi ar,)] and notice that R:cz, 2; are both sup-
ported in Ky, but are digjoint. Yince fln) > 1600, Rxy,..., Rz, is a special
sequence and 2 € Az (M, 4) where My = pay, and Mj+]_ =o(z1,...,z;) for
1< j € n=1we can conclude that sz\f__l zil|z < 64nf(n)~1. At the same
time, by the upper f-estimate on X, |35, zi|lx < f(r). Now we have

< (7 3m) (G2 204)

=1
and we can apply Lemma 3.4 again to deduce that

T
Bx(Qu) < (Qu,logas) —log £(n)| Qully + 640,

da)

and so, since || Quly > 1/2 - ¢,
1
%A(Q'U)‘Ls vy CJ'(Un,) = 10gf(’ﬁf)i|Q't.UH1 - G40 > 5 ],ng(n) — 641.

Now recall that Qu; = 2Quw;. Hence (1/n)A(Quvy, ..., Qua) = log f(n)—1282
and we can apply Lemma 3.3 to deduce that

(18) »-A(m, . vn) > log f(n) — 1283,

Notice that u; — v € G for 1 <4 € n. Now we have |$x (u; — 'u,)\ < 211{
for 1 <1 < n, and |$x (u—v)| < 2. Hence [Bx (us)~Px (vi)| < 2K +8e™" <
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2K +3for 1 <4< n and similarly [Sx (u) — $x(v)| < 2K + 3. This implies
that

LA, o) = SAGu, . un) < 4K +6.
T ki

Combining with (17} and (18) gives that log f(n) < 8K + 2600, which con-
tradicts our initial choice of n and completes the proof of Theorem 5.1,

It is perhaps worth noting at this point that it is very simple to modify
our example so that Theorem 1.1 holds with L of any specified dimension.

THEOREM 5.5. For any n € N there is o quasi-Banach space Y™ with
o subspoace L of dimension n so that Y/L is isomorphic to €1 and if Yy is o
closed infinite-dimensional subspace of Y™ then L C Y.

Proof Let 4y = {nj +k}§% C N, for k = 1,...,n. Define Sy :
Cop — Cao by Sku = Z;‘?_—D u(j)enj_;_k. Define & : copg —* fgo by @(u) =
{Px{Sku)}?.,. Then let Y™ be the completion of £% @ ey under the
quasinorm

(€, wMle = 1€ — @{u)lloo + [lu/l1.

Let L be the space of all (£,0) for & € £%,. Clearly Y™ /[ is isomorphic
to ;. Now suppose Yp is an infinite-dimensional subspace so that Yy N.L is
a proper subspace of L. Then there is a non-trivial linear functional f on
£y, so that ¥y L € Z = f~40). Suppose f(£) = > %_, Oebe. It is casy
to verify that ¥Y/Z is isomorphic to the completion of R @ ¢gy under the
quasinorm {|(e, ull|le = o — ¥ (u)] + |[ully where ¥(u) = >71_, BuPx(Sku).
However, there is a constant K depending only on f1,..., 8, so that [¥{u) -
Px (ot BrSuu)| < K|u1- It follows easily that ¥ is unbounded on every
infinite-dimensional subspace of gy and hence that (Yp+ Z)/Z must contain
L/Z, which is a contradiction to the fact that YN L is contained in Z.

6. Some final remarks. In this short final section we will present a
proof of Theorem 1.2, which first appeared in [14], a reference which may
not be readily available. Our proof here is slightly shorter. We begin with a
lemnmas

LemMmA 6.1. Suppose X is o quasi-Banach space with o dense subspace
V with (HBEP). Suppose L = {z € X : 2*(z) = 0 ¥a* € X*}. Then:
(1) If L = {0}, so that X has a separating dual, then X is locally conves.

(2) If X contains a basic sequence then X is locally conves.

(3) If M is a closed subspace of L then X/M has a dense subspace with
(HBEP).

Proof. (1) (cf. [11]) Let || ||c be the Banach envelope norm on X, i.e.
lz]le = sup{|z*(z)] : =*|| £ 1}. If X is not locally convex we may choose
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vy € V with |log|le £ 47" and {Jv.)| = 1. Pick any z € V and consider
the sequence wy, = v, + 27"z, Then (see Theorem 4.7 of [16]) there is a
subsequence (w, ) which is a Markushevich basis for its closed linear span
in X. Pick ng large enough so that = ¢ [w,, : k > ng). Then by (HBEP)
for V there is a linear functional 2* € X* with #*(w,,) = 0 for k& > ng but
m*(m) s 1, H()W(W'@I‘, lilﬂn._,m ”LE - 21“"“’1&“(: = (0 go that :(;"‘(3;) == 0;. contrary
to hypothesis.

(2) Pick any u € L; we will show u = 0. Assume then that u # 0. Suppose
w € V is non-gero, and wu,w are linearly independent. Since X contains a
basic sequence and V' is dense in X we can apply standard perturbation
arguments to suppose that we have a bounded basic sequence (z,) with
2n € n{u -+ w) +V, say x, = n{u-+ w)+ v, where v, € V. Then there
exists ng o that [u,w] N [@a]npn, = {0}. Thus there is a bounded linear
functional f on the span Y of w,w and [#n|npn, with flu) =1, flw) =0
and f(zn) = 0 for n > ng. Since V' has (HBEP) there is a bounded linear
functional #* on X with z*(v) = f(v) for v € VNY. Thus z*(w) = 0 and
2*(un) = ~n; also 2" (u) = 0 since v € L. Hence 2*(z,,) = —n, contradicting
the boundedness of z*. Now since L = {0} we can apply (1) to deduce that
X is locally convex.

(3) Let w: X — X/M be the quotient map; we show #(V) has (HBEP).
Indeed, if B < #(V) is a subspace and f is a continuous linear functional
on E then we can find z* € X* so that 2*(v) = f(mv) for v € # TENV.
But then z*(x) = 0 if # € M C L so that z* factors to a linear functional
on X/M.

THEOREM 6.2. Suppose X is a decomposable quasi-Banach space. If X
has o dense subspace V' with (HBEP) then X is locally convex.

Proof. Let P be a bounded projection on X so that both P and @ =
I — P have infinite rank. If L is defined as in the previous lemma then L is
clearly invariant for P, From the hypotheses, X * has infinite dimension and
hence so has X/L. Therefore either P(X)/P(L) or Q(X)/Q(L) has infinite
dimension. Suppose the former; then consider X/P(L}, which has a dense
subspace with (HBEP) by Lemma 6.1(3). Then P(X)/P(L) is isomorphic to
a subspace of X/L which has separating dual; since it has infinite dimension,
it containg a basic sequence, By Lemma 6.1(2) this implies that X/P(L) is
locally convex and hence that @Q{X) is locally convex. But now X itself must
contain a basic sequence and Lemma 6.1(2) shows that X is locally convex.

Let us conclude by meutioning that in [14] we raised the question of
whether every quasi-Banach space X with separating dual has a weakly
closed subspace W and a bounded linear functional f on W which cannot
be extended to X. We proved that this is equivalent to-the following:
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PROBLEM. Suppose X is o quasi-Banach space with separating dual and
suppose that every quotient X/E by an infinite-dimenstonal subspace E i3
locally convex. Is X locally convex?

Of course our main example Y has every quotient ¥Y/E hy an infinite-
dimensional subspace locally convex, but fails to have a separating dual.
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