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Operator fractional-linear transformations: convexity
and compactness of image; applications

hy

V. KDATSKEVICH (Karmicl) and V. SHUL'MAN (Vologda)

Abstract. The present paper consists of two parts. In Section 1 we consider fractional-
linear transformations (f.-1.t. for brevity) F in the space £({X7, A2) of all linear bounded
eperators acting from & into X3, where Xy, A% are Banach spaces. We show that in the
case of Hilbert spaces X1, Xy the image F(B) of any (open or closed) ball B C D(F) is
convex, and if B is closed, then F(B) is compact in the weak operator topclogy (w.o0.t.)
(Theorem 1.2). These results extend the corresponding results on compactness obtained
in [3], 4] under some additional restrictions imposed on F. We alsc establish that the
convexity of the image of £.-1.t. is a characteristic property of Hilbert spaces, that is, if for
the f-Lt. F: K — (7 + K)™! the image F(K) of the open unit bail K of the space L{x)
is convex, then A is a Hilbert space (Theorem 1.3).

In Section 2 we apply the compactuess of F(K) for the closed unit operator ball K to
the study of the behavier of solutions to evolution problems in a Hilbert space H. Namely,
we establish the exponential dichotomy of solutions for the so-called hyperbolic case (such
that the evolution operator is invertible). This is an extension of Theorem 1.1 of [5],
where the corresponding assertion was established for the particular case of a Pontryagin
space H.

1. Fractional-linear transformations. For Banach spaces Xy, Xs let
L(A1, A5) be the space of all bounded linear operators from X; to X3. For
any operator matrix V = (Viy), 4,7 = 1,2, Vi; € L(&;, A}), the formula

F(K) = (Vay + Vae K)(Viy + Vi K)7*
defines the f-l.t. F' = Fy : D(F) — £{X, X3), where
DF)y={K € L{A&, A) : Vi1 -+ Vio K s invertible}

{see (2], [3]).
For any (open or closed) ball B € D(F) in £L(X, Ap) we set F'(B) =
{F(K): K & B}.
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LEvMA 1.1, Let Xy, Xy be Hilbert spaces and ¥ = V(R, P, Q) be the set
of all operators Y € L(X, Xy) satisfying the inequality
(1 YRY*+PY*+YP' +Q <0,
where R € L(X), P € L(X, X)), Q€ LIX,), RZ0 and Q* = Q. Then Y
is convex and closed in the w.o.t. of the space L{X1, Xy).

Proof The closedness of V follows immediately from the fact that

(RE,£) < liminf(RE,, &y) for any sequence &, weakly converging to £ To
prove convexity we assume at first that R is invertible. Then (1) can be

rewritten in the form
(YRI/Q_l_PR-—l/Q)( R1/2+PR—1/2)* < T

where T' = PR™1P* — Q. So Y is convex as the preimage of the convex set
8§ ={5:88* < T} under the affine transformation ¥ — YRY? + PR7V2
Tn the general case one can use the evident equality

VR,P,Q) = | [|VRB+el,P,Q—eAl).
A»0e>0
THEOREM 1.2. If X1, Xy are Hilbert spaces, then F(B) is convex for any
ball B C D(F). For B closed, F(B) is w.o.t.-compact.

Proof Let B = {K € L(M,X2) : |[K ~ Kp| < r} be a closed ball
contained in D{F). Dilating and translating B if necessary (and changing F'
accordingly) we may suppose that B is the unit ball:

B=By = {K € E(Xl,XZ) : “K” < 1}

Since 0 € By C D(F) the operator V13 is invertible, hence

F(K) = (Va1 + Vao K)( + VT Vi K) 7V
and ||V;7*Viz2|l < 1 (in the other case D(F) would not contain Bp). So it is
sufficient to prove the convexity and w.o.t.-compactness of the image of Bg
under any map F of the form

F(K)=(B+CE)I+DK)™!

with ||| < 1. In this case the equality ¥ = F(K) is equivalent to
(2) (YD-C)K =B-Y.
Hence Y € F(Bp) when (2) is satisfied for some K € Bp. It is known (see,
for example, [8]) that this is the case when
(3) (YD-C)YD-CY =(B-Y)(B-Y).
But (3) coincides with (1) if we take R = I ~ DD*, P = CD* — B and
@ = BB* — CC*. Now Lemma 1 implies that F(By) is a convex and w.o.%.-

closed subset of £(X;,X2). Since ||F(K)|| < (B + |CH(L — || D|)~* for
K € By, F(Bp) is bounded and weakly compact (by the Banach-Alaoglu
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theorem). The convexity of the image of an open ball now follows from the
fact that
(KK —Kol <r}= | {K:|K~ K| < Ar}.
<A<l

Let us show that the convemty of the image of the open unit hall under

the f-Lt. K — (I 4+ K)~! characterizes Hilbert spaces in the class of all
Banach spaces.

THECOREM 1 3. If the image of the open unit ball of L(X) under the map
K — (I+K)~! is convez then X' s a Hilbert space.

Proof Let P = {(I + K)~! : ||K|| < 1}. Since P is convex by as-
sumption, P& = {Af : A ¢ ‘P} is convex for any £ € X. If £ # 0 then
Pe={ne X (I+Kn=¢|K| <1} ={neX:|&~n| <[y} The

convexity of P implies the convexity of the set
K&y ={neX:|€-nll <ll¢+n|}
since KC(€) = 2P£ — €.

Let n € K(£) and X € (0,1). Since K(£) is open there exists 0 < & < 1
such that the vector

nle} =& + A7 (A ~ e€)
belongs to K(£). Since e € K(£) the convexity of K(£) implies

Ay = (e} + (1 e € K(€).
We have proved that the inequality

(4) € = nll < [I€ +nl
implies

(5) 1€ = An| < 1|€ + Anl|

for A € (0,1). Interchanging the roles of & and 7 in (4) we get

1A —=nll < [IAE + 7l

for A € (0,1). This is equivalent to the validity of (5) for A > 1. Hence
AK(E) = K(¢) for any A > 0. It follows that the set

TE) ={ned:|n—&ll=In+¢l}

Is also invariant under multiplication by A > 0 (indeed, if An does not
belong to 7T(£), then An € X(€) UK(—£), hence n € ATH( UATIK(=E) =
K(£)UK(~£), and therefore 7 does not belong to 7(£)). Hence MT°(€) C T(£)
for any A > 0. By James’ Theorem [2] the last means that X' is a Hilbert
space.



192 V., Khatskevich and V. Shul’man

COROLLARY 1.4. If the image of the closed unit ball of L(X) under the
mapping K — (M + K)7! is convex for each A > 0, then X is o Hilbert
space.

Proof. It is sufficient to notice that
((+E)" K] < 1h= I+ B 15| < 1-¢)
e>0
= [ JDAT+ )77 X < 1}
Ax1
is a convex set by Theorem 1.3,

2. Applications to evolution problems. Let

dx

(6) = = Ale

be a differential equation in a Hilbert space M with a scalar product (-},
and for ¢ € RT = [0,00), let A(t) be seifadjoint operators in H with a
common dense domain 2. The Cauchy problem for equation (6) s assumed
to be uniformly well-posed. Therefore there exists a bounded linear operator
U(t) in H (called an evolution operator) such that for every solution z(¢)
for (6) with z{0) = zg € D we have 2(¢) = U(t)zg. If yo does not belong to
D we will call y(t) = U(t)yy a generalized solution.

Let L., (RT,H) be the set of functions z : R — M Bochner square
integrable with respect to a strictly positive locally integrable weight w =
w(t). Let A denote the set of generalized solutions belonging to £, (R*,H).
Set Mg ={h e H:h=y{0), ye N}

Consider the following indefinite metric on H depending on #:

[m:y]t = (J(t)xay)n
where J (£} = Py(t)— Py(t), PL(t) = [5° dEA(), Pa(t) = [0 dEx(t), Ex(1)
being the spectral function of A(2).
The following sets (called bicones) will be used below:
Cr = {yo € H: [Ulthyo, Ult)y]: < 0}, +teRT.

A Dbicone C;” is said to be of rank r < oo if it contains a subspace £ C H
with dim £ = r, and does not contain subspaces of greater dimensions (see
[6]; note that in [6] the case of r < co was studied only).

Suppose that J(t) is strongly differentiable. Consider the derivative of
the solution x(t) for (6) along the trajectory:

(J()z{t), 2(t))" = 2Re(J (1) A(t)a(t), 2(t)) + (J (&) 2(t), =(2))-

We will assume below that (J(t)z(t), 2(¢))’ is qualified positive and that the
evolution problem is hyperbelic, that is, the operator U(¢) is invertible for
all t e RT.
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THeOREM 2.1. Suppose the Cauchy problem for the equation (8) is uni-
formly well-posed and the metric [+, -] satisfies the following conditions:

(a) J(t) is strongly differentioble, the limit lim;_, oo dim Pp(t) = d_ exists
and

(b) the evolution operator is invertible for each t € RT and
() U ()5 U ()20 > 0

for every t € RT and for each z &€ H such that [z,2]: > 0.

Then the generalized solutions y(t) = U(t)yo, yo € M, have the following
properties:

1) Mo 2 C% = [Nyer+ Ci » where C, is a bicone of rank d_;

2) for any y(t) € N,

o.e]

) J wl)ly@)IPds < Tw)exp (~2 [ us)ds),
0

¢
where I{y) = fow w(s)l|y(s)]? ds;
3) for any yo € H\Cx,

i

(10) ly(®)l 2 osvoloexp (2 [ w(s)ds), teR.
‘ 0
COROLLARY 2.1. Under the conditions of Theorem 2.1 let
[¢a]
(11) [ w(tydt = co.
0

Then all the statements 1)-3) are true, and moreover, Ny is a closed sub-
space of H with dim Ny = d_.

Before we prove Theorem 2.1 we should recall that in the case dim Py (t)
< o0, t € RT, condition (8) is automatically satisfied (see [7]). Then ;f
J(t) = J = const, we have: (7) is equivalent to Re[A(£)¢, €]y = w(t)|IE)%,
teD.

Proof of Theorem 2.1. With the help of (7) we get, for any 7 <
t(e R*) and yp € D,

(12) [U(t’l 'r)yO: U(t:T)yo]t - [y()i'yﬂ]‘r 2 2 j 'LU(S)HU(S, T)yOHZ dS, .

where U(t, ) is the operator assigning to each yg € D th'ehva,lue y(t,s) of
the solution for equation (6) which satisfies the initial condition y(r, )= Yo
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(so that U(t) is the brief notation for U(t,0)). By continuity of U{#,7) the
inequality (12) holds for any yy € H. Hence we obtain (keeping in mind
IV (woll* = [U(t)yo, U)wel: and setting y(t) = U(t)ya)

t

(13) Iy = 2 [ ws)lly(s)lI* ds + [yo, yolo.
0
where y(t) = U(t)yo. Taking yo € H \ Cy and arguing as in the Bellman-
Gronwall lemma. (see [1], Chapt. IT) we get (10). Namely, from (13) we have
20
2 fy Hy(s 12d5+ [vo. polo

Hence integrating from 0 to ¢ we obtain the required inequality.
From (12) it is easy to see that

C; cCr fort>r t,reR™.

It follows from the condition (b) that the operator U/ () generates a
fractional-linear transformation

Fya (K (1) = (UR'(8) + U (VK 0)(UG'(t) + U K (1)~
of the closed unit operator ball () C L(P:2(t)H, P1(0)H) such that
_1(t) : Ht s HO,
Ho = PL{OYH ® Po(0YH = HY & M3,
= Pi(tyH ® P(t)H = M} o H},
-1 R 0 I .
By Lemma 1.1 all the bicones C;”, t € R, are convex and closed. Since they
are evidently bounded, they are w.o.t.-compact. Hence using. the property
of dim Py (t) (see the condition (a)) it is easy to check by letting ¢ — oo that

C%, is a bicone of rank d_.
Now let us prove C3, C Np. Take z € C,. From (13) we obtain

2y ds < —[z2]o.
0

This means that y() = U(t)z € /. So 1) is proved. Then setting yp = y(7)
in (12) and letting t — oo we get (9). So 2) is proved.

Proof of Corollary 2.1. Let (11) hold. From (10)-(11) it follows
that [y, yo] < 0 for all yg € Nop. In view of 1) we hence obtain Ay = CZ, and
the statement is proved.
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