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On Dirichlet-Schrodinger operators with strong potentials
by

GABRIELE GRILLO (Udine)

Abstract. We consider Schridinger operators H = A2 4V (V 2 0 and locally
bounded) with Dirichlei boundary conditions, on any open and connected subdomain
D ¢ R" which either is bounded or satisfies the condition d(z, D) — 0 as fz] — oo.
We prove expouential decay at the boundary of all the eigenfunctions of H whenever V'
diverges sufficiently fast at the houndary 8D, in the sense that d(z, D)2V {z) — oo as
d(z, D) — 0. We also prove bounds from above and below for Tr(exp[~tH]), and in
particular we give criterions for the finiteness of such trace. Applications to pointwise
bounds for the integral kernel of exp[~tH] and to the computation of expected values of
the Feynman-Kac functional with respect to Doob h-conditioned measures are given as
well.

1. Introduction. Let D be an open and connected proper subset of R™.
On D, one can consicder the Dirichlet Laplacian, Ap, or the positive operator
Hy = --Ap/2, which is the self-adjoint operator (in L2(D)) associated with
the closure of the quadratic form

(1) Qi) =35 [ IVi@)*dz,  fecqD),
D

IfV 2D - [0,00) i a locally bounded measurable function (the potential
fanction), then one can also consider the Schridinger operator H = —A/2+
V = Hy + V, with Dirichlet boundary couditions, which is the self-adjoint
operator associated, by the above procedure, with the quadratic form

(1.2) QU = Qo) + [ V@)lf(w)Pde, e C5(D).

D
The reason for the factor 1/2 in (1.1}, (1.2} is simply that this is the usual
normalization for the generator of the semigroup associated with Brownian
motion, and we prove some of the main results of this paper by probabilistic
methods. It should also be noted here, once for all, that a negative part of
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the potential V, belonging to the Kato class K, (cf. [S]), conld be added to
H without altering most of our results, and we do not follow this way mainly
in order to avoid cumbersome notation. Also, Hy could often be replaced by
general uniformly elliptic second-order operators in divergence form.

The Dirichlet-Schrédinger operator H has been studied in previous works
of F. Cipriani and the present author [CG1-3], in connection with pointwise
lower bounds for positive eigenfunctions of H, and with some contractivity
properties of the semigroup associated with H, which are known as inirinsic
ultracontractivity, and which were introduced by E. B. Davies [D1, D3], and
later on studied, among many others, in [DS], [Dal, [B2] [BD2]. It should be
noticed that the main novel feature of [CG1-3] is the possibility of studying
Dirichist-Schrédinger operators with potentials which are not small, in the
quadratic form sense, with tespect to —Ap, and whose spectral properties
are then not to be expected to be necessarily similar to those of —Ap.

We focus our attention here on the opposite case, in which the potential
V diverges sufliclently fast at the boundary. We identify a class of potentials
for which many spectral properties of H are essentially independent of the
geometry of the domain D, and involve only the rate of divergence of V;
this class is “close” to being optimal, as shown in Example 2.6. The charac-
terizing property of this class is the condition d(x)?V {z) - oo as d(z) — 0,
where d(z) = d(z, D°) (the distance function from the boundary). In this
connection, it should be noticed that we restrict our attention to dormains D
which either are bounded, or satisfy d(z) — 0 as |z| — o0, mainly because
other situations can be discussed by methods which are essentially those of
[CS]. One should also notice the similarity with the theory of intrinsic ul-
tracontractivity of Schrodinger operators in R™; in fact, if V{z) = |z|*, then
the associated Schrédinger operator in R™ is intrinsically ultracontractive if
and only if & > 2 (see [D3]).

In Section 2, we prove exponential decay at the houndary of all the
eigenfunctions of H, by means of probabilistic estimates which use old ideas
of Carmona [C]. We begin by observing that, under the above condition on
V', H has compact resolvent, and hence a purely discrete spectrum. Results
similar to those of Section 2 have been obtained in [CG3], but in the case of
a continuous V. Moreover, the techniques there were much more involved,
since they involved weighted L?-estimnates for eigenfunctions in terms of the
Agmon metric of V' ([A], [CS]), and subsolution estimates.

In Section 3, we discuss the tracial properties of the semigroup exp[-—-tH]
associated with H. More precisely, we prove two-sided estimates for
Tr(exp[—tH]), and in particular we give an integral criterion for the finite-
ness of Tr{exp{—tH]) for all £ > 0 in tering of V(z) and d(z), which is valid
for weak potentials, that is, those which satisfy V(z)d(z)? — 0 as d(z} — 0.
This generalizes a well known condition of Davies [D2] for the finiteness of
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Tr(exp[tApl}). A similar criterion is stated for potentials which diverge suffi-
clently fast at the boundary and have mild oscillation. The results are then
applied to prove pointwise bounds for the heat kernel of £ (that is, for the
integral kernel of exp[--tH]), and finally to prove some bounds for the ex-
pectation of the Feynman-Kac functional associated with V, with respect to
the meagsure on the path space induced by the so-called Doob h-conditioned
processes [Do]. Results of this latter type are typically known only for V in
the Kato class K, ([Da], [B2], [BD1]).

2. Pointwise decay of eigenfunctions at the boundary. In this
section we prove, by probabilistic methods, a pointwise upper bound for any
eigenfunction of a Dirichlet- Schrédinger operator on a proper subdomain D
of R™. The main assumption which we shall use below is the following (the
notation hereafter will be that of the introduction):

ASSUMPTION 2.1, (i) The domain D is either bounded, or has the prop-
erty thot 1m0 d(z) = 0;

(i) V: D = R is a.e. non-negative and belongs to L2, (D). Moreover,

. ) _
d(lé)“lo d(z)*V(z) = co.

Part (i) of the assumption is motivated by the requirement that the
spectral properties of the Dirichlet~Schrddinger operators considered can-
not be discussed by straightforward modifications of the known methods for
Schrédinger operators in R™. If it does not hold, one can study the corre-
sponding operator, under the further assumption that lim; . V(¥(2)) = 0
along any curve v : [0,00) — D such that inf;>q d(v(2)) > 0, by a combi-
nation of the methods of the present paper, and of those of [CS]. Part (ii)
gives a precise meaning to the statement “Schrédinger operators with strong
potentials” appearing in the title; we assume local boundedness of V since
we are mainly interested in the singularities of V' at the boundary. Here
and in the sequel, by a bounded function we mean an essentially bounded
Function.

We recall that the spectrum of an operator H on a Hilbert space L2( X, i)
is said to be purely discrete if it consists of isolated eigenvalues, each of
which is of finite multiplicity. The essential spectrum of H is that part of
the spectrumn which is not purely discrete. Hereafter, by the spectrum of H
we mean its L2(D)-spectrum.

The first technical result will be basic in what follows, and uses a well
known argument for proving discreteness of the spectrum.

LemMMA 2.2, Suppose that Assumption 2.1(1) holds, and that V.(z) — oo
as d(x) — 0 (which is true in particular if Assumption 2.1(11) is, satisfied).
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Then the resolvent H—' is compact as an operator on L?(D), so that the
spectrum of H is purely discreie.

Proof. We prove that the essential spectrum of H is empty. To this end
fix ¢ > 0 and notice that, by Assumption 2.1, H can be written as

H=-1a4+V v,
where the potentials Vi o satisfy the following conditions:

(i) Vl(c) >cforallze D.
(ii) Vg(c} is bounded with compact support.

In fact, simply choose V{?(z) = V{(z) V ¢, Vi%(z) = V(z) — Vi (z), and
notice that Vg(c) is bounded with compact support by the assumptions. By
[D3, Lemma 1.6.5], it follows that

H+d ™ - Ra+ 447"
is compact for @ > 0 large enough, so that in particular the operators H and
Hy = Hy + Vl(c) have the same essential spectrum. However, the spectrum
of H; is contained in ]c, o0), since Hy is a positive operator and Vl(c) >chy
construction. Since moreover ¢ > 0 is arbitrary, it follows that the essential
spectrum of H is empty.

Remark 2.3. By the min-max characterization of eigenvalues, it follows
that the assertion of Lemma 2.2 remains true also when Hy = ~A/2 is
replaced by an elliptic operator given, in the weak sense, by

K
) of
A1) = 3 - (0se) ),
§,7=1
where the matrix-valued function (a; ;) is measurable, locally bounded, and
satisfies the strict ellipticity condition (a; ;) > A1 for some A > 0.

COROLLARY 2.4. Under the assumptions of Lemma 2.2, the operator
exp[—tH| maps L'(D)NL*®(D) into itself, and can be extended, for p €
[1,00], to a positive contraction semigroup on LP(D), with generator Hy.
If p < oo, the corresponding semigroup is strongly continuous. Moreover,
Jor all p € (1,c0), exp[—~tH}| is compact on LP(D), the spectrum of H,
8 (md)ependent of p, and any LE(D) ~eigenfunction of H = Hy belongs fo
LP{(D

Proof. H is the generator of a symmetric Markov semigroup, by [D3,
Th. 1.8.1}, therefore the first part of the statement follows from the applica-
tion of (D3, Th. 1.4.1]. To prove compactness notice that the compactness
of exp[--tH} on L*(D) follows from the compactness of H™!, so that the
dssertion is just an application of [D3, Th. 1.6.3). =
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The following is the main result of this section:

THEOREM 2.5
that

(2.1) Viz) 2 v/d(z)*™

for some v > 0 and m > 1, Let p € [1,00], and consider any LP-eigen-
function ¢ of H,, with eigenvalue E (> 0). Then there exists k = kg > 0
such that the following pointwise upper bound holds:

(2.2) [¥(@)| < kexp[—8/d(z)™ ]
forall § < 3, where

. Suppose that Assumption 2.1 holds true, and moreover

(2.3) §= g( )= { i;z{Q(QTI;Zil/(ﬂmm)

flam<?2,
if m>2

Proof. By the spectral theorem, ¢ is an eigenvector of exp[—tH] with
eigenvalue exp[—tE]. For any ¢ € D, one then has, by the Feynman-Kac

formula,
et () = (= )(x) = Ba e o VR iy,

where X, is a standard n-dimensional Brownian motion, and E, denotes
expectation with respect to Wiener measure with starting point z. Since
is necessarily bounded, it follows that

T LV 0| < (o) oo (7o VOW ).

Let us fix s € (0,1), and consider B(z,s) := B(z, sd(z)). If 7, denotes the
first hitting time of B(zx, s)°, one has

|WMS&E@45LVW”,HZﬂ+E( ﬁw&m%%<ﬂl

Define

(2.4) Vo) = f V).

w(a)| = e[ (o

It follows that since V > 0 a.e.,
()] < e*|[ehloo (™) + Pu(re < 1))

d(z)\ V"2 —s%d(z)?/(2t)
ol (77 [ (L) etz
* Vi - ‘

where the last inequality follows from.eq. (2.4) of [C], for & suitable ¢ > 0.
By adapting the ideas of Carmona to the present.context, we now putt =
t(z) in the above formula, so as to obtain a general pointwise upper bound
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on [1]. Under Assumption 2.1, we set in particular #(z) = 12 Ad(2)>, for
positive constants o, A. Then, on using again (2.1), it follows that

(@) < [P0 00" (At

. sy1/? ov(n—2) 1 = A
A2 q(z)a/?-1

Setting now a: = 1 +m (this choice is easily seen to be optimal), one finds

|¢(m)| S ”qpl|weEA71/2d(m)l+m (e—A“f_l/z/E(1+3)2md(2)m—1]

e sy1/? 0v(n—2} 11| et /2 Adt) )
Al/zd(m)(m—l)/z

Next, consider the function f : 2 := R* x (0,1) — R defined by

A 52

An elementary computation shows that if 1 < m < 2 then suppy f =

2-(@m+1)/2 while if m > 2 then supy, f = max f = (m — 1)™1/(v/2m™).
This implies the assertion. m

It is possible to show that the methods used in the proof of the above
theorem are, in general, not applicable to potentials which do not diverge
sufficiently fast at the boundary. A counterexample is in fact provided by
the following

EXAMPLE 2.6. Let n > 4, D = B(0,1)\ {0}. It is known that each point
of R™ has capacity zero, so that the Dirichlet boundary condition on any
isolated point is irrelevant. Therefore, —Ap = —~Ap,, where Dy = B(0,1).
Therefore —Ap has bounded resolvent and a purely discrete spectrum. Let
o be the ground state eigenfunction of —Ap, that is, the unique eigenvector
corresponding to the lowest eigenvalue of —A p. Consider any potential V on
D which is of the form V(x) = |2[~%, with & < 2, for || < 1/2, which van-
ishes for 3/4 < |z| < 1, and which is of class C°°(D). Then it is clementary
to check that V belongs to LP (D} for a suitable p > n/2, so that in particular
V belongs to the Kato class K, ([S]). Therefore, by a local Harnack prin-
ciple and the above observations, it follows that ¢4 (0) > 0, where ¥ is the
ground state eigenfunction of the Dirichlet—Schrédinger operator H {(with.
Dirichlet boundary conditions on D) corresponding to V. The same conclu-
sion holds for a potential V' which is of the form V{x) = || ~?(In(|z|+2))~,
with & > 1, in a neighbourhood of the origin. In fact, V is easily shown to
belong te the Kato class as well. '
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‘Thus, for the above choices of V, there is an eigenfunction of H which
does not vanish on 8.0, so that there is no hope to enlarge very much the class
of potentials which can be treated as above, unless further assumptions on
D are made. In this respect, we notice that regularity in the sense of Davies
(D3] is not to be expected to be strictly relevant to the present problem,
since in fact the quadratic form inequality c/|z2 < —A (for some ¢ > 0, see
[RS1], [D4]) shows that D is strongly regular in the sense of Dayies.

A further result can be obtained with a proof which is very similar to that
of Theorem 2.3, and which is more useful in some situations, since it involves
(a regularization of) the potential V itself. In fact, the next result reminds
the classical W.K.B. estimates in R™ (cf. [RS2]). It should be noticed that
the following estimate for [1(x)| involves only, for any fixed z € D, the local
behaviour of V' near . This improves the (non-local) estimates of [CG3],
which involve the Agmon metric of V.

THEOREM 2.7. Under Assumption 2.1 one has, for any etgenfunction i
of Hp,

(2_5) |T/)(~’5 IS ke"“ﬁdr(%')wfvs(w)

)
for all 6 < 1/2, where Vi(z) is defined in (2.4), so that in perticular
d(z)*Ve(2) — oo as d{z) — 0. If in addition V has mild oscillation in
the sense that infye gy gaw)y V{y) 2 cV(z) for some ¢ > 0, then V,(z) in
{2.5) can be replaced by cV{z).

Proof. The proof is identical to that of Theorem 2.5, but here one sets

Hz) = d(2)/y/Vi (). n

3. Trace properties, the heat kernel, and Doob A-conditioned
processes. In this section we first prove upper and lower bounds for the
trace of exp(~tH), the semigroup generated by the Dirichlet-Schrédinger
operator O considered, and in particular we give a necessary and sufficient
condition for the finiteness of Tr(exp[—tH]) for all ¢ > 0, in terms of V
and of the geometry of D. To this end, we assume either that D is regular
in the sense of Davies [D3] and V' is a weak potential in the sense that
V(z)d(x)* ~ 0 as d(x) = ¢ (cf. Cor. 3.2), or that V diverges sufficiently
fast at the boundary and has mild oscillations (cf. Remark 3.3(ii)).

We first remark that the finiteness of exp{—tE)] follows from intrinsic
ulbracontractivity (IUC) of H [DS]; in turn, TUC for the Schrédinger opera-
tors considered -has heen discussed in detail in [CG3], and it is known that it
holds either when V" is “small”, and the domain D satisfies some extremely
weak regularity condition (the property of LP-averaging in the sense of Sta-
ples [Sta] is suflicient), or when V is a strong potential (in the present sense)
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with mild oscillation and D is a Hélder domain of order zero ([SS], [B2]).
We refer to [CG3, Th. 4.6] for the relevant details.

‘We also notice that, in Theorem 3.1 below in the case of regular regions,
an effective potential is of the form V'(z) = V(z) + const. d(z) 2. In fact,
one is familiar with such a quantity from the theory of boundary behaviour
of eigenfunctions, as discussed in [CG3], and in particular one knows that
the Agmon metric of V' often determines the rate of vanishing of the ground
state eigenfunction of H.

The method of proof of our first result is a modification of ideas of Davies
[D2]. For results on two-dimensional regions below the graph of a function
we refer to [vdB].

In part of the next theorem, it is assumed that D is a Holder domain of
order zero (cf. e.g. [B2], [CG1-2] for a thorough discussion of this notion).
We just remind the reader that they are those domains D for which there
exist zg € D, A > 1 and B € R such that

(3.1) Kp{z,z0) < Aln(1/d(z))+ B
for all z € D; here Kp is the quasi-hyperbolic metric of D,
ds
. 4 =inf | ——
(3 2) I‘D("‘E: y) 12 :;f d(ﬂ’)) )

where the infimum is taken over those rectifiable paths in I which join z to
y, and s is arclength. We refer to [GHM], [GO], [GP], [V] for more details
and connections with the theory of conformal mappings.

In the sequel; we shall also need the concept of Whitney decompeosition F
of D (see [Ste}). In fact, under the assumption that Inr(D) ;= sup,p d(z) <
00, we have

F={QV:j=1... Ny k=12,.}
where @;“, the jth closed cube of the kth generation, has edge length 2.
In addition, the distance of any point © & @f to the boundary of D is
comparable to the edge length of Q—ﬁ’ in the sense that

(3.3) Va2 P <d(z) <4vn2t Ve e @

(cf. [Ste]). Then D = |J; , Q% We choose an order in the Whitney decom-

position by decla,rmg that Q’“ precedes Q”‘ ifk<morifk="mandj <l
We define V.. as the piecewise constant function

(3.4) Vi(z) = VJ"" = sup V(y) forz €@},

yEQ'F
where Q’c is the first cube to which z belongs in the Whitney decompomtlon
of D. Notme that V, € L2 (D) as well.
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THEOREM 3.1. Fig { > 0, consider a potential V >0 ae., V € L (D),

and assume that [, exp|— V( Hlde < co. Let also V - D - [0,00) be
defined by (3.4). Then

(1)
(3.5) Tr(e™t#) < (ﬂ;n’m f exp[—V (z)t] dz.

If moreover 1) is regular in the sense of Davies D3], so that there exist
c>0ommdb e R quch that ¢/d(z)? < ~A 4 b in the sense of quadratic
forms, and also [, expl-[V(z) + ¢/ (4d(z)®)]t] dz < oo, then

b
36  Te(etH) < f?r?%“_ff [ expl~[V(@) + c/(4d(2)?)}] de.
D
(ii) Assume that Inr(D) < cc. Then

(3.7) Tr(e™*) > erxp[ Vi () + 16702 /d(x) 4] da.

Proof. (i) Upper bound. In the case where there is no assumption on D,
we proceed as follows. First, recall that the Golden-Thompson inequality
says that, for positive self-adjoint operators 4, B, one has

Tr(em(/H-B)) < Tr(e—-A/Qe-—BeuA/E)_
It follows that

rI\r(e-Ht) < rIwr(ath/?eAtﬂe-Vt/Q) - J‘ e_V(‘")tKD(t/Q,:v,m) da

where Kp(t,2,y) is the heat kernel of ~Ap /2, that is, the integral kernel
of exp[~tHp]. Next, by the monotonicity of the heat kernel with respect to
regions, and denoting by K, the heat kernel of ~A/2 on R”, one has

0< Kp(taey) < Kplt,ay) = Tk /(2t)

1
(2 t)n/ﬁ

and this proves (3.6). As concerns (3.7), one has

b
I{_M~H+ Ff>2f1"|—( V+4d) 3

in the sense of quadratic forms, by definition of regularity. By the same
procedure as above, (3.7) follows,

(ii) Lower bound. Let F be a Whitney decomposition of D, as introduced
just before the statement of the present theorem, and let V. be defined as
n (3.4). By monotonicity and decoupling of the Dirichlet Laplacian [RS2],
it follows that, if 2y, 2% C R" are disjoint open sets, 2 € R” is open,
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7 .Qgint = (2 and 2\ {21 U {2) has measure zerc, then, in the sense of
quadratic forms,

-Ap < Ag.ue, = —Ap, ®—An,,
so that in particular —~Ap < EBj,k(—AQ;;). Clearly, a similar procedure

can be applied to the Schridinger operator considered, so that, if one sets
Hf = —Age + V! (acting in L*(Q%)), then H < @, , H.

By the min-max principle, and the properties of the direct sum of oper-
ators, it follows that :

~H —t@;  HE\ _ —tHE N tVE e
Tr(e™ ™) > Tr(e "™k ) = ZTr(e i) = Ze Tl(exp[tAQ;,/ﬂ).
Jik dik
By a result of Davies [D2], it is known that, if @ is the unit cube in R",
then

e—-'i‘rzns
(4mg)n/?
and hence, if Iy = 27F is the edge length of Qf, then

T&,(ESAQ/Q) Z

no—Tint/iz

T\I(GXP[tAQk/Ql) ] T‘r(et‘ﬂ@/(z‘li)) > ke

T (drt)n/2
so that
—mint /13
~Hi ~tvrlge ¥
Te(e™™%) > jzk:e i m(47rt)ﬂ/2

1 k 2 2
= L OF e~ VS T n /L)
(4rt)n/? %m (@5)e

Z f e-—t(l@(m)-{-lﬁwzng/d(m)g)da:
ik Q;v

1 fe*t(V+(m)+16r“ﬂz/d(m)2)d.ax n

1
> o=
= (4rmt)n/2

COROLLARY 3.2. Assume that either D is bounded, or Iur(D) < oo, If D
is regular in the sense of Davies (D3], and moreover i gy g V{z}d(z)? =

0, then Tr(exp[~tH]) < co for all t > 0 if and only if [ exp[—t/d(x)?] dz
< Q0.

Remark 3.3. (i) If V is a strong potential in the above sense, which
in addition bas very mild oscillations, in the sense that Vi.(z) < kV(z)
for some k > 1 and for all ¢ € D, it is immediate from the proof of the
above theorem that -V, in (3.7) can be replaced by k£V. Thus, under this
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assumption it follows that Tr(exp{—tH]) < oo for all # > 0 if and only if
[pexp[—tV(z)]dz < co.

(i) One could obtain a variant of the previous lower bound for the
trace of exp[—¢H] when V is a strong potential, by the following proce-
dure: consider a refinement of the Whitney decomposition of D which is
constructed by requiring that the edge length of each cube Q% is com-
parable to d(z)® for any z € Q% and for some ¢ > 1. Then the term
which is proportional to d(z)~? in (3.7) will change into a term propor-
tional to d(x)~2¢. However, Vi () will be defined by taking the supremum
over a much smaller cube, whose edge length is proportional to d(z)°. Next,
require that V has mild oscillations, Vi (z) < kV(z), which will be ac-
complished for a class of potentials which is larger than the one consid-
ered in item (i) above. If one then takes those potentials which satisfy
limg(z)—o V(z)d(z)? = 0, it follows that Tr(exp[—tH]) < oo for all t > 0 if
and only if [, exp[~tV(z)] dr < oo.

EXAMPLE 3.4. Let 2, = {x = (z,y) € R* 1 z > L, |y| < 2~} for
7 € (0,1) {cf. Example 1.9.5 of [D3]). Then it is known that

,I‘r(eAn,rf) ~ t(1_1/‘7‘)/2 as t— 0.

If one sets V(x) = const.d(x)"* (and also if one sets V(x) = const. z*7)
for k > 2, then a straightforward calculation involving Theorem 3.1 shows
that

Tr(e™ ) ~ g1k 45100,

The next result involves the heat kernel of I, that is, the integral kernel
of exp[—tH] (t > 0), which, by general arguments, is positive and jointly
continuous. In fact, we have

COROLLARY 3.5. Let k(t,z,y) be the heat kernel of H, and assume that
Viz) 2 v/d(x)*™ for some v > 0, m > 1, and [, exp[~V(z)t]dz < oo.
Then, for some k > 0 and for & as in Theorem 2.5,

,‘ % 1 1 ~V (a)
(3.8) k(L,m’y) $ Wexp ,:""" 6(d($)m*—1 + d(y)m—l):l J e dx.

Assume, in addition to the shove assumptions, that D is a Hélder domain
in the sense that (3.1) holds, and that V' has mild oscillations in the sense
that V{z) < a+ b/d(z)*" for some r < 2m + 1. Then there ezists & > 0
(e = VDAT/(r — 1) will work) and ¢, > 0 such that

(39) Kt 2,) > croxp [_ E(d(w;—l . d(y;}_l)_]. |
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Proof. By Mercer’s theorem (cf. [RS1], [DS]), one has the following
eigenfunction expansion of the heat kernel:

k(t,z,y) = Z 3-1;En1.[’n(z)":bn(y):
n=0

where 1, are the eigenvectors of H relative to the eigenvalues £, counted
with their multiplicity and arranged in non-decreasing order, and where the
series is locally uniformly convergent in D x D, Therefore,

k(t2,y) < 3 [oa(@)] ln(y)le ™5
=0

6(d(x)1m"1 ’ d(y)lm—l)] e
< ks exp [5(d(m)1m*1 + d(y)lm_l)} [eVetde  (by (35)).
D

As concerns the lower bound, it has been shown in [CG3] that, under
the present assumptions, H is intrinsically ultracontractive in the sense of
[D1], [DS]. By Theorem 3.2 of [DS], it follows that

k(t,z,y) 2 cotho(z)dbo(y)

for a suitable ¢; > 0, since a corresponding upper bound holds. The assertion
follows by recalling that, by (4.11) of [CG3], one has

o) > Aexpl—B/d(z)"™1]. =

Remark 3.6. (i} In the proof of Corollary 3.5 we have used the fact
that the Schrédinger operator considered is intrinsically ultracontractive.
We briefly recall that this means what follows (cf. [DS] for details): let
Uy, @ L*(D,y2dx) -+ L2(D,dz) be the operator defined by Uy, (f) = Fio
for all f € L3(D,4%dz), where %y is the ground state eigenfunction of
H relative to the eigenvalue Ep. Next, define the operator It asting on
L2(D, 42 da), by H = U, o(H~Ey)oUy,. Then H is said to be intrinsically
ultracontractive if exp[—tH] is bounded, for all + > 0, as an operator from
L*(D,93dz) to L>°(D,9dz). A survey on many of the consequences of
intrinsic ultracontractivity can be found in [B2].

Therefore, a general argument of [DS] allows one to conclude that A is
pointwise comparable with ¥ (x)do(y), so that

(3.10)  avbolzhba(y) < k(G w, ) < bbo(z)iboly)  (ag, by > 1),

In fact, the lower bound in (3.9) follows from (3.10). Tnequality (3.8) does not
follow in general from (3.10}, sinee intrinsic nltracontractivity need not hold.
One should also notice that it is not possible, in general, to give more detailed

< kg exp (by (2.2))
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information about the constant ¢; in (3.9); in fact, this is due to the very
indirect method of proof, which passes through intrinsic ultracontractivity.

(ii) In a domain of finite area |D|, the integral in (3.8) is certainly finite
for all ¢, and tends to [ D] as ¢ — 0, by dominated convergence.

(iii) The pointwise bounds for the heat kernel can be improved by a
Ganssian factor by methods which are by now standard (cf. [D3, Sec. 3],
[CKS], [B2, Cor. 2.7]). However, this does not give any further information
on the decay of K'(t,,y) as & or y approaches any fixed 2z € 6D.

(iv) Another pointwise upper bound for k which involves V itself can be
obtained by making use of Theorem 2.7,

To state our last result, we need some more notation. Let k be a positive
superharmonic function on D (no boundary condition is considered now in
the definition of superharmeonicity); we denote by L, (D) the set of posi-
tive superharmonic functions. Let also P(t,z,y) be the transition density
function of Brownian motion killed when it hits #D. Then it is well known
that P(t, x,y) is the integral kernel of exp|A pt/2], that is, the heat kernel
of —Ap/2. Let us consider a new transition density function on D, defined
by

(3.11) Pult, e, y) = Pt z,y)h(y) /h(z).

The process on the path space determined by P is known as the Doob
h-conditioned diffusion [Dol; we let E](f) denote expectation with respect to
the measure agsoclated with the Doob h-process.

Several results on the iifetimes of such processes are known in the lit-
erature {cf. [CMC], [B1-2], [BD1] and references quoted therein). In [B2],
a result concerning the expected value of the Feynman-Kac formula with
respect to the meagure asgociated with the Doob h-diffusion is given; how-
ever, it was necesgsary there to assume that V Dbelongs to the Kato class
K, thus being a small perturbation of the Dirichlet Laplacian, The next
result therefore can be seen in part as complementary to that of Bafiuelos,
since it discusses the case in wlich V is a strong potential, and in part as
a generalization of it, since i also allows potentials which do not belong to
the Kato clags, hut nevertheless do not diverge too fast at the boundary,

THROREM 3.7, Assume that D 48 a Hblder domain, in the sense that
(3.1) holds true; in particular, this is true for any John, BMO, NTA and
Lipschitz domain. Assume also thal either V' is a strong petential with mild
oscillations, so that :

Cay + by /d(@)P™ < V(E) < ag - ba/d(2)?"
forsome m > 1, r < 2m+1, a12 € R and bp > 0, or that V' is o weak
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potential, so that
V(:E) <az+ bg/d($)2c
for some ¢ < 1. Then

'11/)0('75) d .
(3.12) L P ey Df@bo(y)h(y) y < oo

Moreover, let Eq (> 0) be the lowest eigenvalue of the Dirichlet-Schrddinger
operator associated with V. Then
¢

(3.13) tl_l}:;lo EM (exp [—f V(Xs) ds];'rD > t)
0

- J vt

Proof. Let X; be a standard n-dimensional Brownian motion, and let
7p be the lifetime of Brownian motion killed when it hits . Since V is
a.e, positive, by applying a Feynman-Kac formula and by the properties of
Docb diffusions, one has

1> Eﬁf’(exp [—f V(Xs)ds] D > t)
0

T
= i J e a2 ol J i)

whenever intrinsic ultracontractivity holds, by (3.10), for a suitable ¢; > 0;
therefore, (3.12) holds under this assumption. Moreover, it is well known
that, once more under the assumption of intrinsic ultracontractivity,

lm eEDtk(tam:y) -

t-oo g (Z)bo(y)
uniformly in z,y (cf. [D3], [B2]). Therefore, (3.13) holds whenever one
is able to prove intrinsic ultracontractivity. Therefore, the proof is com-
pleted by noting that, in a Holder domain D, a Dirichlet-Schrédinger oper-
ator corresponding to a strong potential with mild oscillations is always
intrinsically ultracontractive by [CG3, Th. 4.6(iii)]. The same holds for
0 < V(z) < ad(x)™° + b for some ¢ € [0,2], by part (iz) of the same
theorem. m

Remark 3.8. Similar results could be obtained under other conditions
on D and V, since the proof works whenever H = ~Ap/24V is intrinsically
ultracontractive on D. Other sufficient conditions for this to hold are given
in Theorem 4.6 of [CG3], and we have stated in the theorem above only the
most significant cases. It should also be noticed that, at least in the case
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of strong potentials with mild oscillations, one has pointwise bounds on W
(cf. eq. (2.7) and (4.11) of [CG3]) which may allow giving estimates on the
right hand side of (3.13).
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The one-sided minimal operator and the one-sided
reverse Holder inequality

by

DAVID CRUZ-URIBE, SFO, €. J. NEUGEBAUER
and V. QOLESEN (West Lafayette, Ind.)

Abstract. We introduce the one-sided minimal operator, mTf, which is analogous
to the one-sided maximal operator, We determine the weight classes which govern its
two-weight, strong and weak-type norm inequalities, and show that these two classes are
the same, Then in the ons-weight case we nse this class to introduce a new one-sided
reverse Holder inequality which has several applications to one-sided (A;,“) weightas,

1. Introduction. In our papers [1] and [2] we introduced a new opera-
tor, the minimal operator, so named since it is analogous to the Hardy-
Littlewood maximal operator, Given a measurable function J, define the
minimal function of f, mf, by

ww:wﬁgmm

where the infimum is taken over all cubes I with sides parallel to the co-
ordinate axes which contain @. In [1] we used the minima) operator to study
the structure of functions which satisfy the reverse Holder inequality; in
[2] we considered the weighted norm inequalities which hold for the min-
imal operator, and applied this to the problem of differentiability of the
integral.

The maximal operator, as originally defined by Hardy and Littlewood,
was a one-sided maximal operator on R (see [4]). The weighted norm inequal-
ities for the one-sided maximal operator were first considered by Sawyer [10]
and then by Martin-Reyes and others [5]-[8]. In light of this we define &
one-sided minimal operator.

1991 Mathematics Subject Classification: Primary 42B25,
Key words and phrases: one-sided (Ap) weights, reverse Holder inequality, minimal
function.



