H. LAVASTRE (Lille)

ON THE STOCHASTIC REGULARITY OF SEQUENCE TRANSFORMATIONS OPERATING IN
 A BANACH SPACE

I. Introduction. In numerical analysis, convergence acceleration methods have been studied for many years and applied to various situations (see [3]).

On the other hand, the jacknife, a well-known statistical procedure for bias reduction, has been studied in the recent years by several authors (for example, see [4]), who established a direct parallel between the jacknife statistic and the e_{n}-transformation which is a sequence transformation used in numerical analysis for accelerating the convergence of a sequence by extrapolation.

Thus the idea of applying sequence transformations studied in numerical analysis to sequences of random elements converging in a stochastic mode was born.

In this paper, we define a new notion of stochastic regularity and we develop linear transformations called summation processes applied to sequences of random elements in a Banach space. It is shown that the regular summation process defined in numerical analysis is not always regular for every mode of stochastic convergence.

II. Definitions and notations

II.1. Definitions relating to numerical analysis. Let E be a Banach space with norm $\left\|\|_{E}\right.$, and let $\mathcal{S}(E)$ be the set of sequences whose terms are elements of E.

Let T be a transformation which transforms a sequence $\left(S_{n}\right) \in \mathcal{S}(E)$ into another sequence $\left(T_{n}\right) \in \mathcal{S}(E)$. We say that T operates in $\mathcal{S}(E)$. Let

[^0]Key words and phrases: summation processes, stochastic convergence, regularity.
$\left(S_{n}\right)$ converge to S. Then, if $\left(T_{n}\right)$ also converges to S, we say that T is regular for the sequence $\left(S_{n}\right)$.

If, for each converging sequence $\left(S_{n}\right) \in \mathcal{S}(E),\left(T_{n}\right)$ also converges to the same limit, we say that T is regular for $\mathcal{S}(E)$.
II.2. Definitions relating to probability
II.2.1. Let (Ω, \mathcal{A}, P) be a probability space and let F be a separable Banach space with norm $\left\|\|_{F}\right.$ and σ-field \mathcal{B} of Borel sets. Let S be a measurable mapping from (Ω, \mathcal{A}) into (F, \mathcal{B}); we call it an F-valued random element. Let $\left(S_{n}\right)$ be a sequence of F-valued random elements (defined on the same field Ω); under the assumption of separability, it is known that $\left\|S_{n}-S\right\|_{F}$ is a random variable defined on Ω (see [1] and [5]).
II.2.2. Now, we recall the definitions of stochastic convergences.
(a) Convergence in distribution:
$S_{n} \xrightarrow{\mathcal{D}} S \Leftrightarrow$ for all $B \in \mathcal{B}$ with $P(S \in \partial B)=0, P\left(S_{n} \in B\right) \rightarrow P(S \in B)$.
(b) Convergence in probability:

$$
S_{n} \xrightarrow{P} S \Leftrightarrow \forall \varepsilon>0, P\left(\left\|S_{n}-S\right\|_{F} \geq \varepsilon\right) \rightarrow 0
$$

(c) Almost sure convergence:

$$
S_{n} \xrightarrow{\text { a.s. }} S \Leftrightarrow P\left(\left\|S_{n}-S\right\|_{F} \rightarrow 0\right)=1 .
$$

(d) Almost complete convergence:

$$
S_{n} \xrightarrow{\text { a.c. }} S \Leftrightarrow \forall \varepsilon>0, \quad \sum_{n \geq 1} P\left(\left\|S_{n}-S\right\|_{F} \geq \varepsilon\right)<\infty
$$

(e) Convergence in the rth mean:

$$
S_{n} \xrightarrow{N_{r}} S \Leftrightarrow E\left(\left\|S_{n}-S\right\|_{F}\right)^{r} \rightarrow 0
$$

Let us recall the following implications:

$$
\text { a.c. } \Rightarrow \text { a.s. } \Rightarrow P \Rightarrow \mathcal{D} \quad \text { and } \quad N_{r} \Rightarrow N_{r^{\prime}} \Rightarrow P, \quad \text { with } \quad r^{\prime}<r
$$

(for the proof, see [2]).
II.2.3. Finally, we set:
(a) $\mathcal{L}_{0}(\Omega, \mathcal{A}, P, F)$ or $\mathcal{L}_{0}(P, F)$, the vector space of F-valued random elements, and $L_{0}(P, F)=\mathcal{L}_{0}(P, F) / \sim$, the quotient space by the equivalence relation " $S=T$ almost surely".
(b) $\mathcal{L}_{r}(P, F)$, the vector subspace of $\mathcal{L}_{0}(P, F)$ defined by $S \in \mathcal{L}_{r}(P, F)$ iff $\int_{\Omega}\|S\|_{F}^{r} d P<\infty$, and $L_{r}(P, F)=\mathcal{L}_{r}(P, F) / \sim$. It is known that for $r>0$, $L_{r}(P, F)$ is a Banach space with norm $\|S\|_{L_{r}}=\left(\int_{\Omega}\|S\|_{F}^{r} d P\right)^{1 / r}$ associated with the convergence $S_{n} \xrightarrow{N_{r}} S$.
(c) $\mathcal{L}_{\infty}(P, F)$, the vector space of F-valued random elements S such that $\|S\|_{F}<\infty$ and $L_{\infty}(P, F)=\mathcal{L}_{\infty}(P, F) / \sim$. It is known that $L_{\infty}(P, F)$ is a Banach space with norm $\|S\|_{L_{\infty}}=\operatorname{ess} \sup \|S\|_{F}$ (see [5]). (We write $\left.S_{n} \xrightarrow{N_{\infty}} S \Leftrightarrow\left\|S_{n}-S\right\|_{L_{\infty}} \rightarrow 0.\right)$

III. Stochastic regularity of a sequence transformation

III.1. General case. Let $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$ be the set of sequences of F-valued random elements and let $\left(S_{n}\right)$ be a sequence converging to $S \in \mathcal{L}_{0}(P, F)$ for one of the modes \mathcal{M} defined in II.2.

Let T be a sequence transformation operating in F.
Taking $s_{n}=S_{n}(\omega)$ and $t_{n}=T_{n}(\omega)$, for $\omega \in \Omega$, if T_{n} is measurable for all n (which we suppose), we may consider that T operates in $\mathcal{L}_{0}(P, F)$ and transforms the sequence $\left(S_{n}\right)$ into another sequence $\left(T_{n}\right)$.

Definition III.1. We say that T is \mathcal{M}-regular for $\left(S_{n}\right)$ if $S_{n} \xrightarrow{\mathcal{M}} S$ implies $T_{n} \xrightarrow{\mathcal{M}} S$.

Definition III.2. We say that T is \mathcal{M}-regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$ if for every sequence $\left(S_{n}\right)$ of F-valued elements such that $S_{n} \xrightarrow{\mathcal{M}} S$ we have $T_{n} \xrightarrow{\mathcal{M}} S$.

Remark. From the connections between the different modes of convergence, we immediately have the corresponding implications:

$$
\begin{gathered}
T \text { a.c.-regular } \Rightarrow T \text { a.s-regular } \Rightarrow T P \text {-regular } \Rightarrow T \mathcal{D} \text {-regular, } \\
T N_{r^{\prime}} \text {-regular } \Rightarrow T N_{r^{\prime}} \text {-regular with } r^{\prime}<r .
\end{gathered}
$$

This obviously holds for a sequence $\left(S_{n}\right)$ well defined under the condition that $\left(S_{n}\right)$ converges for the mode \mathcal{M} concerned. Applying the definition of almost sure convergence, we obtain

Theorem III.1. If T is regular for $\mathcal{S}(F)$, then T is a.s.-regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$.
III.2. Finite summation process. We call so the simplest linear transformation defined by $\left(a_{0}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$ or \mathbb{C}^{k}, with k fixed in \mathbb{N}. $\left(S_{n}\right)$ being a sequence in $\mathcal{S}(E)$, the sequence $\left(T_{n}\right)$ is defined by $T_{n}=a_{0} S_{n}+\ldots+a_{k} S_{n+k}$.

Such a process is said to be regular if $a_{0}+a_{1}+\ldots+a_{k}=1$. Under this assumption, clearly, for any Banach space E, the associated transformation operating in $\mathcal{S}(E)$ is regular for $\mathcal{S}(E)$.

Now, let $\left(S_{n}\right) \in \mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$. From Theorem III.1, we obviously have the following result concerning almost sure convergence:

Theorem III.2. Let $\left(S_{n}\right)$ be a sequence of F-valued elements and T the preceding transformation operating in $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$. If the process is regular, then T is a.s.-regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$.

Now, taking $E=L_{r}(P, F)$ with norm $\left\|\|_{L_{r}}\right.$, we obtain the result concerning convergence in the r th mean for all $r \in] 0, \infty[$ and convergence in $L_{\infty}(P, F)$:

Theorem III.3. Under the assumptions of Theorem III.2, T is N_{r} regular for $\mathcal{S}\left[\mathcal{L}_{r}(P, F)\right]$ for all $\left.\left.r \in\right] 0, \infty\right]$.

Concerning almost complete convergence, we have
Theorem III.4. Under the assumptions of Theorem III.2, T is a.c.regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$.

Proof. Suppose that, for all $\varepsilon>0, \sum_{n \in \mathbb{N}} P\left(\left\|S_{n}-S\right\|_{F} \geq \varepsilon\right)<\infty$.
Since $T_{n}-S=a_{0}\left(S_{n}-S\right)+\ldots+a_{k}\left(S_{n+k}-S\right)$, we have
(1) $\quad\left\|T_{n}-S\right\|_{F} \leq\left|a_{0}\right| \cdot\left\|S_{n}-S\right\|_{F}+\ldots+\left|a_{k}\right| \cdot\left\|S_{n+k}-S\right\|_{F}$.

Now, $\left\|S_{j}-S\right\|_{F}<\varepsilon$ for all $j \in\{n, \ldots, n+k\}$ implies

$$
\left\|T_{n}-S\right\|_{F}<\varepsilon\left(\left|a_{0}\right|+\ldots+\left|a_{k}\right|\right)=M \varepsilon
$$

where M is a constant. Hence

$$
P\left(\bigcap_{j=n}^{n+k}\left\|S_{j}-S\right\|_{F}<\varepsilon\right) \leq P\left(\left\|T_{n}-S\right\|_{F}<M \varepsilon\right)
$$

It follows that
and

$$
P\left(\bigcup_{j=n}^{n+k}\left\|S_{j}-S\right\|_{F} \geq \varepsilon\right) \geq P\left(\left\|T_{n}-S\right\|_{F} \geq M \varepsilon\right)
$$

$$
P\left(\left\|T_{n}-S\right\|_{F} \geq M \varepsilon\right) \leq \sum_{j=n}^{n+k} P\left(\left\|S_{j}-S\right\|_{F} \geq \varepsilon\right)
$$

Writing this inequality for $n=0,1, \ldots$ and summing we obtain

$$
\sum_{n \in \mathbb{N}} P\left(\left\|T_{n}-S\right\|_{F} \geq M \varepsilon\right) \leq(k+1) \sum_{n \in \mathbb{N}} P\left(\left\|S_{n}-S\right\|_{F} \geq \varepsilon\right)
$$

Taking $\varepsilon=\varepsilon^{\prime} / M$, for any $\varepsilon^{\prime}>0$ we obtain $\sum_{n \in \mathbb{N}} P\left(\left\|T_{n}-S\right\|_{F} \geq \varepsilon^{\prime}\right)<\infty$.
Concerning convergence in probability, we have
Theorem III.5. Under the assumptions of Theorem III.2, T is P-regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$.

Proof. Suppose that, for all $\varepsilon>0, P\left(\left\|S_{n}-S\right\|_{F} \geq \varepsilon\right) \rightarrow 0$. We may write (1). Then, for each $\varepsilon>0,\left\|T_{n}-S\right\|_{F} \geq \varepsilon$ implies $\left|a_{0}\right| \cdot\left\|S_{n}-S\right\|_{F}+$ $\ldots+\left|a_{k}\right| \cdot\left\|S_{n+k}-S\right\|_{F} \geq \varepsilon$. Hence

$$
\begin{align*}
P\left\{\left\|T_{n}-S\right\|_{F}\right. & \geq \varepsilon\} \tag{2}\\
& \leq P\left\{\left|a_{0}\right| \cdot\left\|S_{n}-S\right\|_{F}+\ldots+\left|a_{k}\right| \cdot\left\|S_{n+k}-S\right\|_{F} \geq \varepsilon\right\}
\end{align*}
$$

But we know that the convergence in probability of random variables is compatible with the vector space structure of \mathbb{R}. Then $\left\|S_{n}-S\right\|_{F} \xrightarrow{P} 0$ implies $\left|a_{0}\right| \cdot\left\|S_{n}-S\right\|_{F}+\ldots+\left|a_{k}\right| \cdot\left\|S_{n+k}-S\right\|_{F} \xrightarrow{P} 0$ and the result comes from (2).

Remark. Concerning convergence in distribution, the following example proves that we do not obtain a similar result.

Take $k=1, a_{0}=a_{1}=1 / 2$ and $F=\mathbb{R}$. The sequence $\left(S_{n}\right)$ is defined by

$$
S_{2 n}=S_{0}, \quad S_{2 n+1}=-S_{0} \quad \text { for } n \in \mathbb{N}
$$

Suppose now that S_{0} has a symmetric distribution different from the Dirac measure δ_{0} (that is, $P\left\{S_{0} \neq 0\right\}>0$). It follows that S_{n} has the same distribution as S_{0}, hence $S_{n} \xrightarrow{\mathcal{D}} S_{0}$. But $T_{n}=0$, for all n, and thus $T_{n} \xrightarrow{\mathcal{D}} S_{0}$.
III.3. Summation process. A summation process is the linear transformation defined by an infinite triangular matrix $A=\left(a_{k}^{j}\right)_{k \in \mathbb{N}, 0 \leq j \leq k}$ where the a_{k}^{j} 's are constants of \mathbb{C} or \mathbb{R}. It transforms a sequence $\left(s_{n}\right) \in \mathcal{S}(F)$ into the sequence $\left(t_{k}^{(n)}\right)$ defined by $t_{k}^{(n)}=a_{k}^{0} s_{n}+\ldots+a_{k}^{k} s_{n+k}$, and a sequence $\left(S_{n}\right) \in \mathcal{S}\left[\mathcal{L}_{0}(p, F)\right]$ into the sequence $\left(T_{k}^{(n)}\right)$ with $T_{k}^{(n)}(\omega)=t_{k}^{(n)}$ for $\omega \in \Omega$.

Such a transformation is said to be regular (or A is regular) if it satisfies the assumptions
(i) $\sum_{j=0}^{k}\left|a_{k}^{j}\right| \leq M$ for all $k \in \mathbb{N}$,
(ii) $\lim _{k \rightarrow \infty} a_{k}^{j}=0$ for all $j \in \mathbb{N}$,
(iii) $\lim _{k \rightarrow \infty} \sum_{j=0}^{k} a_{k}^{j}=1$.

It is said to be total (or A is total) if (iii) becomes
(iii') $\sum_{j=0}^{k} a_{k}^{j}=1$ for all $k \in \mathbb{N}$.
Clearly, in the case of a total process, for each fixed k in \mathbb{N} the transformation $T_{(k)}$ which transforms the sequence $\left(S_{n}\right)$ into the sequence $\left(T_{k}^{(n)}\right)_{n \in \mathbb{N}}$ is a regular finite summation process as studied in II.

In the following, we consider the transformation $T^{(n)}$ which transforms $\left(S_{n}\right)$ into the sequence $\left(T_{k}^{(n)}\right)_{k \in \mathbb{N}}$ with $T_{k}^{(n)}=a_{k}^{0} S_{n}+\ldots+a_{k}^{k} S_{n+k}$, for n fixed. First, let us recall a well known theorem:

Toeplitz theorem. Let E be a Banach space, $\left(S_{n}\right)$ a sequence in $\mathcal{S}(E)$ and $\left(T_{k}\right)$ the sequence in $\mathcal{S}(E)$ transformed by a summation process $T_{k}=a_{k}^{0} S_{0}+\ldots+a_{k}^{k} S_{k}$. Then a necessary and sufficient condition that, for all converging sequences $\left(S_{n}\right)$, the sequence $\left(T_{k}\right)$ converges to the same limit, is that the process is regular.

For the proof see [7].
Now, suppose the sequence $\left(S_{n}\right)$ does converge to S for a mode \mathcal{M} of stochastic convergence.

Concerning almost sure convergence, the following result comes from the Toeplitz theorem with $E=F$. For n fixed, it is obvious that the properties of convergence are the same for $T^{(n)}$ and $T^{(0)}$.

Theorem III.6. Let $\left(S_{n}\right)$ be a sequence of F-valued elements and $T^{(n)}$ (n fixed) the transformation operating in $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$ associated with a regular summation process. Then $T^{(n)}$ is a.s.-regular for $\mathcal{S}\left[\mathcal{L}_{0}(P, F)\right]$.

Now, taking $E=L_{r}(P, F)$ with norm $\left\|\|_{L_{r}}\right.$ in the Toeplitz theorem yields a result on convergence in the r th mean, for all $r \in] 0, \infty[$, and convergence in $L_{\infty}(P, F)$.

Theorem III.7. Under the assumptions of Theorem III.6, $T^{(n)}$ is N_{r} regular for $\mathcal{S}\left[\mathcal{L}_{r}(P, F)\right]$.

Remark 1. Concerning convergence in distribution, the following example proves that we do not obtain \mathcal{D}-regularity.

Take $a_{k}^{j}=1 /(k+1)(j=0,1, \ldots, k)$ and $F=\mathbb{R}$. The sequence $\left(S_{n}\right)$ is defined by

$$
S_{2 n}=S_{0}, \quad S_{2 n+1}=-S_{0} \quad \text { for } n \in \mathbb{N}
$$

and suppose that S_{0} has a symmetric distribution different from δ_{0}. Thus $S_{n} \xrightarrow{\mathcal{D}} S_{0}$. But the sequence $\left(T_{k}^{(n)}\right)$ does not converge in distribution to S_{0} since $T_{2 i}^{(n)}=S_{0} /(2 i+1)$ for all $i \in \mathbb{N}$ and $T_{2 i+1}^{(n)}=0$ for all $i \in \mathbb{N}$; hence $T_{k}^{(n)} \xrightarrow{\text { a.s. }} 0$ as $k \rightarrow \infty$.

Remark 2. Concerning convergence in probability, the following example proves that we do not obtain P-regularity.

Take $k \in \mathbb{N}^{*}, a_{j}^{k}=1 / k$ for $j=1, \ldots, k$ and $F=\mathbb{R}$. Let $\left(S_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of independent random variables with distribution functions

$$
F_{n}(x)= \begin{cases}1-1 /(x+n) & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Then

$$
\forall \varepsilon>0, P\left(\left|S_{n}\right| \geq \varepsilon\right)=\frac{1}{\varepsilon+n}, \quad \text { i.e. } \quad S_{n} \xrightarrow{P} 0 \text { as } n \rightarrow \infty
$$

Let

$$
T_{k}^{(1)}=a_{k}^{1} S_{1}+\ldots+a_{k}^{k} S_{k}=\frac{S_{1}+\ldots+S_{k}}{k},
$$

Now we prove that $T_{k}^{(1)} \stackrel{P}{\rightarrow} 0$. Let $M_{k}=\sup \left(S_{1} \ldots S_{k}\right)$. Since $S_{i} \geq 0$, we have

$$
\frac{M_{k}}{k} \geq \varepsilon \Rightarrow \frac{S_{1}+\ldots+S_{k}}{k} \geq \varepsilon
$$

which implies

$$
\begin{equation*}
P\left(M_{k} / k \geq \varepsilon\right) \leq P\left(T_{k}^{(1)} \geq \varepsilon\right) \tag{1}
\end{equation*}
$$

On the other hand,
(2) $\quad P\left(M_{k}<x\right)=P\left(S_{1}<x\right) \ldots P\left(S_{k}<x\right)$

$$
=\left(1-\frac{1}{1+x}\right) \ldots\left(1-\frac{1}{k+x}\right)<\left(1-\frac{1}{k+x}\right)^{k} .
$$

It follows that

$$
P\left(M_{k} / k<\varepsilon\right)=P\left(M_{k}<k \varepsilon\right)<\left(1-\frac{1}{k \varepsilon+k}\right)^{k}
$$

From (1) we conclude that

$$
P\left(T_{k}^{(1)} \geq \varepsilon\right) \geq 1-P\left(M_{k} / k<\varepsilon\right)>1-\left(1-\frac{1}{k \varepsilon+k}\right)^{k}
$$

Finally, $\lim _{k \rightarrow \infty} P\left(T_{k}^{(1)} \geq \varepsilon\right) \geq 1-e^{-1 /(1+\varepsilon)} \neq 0$ and $T_{k}^{(1)} \xrightarrow{P} 0$.
Remark 3. Finally, concerning almost complete convergence, we give an example proving that we do not obtain a.c.-regularity.

As in the preceding example, take

$$
T_{k}^{(1)}=\frac{S_{1}+\ldots+S_{k}}{k}
$$

where $\left(S_{n}\right)$ is a sequence of independent random variables with distribution functions

$$
F_{n}(x)= \begin{cases}1-1 /\left(x+n^{2}\right) & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Then

$$
\forall \varepsilon>0, \quad \sum_{n \in \mathbb{N}^{*}} P\left(\left|S_{n}\right| \geq \varepsilon\right)=\sum_{n \in \mathbb{N}^{*}} \frac{1}{\varepsilon+n^{2}}<\infty
$$

Hence $S_{n} \xrightarrow{\text { a.c. }} 0$. Let us prove that $T_{k}^{(1)} \xrightarrow{\text { a.c. }} 0$. Defining M_{k} as in the preceding example, we have (1) and (2). It follows that

$$
P\left(M_{k}<x\right)<\left(1-\frac{1}{k^{2}+x}\right)^{k}
$$

and

$$
P\left(M_{k} / k<\varepsilon\right)=P\left(M_{k}<k \varepsilon\right)<\left(1-\frac{1}{k^{2}+k \varepsilon}\right)^{k}
$$

H. Lavastre

Hence

$$
P\left(T_{k}^{(1)} \geq \varepsilon\right) \geq 1-P\left(M_{k} / k<\varepsilon\right)>1-\left(1-\frac{1}{k^{2}+k \varepsilon}\right)^{k} .
$$

But

$$
1-\left(1-\frac{1}{k^{2}+k \varepsilon}\right)^{k}=1-e^{k L_{n}\left(1-\frac{1}{k^{2}+k \varepsilon}\right)} \underset{k \rightarrow \infty}{\sim} \frac{k}{k^{2}+k \varepsilon} \sim \frac{1}{k}
$$

which implies $\sum_{k=1}^{\infty} P\left(T_{k}^{(1)} \geq \varepsilon\right)=\infty$ and $T_{k}^{(1)} \stackrel{\text { a.c. }}{\nrightarrow} 0$.

References

[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[2] D. Bosq et J. P. Lecoutre, Théorie de l'estimation fonctionnelle, Economica, Paris, 1987.
[3] C. Brezinski and M. Redivo Zaglia, Extrapolation Methods. Theory and Practice, North-Holland, Amsterdam, 1991.
[4] H. L. Gray, On a unification of bias reduction and numerical approximation, in: Probability and Statistics, J. N. Srivastance (ed.), North-Holland, Amsterdam, 1988, 105-116.
[5] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991.
[6] J. Neveu, Bases mathématiques du calcul des probabilités, Masson, 1964.
[7] V. Wimp, Sequence Transformations, Academic Press, New York, 1981.

HÉLÈNE LAVASTRE
LABORATOIRE DE STATISTIQUE ET PROBABILITÉS
U.F.R. DE MATHÉMATIQUES PURES ET APPLIQUÉES

59655 VILLENEUVE D'ASCQ CEDEX, FRANCE

[^0]: 1991 Mathematics Subject Classification: 65U05, 65B99.

