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ON THE STOCHASTIC REGULARITY OF
SEQUENCE TRANSFORMATIONS OPERATING IN

A BANACH SPACE

I. Introduction. In numerical analysis, convergence acceleration meth-
ods have been studied for many years and applied to various situations
(see [3]).

On the other hand, the jacknife, a well-known statistical procedure for
bias reduction, has been studied in the recent years by several authors (for
example, see [4]), who established a direct parallel between the jacknife
statistic and the en-transformation which is a sequence transformation used
in numerical analysis for accelerating the convergence of a sequence by ex-
trapolation.

Thus the idea of applying sequence transformations studied in numerical
analysis to sequences of random elements converging in a stochastic mode
was born.

In this paper, we define a new notion of stochastic regularity and we
develop linear transformations called summation processes applied to se-
quences of random elements in a Banach space. It is shown that the regular
summation process defined in numerical analysis is not always regular for
every mode of stochastic convergence.

II. Definitions and notations

II.1. Definitions relating to numerical analysis. Let E be a Banach
space with norm ‖ ‖E , and let S(E) be the set of sequences whose terms
are elements of E.

Let T be a transformation which transforms a sequence (Sn) ∈ S(E)
into another sequence (Tn) ∈ S(E). We say that T operates in S(E). Let
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(Sn) converge to S. Then, if (Tn) also converges to S, we say that T is
regular for the sequence (Sn).

If, for each converging sequence (Sn) ∈ S(E), (Tn) also converges to the
same limit, we say that T is regular for S(E).

II.2. Definitions relating to probability

II.2.1. Let (Ω,A, P ) be a probability space and let F be a separable
Banach space with norm ‖ ‖F and σ-field B of Borel sets. Let S be a
measurable mapping from (Ω,A) into (F,B); we call it an F -valued random
element. Let (Sn) be a sequence of F -valued random elements (defined on
the same field Ω); under the assumption of separability, it is known that
‖Sn − S‖F is a random variable defined on Ω (see [1] and [5]).

II.2.2. Now, we recall the definitions of stochastic convergences.

(a) Convergence in distribution:

Sn
D→ S ⇔ for all B ∈ B with P (S ∈ ∂B) = 0, P (Sn ∈ B) → P (S ∈ B).

(b) Convergence in probability :

Sn
P→ S ⇔ ∀ε > 0, P (‖Sn − S‖F ≥ ε) → 0.

(c) Almost sure convergence:

Sn
a.s.→ S ⇔ P (‖Sn − S‖F → 0) = 1.

(d) Almost complete convergence:

Sn
a.c.→ S ⇔ ∀ε > 0,

∑
n≥1

P (‖Sn − S‖F ≥ ε) < ∞.

(e) Convergence in the rth mean:

Sn
Nr→ S ⇔ E(‖Sn − S‖F )r → 0.

Let us recall the following implications:

a.c. ⇒ a.s. ⇒ P ⇒ D and Nr ⇒ Nr′ ⇒ P, with r′ < r

(for the proof, see [2]).

II.2.3. Finally, we set:

(a) L0(Ω,A, P, F ) or L0(P, F ), the vector space of F -valued random
elements, and L0(P, F ) = L0(P, F )/∼, the quotient space by the equivalence
relation “S = T almost surely”.

(b) Lr(P, F ), the vector subspace of L0(P, F ) defined by S ∈ Lr(P, F ) iff∫
Ω
‖S‖r

F dP < ∞, and Lr(P, F ) = Lr(P, F )/∼. It is known that for r > 0,
Lr(P, F ) is a Banach space with norm ‖S‖Lr

= (
∫

Ω
‖S‖r

F dP )1/r associated

with the convergence Sn
Nr→ S.
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(c) L∞(P, F ), the vector space of F -valued random elements S such
that ‖S‖F < ∞ and L∞(P, F ) = L∞(P, F )/∼. It is known that L∞(P, F )
is a Banach space with norm ‖S‖L∞ = ess sup ‖S‖F (see [5]). (We write
Sn

N∞→ S ⇔ ‖Sn − S‖L∞ → 0.)

III. Stochastic regularity of a sequence transformation

III.1. General case. Let S[L0(P, F )] be the set of sequences of F -valued
random elements and let (Sn) be a sequence converging to S ∈ L0(P, F ) for
one of the modes M defined in II.2.

Let T be a sequence transformation operating in F .
Taking sn = Sn(ω) and tn = Tn(ω), for ω ∈ Ω, if Tn is measurable for

all n (which we suppose), we may consider that T operates in L0(P, F ) and
transforms the sequence (Sn) into another sequence (Tn).

Definition III.1. We say that T is M-regular for (Sn) if Sn
M→ S

implies Tn
M→ S.

Definition III.2. We say that T is M-regular for S[L0(P, F )] if for
every sequence (Sn) of F -valued elements such that Sn

M→ S we have
Tn

M→ S.

R e m a r k. From the connections between the different modes of conver-
gence, we immediately have the corresponding implications:

T a.c.-regular ⇒ T a.s-regular ⇒ T P -regular ⇒ T D-regular,
T Nr-regular ⇒ T Nr′ -regular with r′ < r.

This obviously holds for a sequence (Sn) well defined under the condition
that (Sn) converges for the mode M concerned. Applying the definition of
almost sure convergence, we obtain

Theorem III.1. If T is regular for S(F ), then T is a.s.-regular for
S[L0(P, F )].

III.2. Finite summation process. We call so the simplest linear transfor-
mation defined by (a0, . . . , ak) ∈ Rk or Ck, with k fixed in N. (Sn) being a
sequence in S(E), the sequence (Tn) is defined by Tn = a0Sn + . . .+akSn+k.

Such a process is said to be regular if a0 + a1 + . . . + ak = 1. Under this
assumption, clearly, for any Banach space E, the associated transformation
operating in S(E) is regular for S(E).

Now, let (Sn) ∈ S[L0(P, F )]. From Theorem III.1, we obviously have
the following result concerning almost sure convergence:
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Theorem III.2. Let (Sn) be a sequence of F -valued elements and T the
preceding transformation operating in S[L0(P, F )]. If the process is regular ,
then T is a.s.-regular for S[L0(P, F )].

Now, taking E = Lr(P, F ) with norm ‖ ‖Lr
, we obtain the result con-

cerning convergence in the rth mean for all r ∈ ]0,∞[ and convergence in
L∞(P, F ):

Theorem III.3. Under the assumptions of Theorem III.2, T is Nr-
regular for S[Lr(P, F )] for all r ∈ ]0,∞].

Concerning almost complete convergence, we have

Theorem III.4. Under the assumptions of Theorem III.2, T is a.c.-
regular for S[L0(P, F )].

P r o o f. Suppose that, for all ε > 0,
∑

n∈N P (‖Sn − S‖F ≥ ε) < ∞.
Since Tn − S = a0(Sn − S) + . . . + ak(Sn+k − S), we have

(1) ‖Tn − S‖F ≤ |a0| · ‖Sn − S‖F + . . . + |ak| · ‖Sn+k − S‖F .

Now, ‖Sj − S‖F < ε for all j ∈ {n, . . . , n + k} implies

‖Tn − S‖F < ε(|a0|+ . . . + |ak|) = Mε

where M is a constant. Hence

P
( n+k⋂

j=n

‖Sj − S‖F < ε
)
≤ P (‖Tn − S‖F < Mε).

It follows that

P
( n+k⋃

j=n

‖Sj − S‖F ≥ ε
)
≥ P (‖Tn − S‖F ≥ Mε)

and

P (‖Tn − S‖F ≥ Mε) ≤
n+k∑
j=n

P (‖Sj − S‖F ≥ ε).

Writing this inequality for n = 0, 1, . . . and summing we obtain∑
n∈N

P (‖Tn − S‖F ≥ Mε) ≤ (k + 1)
∑
n∈N

P (‖Sn − S‖F ≥ ε).

Taking ε = ε′/M , for any ε′ > 0 we obtain
∑

n∈N P (‖Tn−S‖F ≥ ε′) < ∞.

Concerning convergence in probability, we have

Theorem III.5. Under the assumptions of Theorem III.2, T is P -regular
for S[L0(P, F )].

P r o o f. Suppose that, for all ε > 0, P (‖Sn − S‖F ≥ ε) → 0. We may
write (1). Then, for each ε > 0, ‖Tn − S‖F ≥ ε implies |a0| · ‖Sn − S‖F +
. . . + |ak| · ‖Sn+k − S‖F ≥ ε . Hence
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(2) P{‖Tn − S‖F ≥ ε}
≤ P{|a0| · ‖Sn − S‖F + . . . + |ak| · ‖Sn+k − S‖F ≥ ε}.

But we know that the convergence in probability of random variables is
compatible with the vector space structure of R. Then ‖Sn − S‖F

P→ 0
implies |a0| · ‖Sn−S‖F + . . . + |ak| · ‖Sn+k −S‖F

P→ 0 and the result comes
from (2).

R e m a r k. Concerning convergence in distribution, the following exam-
ple proves that we do not obtain a similar result.

Take k = 1, a0 = a1 = 1/2 and F = R. The sequence (Sn) is defined by

S2n = S0, S2n+1 = −S0 for n ∈ N.

Suppose now that S0 has a symmetric distribution different from the Dirac
measure δ0 (that is, P{S0 6= 0} > 0). It follows that Sn has the same
distribution as S0, hence Sn

D→ S0. But Tn = 0, for all n, and thus Tn
D9 S0.

III.3. Summation process. A summation process is the linear transfor-
mation defined by an infinite triangular matrix A = (aj

k)k∈N, 0≤j≤k where
the aj

k’s are constants of C or R. It transforms a sequence (sn) ∈ S(F ) into
the sequence (t(n)

k ) defined by t
(n)
k = a0

ksn + . . . + ak
ksn+k, and a sequence

(Sn) ∈ S[L0(p, F )] into the sequence (T (n)
k ) with T

(n)
k (ω) = t

(n)
k for ω ∈ Ω.

Such a transformation is said to be regular (or A is regular) if it satisfies
the assumptions

(i)
∑k

j=0 |a
j
k| ≤ M for all k ∈ N,

(ii) limk→∞ aj
k = 0 for all j ∈ N,

(iii) limk→∞
∑k

j=0 aj
k = 1.

It is said to be total (or A is total) if (iii) becomes

(iii′)
∑k

j=0 aj
k = 1 for all k ∈ N.

Clearly, in the case of a total process, for each fixed k in N the transfor-
mation T(k) which transforms the sequence (Sn) into the sequence (T (n)

k )n∈N
is a regular finite summation process as studied in II.

In the following, we consider the transformation T (n) which transforms
(Sn) into the sequence (T (n)

k )k∈N with T
(n)
k = a0

kSn + . . . + ak
kSn+k, for n

fixed. First, let us recall a well known theorem:

Toeplitz theorem. Let E be a Banach space, (Sn) a sequence in
S(E) and (Tk) the sequence in S(E) transformed by a summation process
Tk = a0

kS0 + . . . + ak
kSk. Then a necessary and sufficient condition that ,

for all converging sequences (Sn), the sequence (Tk) converges to the same
limit , is that the process is regular.
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For the proof see [7].

Now, suppose the sequence (Sn) does converge to S for a mode M of
stochastic convergence.

Concerning almost sure convergence, the following result comes from the
Toeplitz theorem with E = F . For n fixed, it is obvious that the properties
of convergence are the same for T (n) and T (0).

Theorem III.6. Let (Sn) be a sequence of F -valued elements and T (n)

(n fixed) the transformation operating in S[L0(P, F )] associated with a reg-
ular summation process. Then T (n) is a.s.-regular for S[L0(P, F )].

Now, taking E = Lr(P, F ) with norm ‖ ‖Lr
in the Toeplitz theorem

yields a result on convergence in the rth mean, for all r ∈ ]0,∞[, and con-
vergence in L∞(P, F ).

Theorem III.7. Under the assumptions of Theorem III.6, T (n) is Nr-
regular for S[Lr(P, F )].

R e m a r k 1. Concerning convergence in distribution, the following ex-
ample proves that we do not obtain D-regularity.

Take aj
k = 1/(k + 1) (j = 0, 1, . . . , k) and F = R. The sequence (Sn) is

defined by

S2n = S0, S2n+1 = −S0 for n ∈ N,

and suppose that S0 has a symmetric distribution different from δ0. Thus
Sn

D→ S0. But the sequence (T (n)
k ) does not converge in distribution to S0

since T
(n)
2i = S0/(2i + 1) for all i ∈ N and T

(n)
2i+1 = 0 for all i ∈ N; hence

T
(n)
k

a.s.→ 0 as k →∞.

R e m a r k 2. Concerning convergence in probability, the following exam-
ple proves that we do not obtain P -regularity.

Take k ∈ N∗, ak
j = 1/k for j = 1, . . . , k and F = R. Let (Sn)n∈N∗ be a

sequence of independent random variables with distribution functions

Fn(x) =
{

1− 1/(x + n) for x > 0,
0 for x ≤ 0,

Then

∀ε > 0, P (|Sn| ≥ ε) =
1

ε + n
, i.e. Sn

P→ 0 as n →∞.

Let

T
(1)
k = a1

kS1 + . . . + ak
kSk =

S1 + . . . + Sk

k
,
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Now we prove that T
(1)
k

P9 0. Let Mk = sup(S1 . . . Sk). Since Si ≥ 0, we
have

Mk

k
≥ ε ⇒ S1 + . . . + Sk

k
≥ ε,

which implies

(1) P (Mk/k ≥ ε) ≤ P (T (1)
k ≥ ε).

On the other hand,

P (Mk < x) = P (S1 < x) . . . P (Sk < x)(2)

=
(

1− 1
1 + x

)
. . .

(
1− 1

k + x

)
<

(
1− 1

k + x

)k

.

It follows that

P (Mk/k < ε) = P (Mk < kε) <

(
1− 1

kε + k

)k

.

From (1) we conclude that

P (T (1)
k ≥ ε) ≥ 1− P (Mk/k < ε) > 1−

(
1− 1

kε + k

)k

.

Finally, limk→∞ P (T (1)
k ≥ ε) ≥ 1− e−1/(1+ε) 6= 0 and T

(1)
k

P9 0.

R e m a r k 3. Finally, concerning almost complete convergence, we give
an example proving that we do not obtain a.c.-regularity.

As in the preceding example, take

T
(1)
k =

S1 + . . . + Sk

k
,

where (Sn) is a sequence of independent random variables with distribution
functions

Fn(x) =
{

1− 1/(x + n2) for x > 0,
0 for x ≤ 0.

Then

∀ε > 0,
∑

n∈N∗
P (|Sn| ≥ ε) =

∑
n∈N∗

1
ε + n2

< ∞.

Hence Sn
a.c.→ 0. Let us prove that T

(1)
k

a.c.9 0. Defining Mk as in the
preceding example, we have (1) and (2). It follows that

P (Mk < x) <

(
1− 1

k2 + x

)k

and

P (Mk/k < ε) = P (Mk < kε) <

(
1− 1

k2 + kε

)k

.



484 H. Lavastre

Hence

P (T (1)
k ≥ ε) ≥ 1− P (Mk/k < ε) > 1−

(
1− 1

k2 + kε

)k

.

But

1−
(

1− 1
k2 + kε

)k

= 1− e
kLn(1− 1

k2+kε
) ∼

k→∞

k

k2 + kε
∼ 1

k
,

which implies
∑∞

k=1 P (T (1)
k ≥ ε) = ∞ and T

(1)
k

a.c.9 0.
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