W. SONG (Harbin)

THE SOLUTION SET OF A DIFFERENTIAL INCLUSION ON A CLOSED SET OF A BANACH SPACE

Abstract. We consider differential inclusions with state constraints in a Banach space and study the properties of their solution sets. We prove a relaxation theorem and we apply it to prove the well-posedness of an optimal control problem.

1. Introduction. It is well known that the relaxation theorem is very useful in optimal control problems. For a differential inclusion with Lipschitz right hand side without state constraints, several papers [2, 5, 6, 9–11] yield results on the relaxation theorem and some other properties of the solution sets. In [7], the relaxation theorem for a semilinear evolution equation with state constraints was proved. In this paper, we consider the same problem for the differential inclusion system

$$\dot{x}(t) \in F(t, x(t))$$
 a.e. t ,
 $x(0) = x_0$ and $x(t) \in K$, $0 \le t \le T$.

Here $K \subset X$ is a closet subset of a Banach space X, and $F : [0, T] \times K \to 2^X$ is a multifunction. Under weak conditions, we obtain results similar to [7]. We note that in our case, we require at each step a projection on the set K, since F is not defined outside K, and that this projection is not continuous. Moreover, in general there is no extension \overline{F} of F to an open neighbourhood of K, so we cannot obtain our results from known results. Let us also mention that the viability problems for differential inclusions were studied in [1, 8] and well-posedness for differential inclusions on closed subsets of \mathbb{R}^n was discussed in [4].

2. Preliminaries. Let $I = [0,T] \subset \mathbb{R}^1$ and μ be Lebesgue measure; let X be a Banach space and K be a closed subset of X. For $x \in K$, let

¹⁹⁹¹ Mathematics Subject Classification: 34A60, 34G10.

Key words and phrases: differential inclusion, relaxation theorem, well-posedness.

^[13]

 $d_K(x) = \inf\{||x - y|| \mid y \in K\}$ be the distance from x to K. Also let $\pi_K(x) = \{y \in K \mid ||x - y|| = d_K(x)\}$ be the metric projection of x onto K and let

$$T_K(x) = \{ v \in K \mid \liminf_{h \to 0} (1/h) d_K(x+hv) = 0 \}$$

be the contingent cone to K at x. For $A, B \subset X$ denote by d(A, B) the Hausdorff distance from A to B.

A multifunction $G : I \to 2^X$ is called *measurable* if there exists a sequence $\{g_n\}$ of measurable selections such that $G(t) \subset \operatorname{cl}\{g_n(t) \mid n \ge 0\}$. We observe that when X is separable and G has closed images this definition is the same as the usual one [3].

LEMMA 2.1 ([11]). Assume that $F : [0,T] \times K \to 2^X$ is a multifunction with closed images such that

(a) for any $x \in K$, $F(\cdot, x)$ is measurable on I;

(b) for any $t \in I$, $F(t, \cdot)$ is continuous on K.

Then for any measurable function $x(\cdot), t \to F(t, x(t))$ is measurable on I.

LEMMA 2.2 ([11]). Let $G: I \to 2^X$ be a measurable multifunction with closed images and $u(\cdot): I \to X$ a measurable function. Then for any measurable function r(t) > 0, there exists a measurable selection g of G such that for almost all $t \in I$,

$$||g(t) - u(t)|| \le d(u(t), G(t)) + r(t).$$

LEMMA 2.3 ([11]). If $G: I \to 2^X$ is an integrable multifunction then, for any $x_0 \in X$,

$$\overline{S_G(x_0)} = \overline{S_{\overline{\operatorname{co}}G}(x_0)},$$

where $S_G(x_0)$ denotes the solution set of the differential inclusion $\dot{x}(t) \in G(t)$ a.e. $t \in I, x(0) = x_0$.

3. Main results. Consider the differential inclusion

(P)
$$\dot{x}(t) \in F(t, x(t)) \quad \text{a.e. } t \in I,$$
$$x(0) = \xi \quad \text{and} \quad x(t) \in K, \ t \in I,$$

where $F : [0, T] \times K \to 2^X$ is a multifunction with closed images and $K \subset X$ is a closed subset of X. We denote by $S_F(\xi)$ the solution set of (P) and by $S_{\overline{co}F}(\xi)$ the solution set of the relaxation differential inclusion

(
$$\overline{\mathbf{P}}$$
)
 $\dot{x}(t) \in \overline{\mathrm{co}}F(t, x(t))$ a.e. $t \in I$,
 $x(0) = \xi$ and $x(t) \in K, t \in I$

We assume that $F: [0,T] \times K \to 2^X$ satisfies the following hypotheses:

(H₁) $t \to F(t, x)$ is measurable for all $x \in K$;

(H₂) there exists $l(\cdot) \in L^1(I, \mathbb{R})$ such that for all $x, y \in X$,

$$d(F(t,x), F(t,y)) \le l(t) ||x - y||;$$

(H₃) for all $(t, x) \in I \times K$, $F(t, x) \subset T_K(x)$; K is proximal, i.e., for any $x \in X$, $\pi_K(x) \neq \emptyset$;

(H₄) for any continuous function $x(\cdot) : I \to K, t \in F(t, x(t))$ is integrable.

THEOREM 3.1. Let $F : [0,T] \times K \to 2^X$ be a multifunction with closed images satisfying (H₁)–(H₄). Let $M = \exp(\int_0^T l(t) dt)$ and let $y(\cdot)$ be an absolutely continuous function such that $y(0) = \xi_0 \in K$. Let $q(t) = \operatorname{ess} \sup\{d(\dot{y}(t), F(t, z(t))) \mid z(t) \text{ is a measurable selection of } \pi_K(y(t))\}$ (if $y(t) \in K$ for all $t \in I$, we let $q(t) = d(\dot{y}(t), F(t, y(t)))$) and let $\int_0^T q(t) dt < \varepsilon$. Then there exists $\eta > 0$ such that for all $\xi \in (\xi_0 + \eta B) \cap K$, there exists a solution $x(\cdot)$ of (P) such that

$$\|x(\cdot) - y(\cdot)\|_{C(I,X)} \le 12M^5\varepsilon.$$

Proof. Let η be a positive number such that $\eta + \int_0^T q(t) dt < \varepsilon$; also let $m(t) = \int_0^t l(s) ds$. For any $\xi \in (\xi_0 + \eta B) \cap K$, we define $x_0(t,\xi) = \xi + \int_0^t \dot{y}(s) ds$. It is easy to see that $||x_0(\cdot,\xi) - y(\cdot)|| \le ||\xi - \xi_0|| < \eta$. Let $z_0(t) \in \pi_K(x_0(t,\xi))$ be a measurable selection of $t \to \pi_K(x_0(t,\xi))$ and z(t) be a measurable selection of $\pi_K(y(t))$. Then

$$\begin{aligned} d(\dot{x}_0(t,\xi), F(t,z_0(t))) &= d(\dot{y}(t), F(t,z_0(t))) \\ &\leq d(\dot{y}(t), F(t,z(t))) + l(t) \| z(t) - z_0(t) \| \\ &\leq q(t) + l(t) \| z(t) - y(t) \| + l(t) \| y(t) - x_0(t,\xi)) \| \\ &\quad + l(t) \| x_0(t,\xi)) - z_0(t) \| \\ &\leq q(t) + l(t) \eta + l(t) d_K(x_0(t,\xi)) + l(t) d_K(y(t)). \end{aligned}$$

By Proposition 1 in [2, p. 202], we have

$$\begin{aligned} \frac{d}{dt}(d_K(y(t))) &\leq d(\dot{y}(t), T_K(\pi_K(y(t)))) \leq d(\dot{y}(t), T_K(z(t))) \\ &\leq d(\dot{y}(t), F(t, z(t))) \leq q(t) \end{aligned}$$

and, since $d_K(y(0)) = 0$, we obtain

$$d_K(y(t)) \le \int_0^t q(s) \, ds.$$

Similarly, we get

$$d_{K}(x_{0}(t,\xi)) \leq \int_{0}^{t} d(\dot{x}_{0}(s,\xi), F(s,z_{0}(s))) ds$$

$$\leq \int_{0}^{t} (q(s) + l(s)\eta) ds + \int_{0}^{t} l(s) \int_{0}^{s} q(u) du ds$$

$$+ \int_{0}^{t} l(s) d_{K}(x_{0}(s,\xi)) ds.$$

From Gronwall's inequality and by interchanging the order of integration, we obtain

$$d_{K}(x_{0}(t,\xi)) \leq \int_{0}^{t} \exp(m(t) - m(s))(q(s) + l(s)\eta) \, ds$$

+
$$\int_{0}^{t} \exp(m(t) - m(s))l(s) \int_{0}^{s} q(u) \, du \, ds$$

$$\leq \int_{0}^{t} \exp(m(t) - m(s))q(s) \, ds + (\exp(m(t)) - 1)\eta$$

+
$$\int_{0}^{t} (\exp(m(t) - m(s)) - 1)q(s) \, ds$$

and

$$d(\dot{x}_0(t,\xi), F(t,z_0(t))) \le q(t) + l(t) \exp(m(t))\eta + 2l(t) \exp(m(t)) \int_0^t \exp(-m(s))q(s) \, ds.$$

Set $\delta_0(t) = \text{ess sup}\{d(\dot{x}_0(t,\xi), F(t,z(t))) \mid z(t) \text{ is a measurable selection of } \pi_K(x_0(t,\xi))\}$. Then

$$\begin{split} \delta_0(t) &\leq q(t) + l(t) \exp(m(t))\eta + 2l(t) \exp(m(t)) \int_0^t \exp(-m(s))q(s) \, ds, \\ &d_K(x_0(t,\xi)) \leq \int_0^t \delta_0(s) \, ds. \end{split}$$

By Lemma 2.2, we can choose a measurable selection $v_1(t)$ of $F(t, z_0(t))$ such that

$$\|v_1(t) - \dot{x}_0(t,\xi)\| \le 2d(\dot{x}_0(t,\xi), F(t,z_0(t))) \le 2\delta_0(t).$$

17

Set $x_1(t) = \xi + \int_0^t v_1(s) ds$ and let $z_1(t)$ be a measurable selection of $\pi_K(x_1(t))$. Then

$$||x_1(t) - x_0(t,\xi)|| \le \int_0^t ||v_1(s) - \dot{x}_0(s,\xi)|| \, ds \le 2 \int_0^t \delta_0(s) \, ds$$

since

$$\begin{aligned} d(\dot{x}_1(t), F(t, z_1(t))) &= d(v_1(t), F(t, z_1(t))) \le l(t) \| z_0(t) - z_1(t) \| \\ &\le l(t) \| z_0(t) - x_0(t, \xi) \| + l(t) \| x_0(t, \xi) - x_1(t) \| \\ &+ l(t) \| z_1(t) - x_1(t) \| \\ &\le 3l(t) \int_0^t \delta_0(s) \, ds + l(t) d_K(x_1(t)) \end{aligned}$$

and

$$d_{K}(x_{1}(t)) \leq \int_{0}^{t} d(\dot{x}_{1}(s), F(s, z_{1}(s))) ds$$

$$\leq 3 \int_{0}^{t} \exp(m(t) - m(s)) l(s) \int_{0}^{s} \delta_{0}(u) du ds$$

$$\leq 3 \int_{0}^{t} (\exp(m(t) - m(s)) - 1) \delta_{0}(s) ds,$$

so that

$$d(\dot{x}_1(t), F(t, z_1(t))) \le 3l(t) \exp(m(t)) \int_0^t \exp(-m(s))\delta_0(s) \, ds.$$

Set $\delta_1(t) = \text{ess sup}\{d(\dot{x}_1(t), F(t, z(t))) \mid z(t) \text{ is a measurable selection of } \pi_K(x_1(t))\}$. Then

$$\delta_1(t) \le 3l(t) \exp(m(t)) \int_0^t \exp(-m(s)) \delta_0(s) \, ds,$$
$$d_K(x_1(t)) \le \int_0^t \delta_1(s) \, ds.$$

We claim that we may define sequences $\{x_n\}$, $\{\delta_n\}$ of functions with the following properties:

(i) $\delta_n(t) = \text{ess sup}\{d(\dot{x}_n(t), F(t, z(t))) \mid z(t) \text{ is a measurable selection of }$

 $\pi_K(x_n(t))$ and

$$\delta_n(t) \le 3l(t) \exp(m(t)) \int_0^t \exp(-m(s)) \delta_{n-1}(s) \, ds$$

$$\le 3^n l(t) \exp(m(t)) \int_0^t \left[(m(t) - m(s))^{n-1} / (n-1)! \right]$$

$$\times \exp(-m(s)) \delta_0(s) \, ds,$$

(ii) $d_K(x_n(t)) \le \int_0^t \delta_n(s) \, ds,$ (iii) $\|\dot{x}_n(t) - \dot{x}_{n-1}(t)\| \le 2\delta_{n-1}(t).$

For n = 1 the above holds. Assume it holds up to i and let us show it holds for i + 1. Let $z_i(t)$ be a measurable selection of $\pi_K(x_i(t))$ and let $v_{i+1}(t)$ be a measurable selection of $F(t, z_i(t))$ such that

$$||v_{i+1}(t) - \dot{x}_i(t)|| \le 2d(\dot{x}_i(t), F(t, z_i(t))) \le 2\delta_i(t).$$

Set $x_{i+1}(t) = \xi + \int_0^t v_{i+1}(s) \, ds$. Then

$$\|x_{i+1}(t) - x_i(t)\| \le \int_0^t \|v_{i+1}(s) - \dot{x}_i(s)\| \, ds \le 2 \int_0^t \delta_i(s) \, ds.$$

Let $z_{i+1}(t)$ be a measurable selection of $\pi_K(x_{i+1}(t))$. Then

$$\begin{aligned} d(\dot{x}_{i+1}(t), F(t, z_{i+1}(t))) &\leq l(t) \| z_i(t) - z_{i+1}(t) \| \\ &\leq l(t) \| z_i(t) - x_i(t) \| + l(t) \| x_i(t) - x_{i+1}(t) \| \\ &+ l(t) d_K(x_{i+1}(t)) \\ &\leq 3l(t) \int_0^t \delta_i(s) \, ds + l(t) d_K(x_{i+1}(t)), \end{aligned}$$

since |

$$d_{K}(x_{i+1}(t)) \leq \int_{0}^{t} d(\dot{x}_{i+1}(s), F(s, z_{i+1}(s))) ds$$

$$\leq 3 \int_{0}^{t} \exp(m(t) - m(s))l(s) \int_{0}^{s} \delta_{i}(u) du ds$$

$$\leq 3 \int_{0}^{t} (\exp(m(t) - m(s)) - 1)\delta_{i}(s) ds.$$

Thus

$$d(\dot{x}_{i+1}(t), F(t, z_{i+1}(t))) \le 3l(t) \exp(m(t)) \int_{0}^{t} \exp(-m(s))\delta_{i}(s) \, ds.$$

Therefore, set $\delta_{i+1}(t) = \text{ess sup}\{d(\dot{x}_{i+1}(t), F(t, z(t))) \mid z(t) \text{ is a measurable}\}$ selection of $\pi_K(x_{i+1}(t))$. We have

$$d_{K}(x_{i+1}(t)) \leq \int_{0}^{t} \delta_{i+1}(s) \, ds,$$

$$\delta_{i+1}(t) \leq 3l(t) \exp(m(t)) \int_{0}^{t} \exp(-m(s)) \delta_{i}(s) \, ds.$$

Finally, it follows from (i) that

$$\delta_{i+1}(t) \le 3l(t) \exp(m(t)) \int_{0}^{t} \exp(-m(s)) 3^{i}l(s) \exp(m(s))$$
$$\times \int_{0}^{s} [(m(s) - m(u))^{i-1} / (i-1)!] \exp(-m(u)) \delta_{0}(u) \, du \, ds$$
$$\le 3^{i+1}l(t) \exp(m(t)) \int_{0}^{t} [(m(t) - m(s))^{i} / i!] \exp(-m(s)) \delta_{0}(s) \, ds.$$

Hence, the proof of our claim is complete.

Note that from (iii), we have

$$\begin{aligned} (*) & \|x_{i+1}(\cdot) - x_n(\cdot)\| \\ & \leq \int_0^T \|\dot{x}_{n+1}(t) - \dot{x}_n(t)\| \, dt \leq 2 \int_0^T \delta_n(t) \, dt \leq 2 \int_0^T 3^n l(t) \exp(m(t)) \\ & \times \int_0^t \left[(m(t) - m(s))^{n-1} / (n-1)! \right] \exp(-m(s)) \delta_0(s) \, ds \, dt \\ & \leq 6 \left[(3m(T))^{n-1} / (n-1)! \right] \int_0^T l(t) \exp(m(t)) \int_0^t \exp(-m(s)) \delta_0(s) \, ds \, dt \\ & \leq 6 \left[(3m(T))^{n-1} / (n-1)! \right] \int_0^T \left[\exp(m(T) - m(t)) - 1 \right] \delta_0(t) \, dt. \end{aligned}$$

Thus, $\{x_n(\cdot)\}$ is a Cauchy sequence in C(I, X) and so we may assume $x_n(\cdot)$ converges to $x(\cdot)$ in C(I, X). Since $\int_0^T \delta_n(t) dt \to 0$ and $d_K(x_n(t))) \leq \int_0^T \delta_n(s) ds$, we obtain $x(t) \in K$ for all $t \in I$. To show that $x(\cdot)$ is a solution, we choose a sequence $\{z_n(t)\}$ of measurable selections of $\pi_K(x_n(t))$ and observe that

$$(**) \quad d(\dot{x}_n(t), F(t, x(t))) \le d(\dot{x}_n(t), F(t, z_n(t))) + l(t) \|z_n(t) - x_n(t)\| + l(t) \|x_n(t) - x(t)\|$$

W. Song

$$\leq \delta_n(t) + l(t) \Big(\int_0^t \delta_n(s) \, ds + \|x_n(t) - x(t)\| \Big).$$

Since $\{\dot{x}_n(\cdot)\}\$ is a Cauchy sequence in $L^1(I, X)$, there exists a subsequence of $\{\dot{x}_n(t)\}\$ which converges to $\dot{x}(t)$ a.e. $t \in I$. Passing to the limit in (**), we find that $x(\cdot)$ is a solution.

From (*), we have

$$\begin{split} \|x_{n}(\cdot) - y(\cdot)\| \\ &\leq \|x_{0}(\cdot) - y(\cdot)\| + \|x_{1}(\cdot) - x_{0}(\cdot)\| + \ldots + \|x_{n}(\cdot) - x_{n-1}(\cdot)\| \\ &\leq \eta + 2 \int_{0}^{T} \delta_{0}(t) \, dt + 6 \sum_{i=1}^{n-1} [(3m(T))^{i-1}/(i-1)!] \\ &\qquad \times \int_{0}^{T} [\exp(m(T) - m(t)) - 1] \delta_{0}(t) \, dt \\ &\leq \eta + 2 \int_{0}^{T} \delta_{0}(t) \, dt + 6 \exp(3m(T)) \int_{0}^{T} [\exp(m(T) - m(t)) - 1] \delta_{0}(t) \, dt \\ &\leq \eta + 2 \int_{0}^{T} \delta_{0}(t) \, dt + 6 \exp(4m(T)) \\ &\qquad \times \int_{0}^{T} \exp(-m(t)) \delta_{0}(t) \, dt - 6 \exp(3m(T)) \int_{0}^{T} \delta_{0}(t) \, dt \\ &\leq 12M^{5} \varepsilon. \end{split}$$

THEOREM 3.2. Assume that $F : [0,T] \times K \to 2^X$ is a multifunction with closed images satisfying $(H_1)-(H_4)$. Then for any $x_0 \in K$,

$$\overline{S_F(x_0)} = \overline{S_{\overline{\operatorname{co}}F}(x_0)}.$$

Proof. It is enough to show that for any $x_0 \in K$, $S_{\overline{co}F}(x_0) \subset \overline{S_F(x_0)}$. Let $y(\cdot) \in S_{\overline{co}F}(x_0)$ and define $G(\cdot) = F(\cdot, y(\cdot))$. It is easy to see that $G: I \to 2^X$ satisfies the requirement of Lemma 2.3 and so

$$y(\cdot) \in S_{\overline{\operatorname{co}}G}(x_0) \subset S_G(x_0).$$

For any $\varepsilon > 0$, there exists $z \in S_G(x_0)$, i.e., $\dot{z}(t) \in F(t, y(t))$, $z(0) = x_0$, such that

$$||z(\cdot) - y(\cdot)||_G \le \varepsilon/(12M^6).$$

For any $z_0(t) \in \pi_K(z(t))$ measurable, since

 $d(\dot{z}(t), F(t, z_0(t))) \le l(t) \|z_0(t) - y(t)\| \le l(t) \|z(t) - y(t)\| + l(t)d_K(z(t)),$

we have

$$d_K(z(t)) \le \int_0^t d(\dot{z}(s), F(s, z_0(s))) \, ds,$$

so that

$$d(\dot{z}(t), F(t, z_0(t))) \le l(t) ||z(t) - y(t)|| + l(t) \int_0^t l(s) \exp(m(t) - m(s)) ||y(s) - z(s)|| \, ds,$$

and therefore

$$\int_{0}^{T} d(\dot{z}(t), F(t, z_{0}(t))) dt$$

$$\leq \|z(\cdot) - y(\cdot)\| \left(\int_{0}^{T} l(t) dt + \int_{0}^{T} l(t) \int_{0}^{t} l(s) \exp(m(t) - m(s)) ds dt \right)$$

$$\leq \|z(\cdot) - y(\cdot)\| (\exp(m(T)) - 1) \leq M \|z(\cdot) - y(\cdot)\|.$$

Set $q(t) = \text{ess} \sup\{d(\dot{z}(t), F(t, z_0(t))) \mid z_0(t) \text{ is a measurable selection of } \pi_K(z(t))\}$. Then

$$\int_{0}^{T} q(t) dt \le M \|z(\cdot) - y(\cdot)\| \le \varepsilon/(12M^5).$$

By Theorem 3.1, there exists $x(\cdot) \in S_F(x_0)$ such that $||x(\cdot) - z(\cdot)|| < \varepsilon$. Thus

$$d(y(\cdot), S_F(x_0)) \le ||x(\cdot) - y(\cdot)|| \le ||x(\cdot) - z(\cdot)|| + ||z(\cdot) - y(\cdot)||$$

$$\le (1 + 1/(12M^6))\varepsilon.$$

Since ε is arbitrary, $y \in \overline{S_F(x_0)}$.

4. An application. Let X be a Banach space and Y be a separable Banach space. Also let $K, K_{\varepsilon} \ (0 < \varepsilon \leq 1)$ be closed subsets of X and let $U(\cdot): I \to 2^X$ be a measurable multifunction with nonempty closed values.

Consider a function $f:I\times X\times Y\times [0,1]\to X.$ We will assume the following hypotheses:

(1) For all $(x, u, \varepsilon) \in X \times Y \times [0, 1], t \to f(t, x, u, \varepsilon)$ is measurable, and for every $t \in I, (x, u, \varepsilon) \to f(t, x, u, \varepsilon)$ is continuous.

(2) There exists $l(\cdot) \in L^1(I, \mathbb{R}^+)$ such that for almost every $t \in I$ and for all $u \in U(t)$ and $0 \le \varepsilon \le 1$,

$$\|f(t, x', u, \varepsilon) - f(t, x'', u, \varepsilon)\| \le l(t) \|x' - x''\|.$$

W. Song

(3) For almost every $t \in I$ and for all $x \in X$ and $0 \le \varepsilon \le 1$ the set $F(t, x, \varepsilon) = f(t, x, U(t), \varepsilon)$ is closed and contained in l(t)B.

(4) $F(t,x) = F(t,x,0) \subset T_K(x)$ for $(t,x) \in I \times K$.

(5) $\bigcup_{0 < \varepsilon < 1} K_{\varepsilon}$ is compact, K is proximal and $\limsup_{\varepsilon \to 0} K_{\varepsilon} \subset K$, where the lim sup is defined in the Kuratowski sense, i.e.,

$$\limsup_{\varepsilon \to 0} K_{\varepsilon} = \{ x \in X \mid \liminf_{\varepsilon \to 0} d(x, K_{\varepsilon}) = 0 \}.$$

(6) Let $g: X \to \mathbb{R}$ be continuous. Consider the optimal control problem

$$(\mathbf{P}_{\varepsilon}) \qquad \qquad J(u,\varepsilon) = g(x(T)) \to \inf$$

subject to

(4.1)
$$\dot{x}(t) = f(t, x, u, \varepsilon), \quad x(0) = x_0,$$

(4.2) $x(t) \in K_{\varepsilon},$

where $u \in U_{ad} = \{u(\cdot) : I \to Y \mid u(t) \in U(t) \text{ is measurable}\}.$

We denote the value of $(\mathbf{P}_{\varepsilon})$ by V_{ε} and the value of the original problem (\mathbf{P}_0) ($\varepsilon = 0$) by V; we say that $(\mathbf{P}_{\varepsilon})$ is *well-posed* if $V_{\varepsilon} \to V$ as $\varepsilon \to 0$.

To prove well-posedness, we need the following hypothesis:

(7) There exists a minimizing sequence $\{u_n\}$ for (P_0) such that if $x_n(\cdot, \varepsilon)$ and $x_n(\cdot)$ are solutions of (4.1), (4.2) and of the original equation ($\varepsilon = 0$) respectively with $u_n(\cdot)$, then $x_n(T, \varepsilon) \to x_n(T)$ as $\varepsilon \to 0$.

THEOREM 4.1. If hypotheses (1)–(7) hold, then the problem (P_{ε}) is well-posed.

Proof. By (7), there exist a minimizing sequence $\{u_n(\cdot)\}$ for (\mathbf{P}_0) and solutions $x_n(\cdot)$ of (4.1) and (4.2) (for $\varepsilon = 0$) with respect to $u_n(\cdot)$ such that $g(x_n(T,\varepsilon)) \rightarrow g(x_n(T))$ as $\varepsilon \rightarrow 0$. Also note that $V_{\varepsilon} \leq g(x_n(T,\varepsilon))$. So we get (4.3) $\limsup_{\varepsilon \rightarrow 0} V_{\varepsilon} \leq V.$

On the other hand, let $\varepsilon_n \to 0$ ($\varepsilon_n < 1$). Choose admissible state-control pairs (x_n, u_n) for (4.1) and (4.2) such that

(4.4)
$$J(u_n, \varepsilon_n) \le V(\varepsilon_n) + 1/n.$$

We note that $x_n(t) \in K_{\varepsilon_n} \subset \bigcup_{0 < \varepsilon < 1} K_{\varepsilon}$ and $||\dot{x}_n(t)|| \leq l(t)$. From the Ascoli–Arzelà theorem, taking a subsequence and keeping the same notations we may assume that $x_n(\cdot) \to x(\cdot)$ in C(0,T;X) and $\dot{x}_n \xrightarrow{w} \dot{x}(\cdot)$ in $L^1(I,X)$.

It is easy to show that (see [6])

$$\dot{x}(t) \in \overline{\operatorname{co}} \limsup_{n \to \infty} F(t, x_n(t), \varepsilon_n) \subset \overline{\operatorname{co}} F(t, x(t))$$

 $(t \to F(t, x, \varepsilon)$ is measurable; $x \to F(t, x, \varepsilon)$ is l(t)-Lipschitz and $\varepsilon \to F(t, x, \varepsilon)$ is continuous).

By hypothesis (5), we get

$$x(t) \in \limsup_{\varepsilon \to 0} K_{\varepsilon} \subset K.$$

From the definition of F and hypotheses (1)–(5), we know that F and K satisfy the hypotheses (H₁)–(H₄). By Theorem 3.2, there exists a sequence $\{x_m(\cdot)\}$ of solutions of the differential inclusions

(4.5)
$$\dot{x}_m(t) \in F(t, x_m(t)), \quad x_m(0) = x_0 \text{ and } x_m(t) \in K$$

such that $x_m(\cdot) \to x(\cdot)$ in C(0,T;X). From [3, p. 214], there exists a sequence $\{u_m(t)\} \in U(t)$ of measurable functions such that

(4.6) $\dot{x}_m(t) = f(t, x_m(t), u_m(t), 0), \quad x_m(0) = x_0 \quad \text{and} \quad x_m(t) \in K.$

Hence, we get $g(x(T)) = \lim_{m \to \infty} g(x_m(T)) \ge V$. Note that by passing to the limit in (4.4), we obtain

(4.7)
$$V \leq g(x(T)) = \lim_{n \to \infty} g(x_n(T, \varepsilon_n)) = \lim_{n \to \infty} J(u_n, \varepsilon_n) \leq \lim_{n \to \infty} V(\varepsilon_n).$$

From (4.4)–(4.7), we deduce $V(\varepsilon) \to V$ as $\varepsilon \to 0$.

References

- [1] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, 1991.
- [2] J.-P. Aubin and A. Cellina, *Differential Inclusions*, Springer, Berlin, 1984.
- [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
- [4] A. Cellina and V. Staicu, Well posedness for differential inclusions on closed sets, J. Differential Equations 92 (1991), 2–13.
- [5] F. H. Clarke, *Optimization and Nonsmooth Analysis*, Wiley-Interscience, New York, 1983.
- [6] H. Frankowska, A priori estimates for operational differential inclusions, J. Differential Equations 84 (1990), 100–128.
- [7] N. S. Papageorgiou, Relaxability and well-posedness for infinite dimensional optimal control problems, Indian J. Pure Appl. Math. 21 (1990), 513-526.
- S. Shi, Viability theorems for a class of differential-operator inclusions, J. Differential Equations 79 (1989), 232–257.
- [9] A. A. Tolstonogov, The solution set of a differential inclusion in a Banach space. II, Sibirsk. Mat. Zh. 25 (4) (1984), 159–173 (in Russian).
- [10] A. A. Tolstonogov and P. I. Chugunov, The solution set of a differential inclusion in a Banach space. I, ibid. 24 (6) (1983), 144–159 (in Russian).
- [11] Q. J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (1991), 213–237.

SONG WEN DEPARTMENT OF MATHEMATICS HARBIN NORMAL UNIVERSITY HARBIN, CHINA

Received on 18.10.1993