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THE SOLUTION SET OF A DIFFERENTIAL INCLUSION
ON A CLOSED SET OF A BANACH SPACE

Abstract. We consider differential inclusions with state constraints in a
Banach space and study the properties of their solution sets. We prove a
relaxation theorem and we apply it to prove the well-posedness of an optimal
control problem.

1. Introduction. It is well known that the relaxation theorem is very
useful in optimal control problems. For a differential inclusion with Lipschitz
right hand side without state constraints, several papers [2, 5, 6, 9–11] yield
results on the relaxation theorem and some other properties of the solution
sets. In [7], the relaxation theorem for a semilinear evolution equation with
state constraints was proved. In this paper, we consider the same problem
for the differential inclusion system

ẋ(t) ∈ F (t, x(t)) a.e. t,

x(0) = x0 and x(t) ∈ K, 0 ≤ t ≤ T.

Here K ⊂ X is a closet subset of a Banach space X, and F : [0, T ]×K → 2X

is a multifunction. Under weak conditions, we obtain results similar to [7].
We note that in our case, we require at each step a projection on the set K,
since F is not defined outside K, and that this projection is not continuous.
Moreover, in general there is no extension F of F to an open neighbourhood
of K, so we cannot obtain our results from known results. Let us also
mention that the viability problems for differential inclusions were studied
in [1, 8] and well-posedness for differential inclusions on closed subsets of
Rn was discussed in [4].

2. Preliminaries. Let I = [0, T ] ⊂ R1 and µ be Lebesgue measure;
let X be a Banach space and K be a closed subset of X. For x ∈ K, let
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dK(x) = inf{‖x − y‖ | y ∈ K} be the distance from x to K. Also let
πK(x) = {y ∈ K | ‖x − y‖ = dK(x)} be the metric projection of x onto K
and let

TK(x) = {v ∈ K | lim inf
h→0

(1/h)dK(x + hv) = 0}

be the contingent cone to K at x. For A,B ⊂ X denote by d(A,B) the
Hausdorff distance from A to B.

A multifunction G : I → 2X is called measurable if there exists a se-
quence {gn} of measurable selections such that G(t) ⊂ cl{gn(t) | n ≥ 0}.
We observe that when X is separable and G has closed images this definition
is the same as the usual one [3].

Lemma 2.1 ([11]). Assume that F : [0, T ] ×K → 2X is a multifunction
with closed images such that

(a) for any x ∈ K, F (·, x) is measurable on I;
(b) for any t ∈ I, F (t, ·) is continuous on K.

Then for any measurable function x(·), t → F (t, x(t)) is measurable on I.

Lemma 2.2 ([11]). Let G : I → 2X be a measurable multifunction with
closed images and u(·) : I → X a measurable function. Then for any
measurable function r(t) > 0, there exists a measurable selection g of G
such that for almost all t ∈ I,

‖g(t)− u(t)‖ ≤ d(u(t), G(t)) + r(t).

Lemma 2.3 ([11]). If G : I → 2X is an integrable multifunction then, for
any x0 ∈ X,

SG(x0) = ScoG(x0),
where SG(x0) denotes the solution set of the differential inclusion ẋ(t) ∈
G(t) a.e. t ∈ I, x(0) = x0.

3. Main results. Consider the differential inclusion

(P)
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ I,

x(0) = ξ and x(t) ∈ K, t ∈ I,

where F : [0, T ]×K → 2X is a multifunction with closed images and K ⊂ X
is a closed subset of X. We denote by SF (ξ) the solution set of (P) and by
ScoF (ξ) the solution set of the relaxation differential inclusion

(P)
ẋ(t) ∈ coF (t, x(t)) a.e. t ∈ I,

x(0) = ξ and x(t) ∈ K, t ∈ I.

We assume that F : [0, T ]×K → 2X satisfies the following hypotheses:

(H1) t → F (t, x) is measurable for all x ∈ K;
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(H2) there exists l(·) ∈ L1(I, R) such that for all x, y ∈ X,

d(F (t, x), F (t, y)) ≤ l(t)‖x− y‖;

(H3) for all (t, x) ∈ I ×K, F (t, x) ⊂ TK(x); K is proximal , i.e., for any
x ∈ X, πK(x) 6= ∅;

(H4) for any continuous function x(·) : I → K, t ∈ F (t, x(t)) is inte-
grable.

Theorem 3.1. Let F : [0, T ]×K → 2X be a multifunction with closed im-
ages satisfying (H1)–(H4). Let M = exp(

∫ T

0
l(t) dt) and let y(·) be an abso-

lutely continuous function such that y(0)=ξ0∈K. Let q(t)=ess sup{d(ẏ(t),
F (t, z(t))) | z(t) is a measurable selection of πK(y(t))} (if y(t) ∈ K for all
t ∈ I, we let q(t) = d(ẏ(t), F (t, y(t)))) and let

∫ T

0
q(t) dt < ε. Then there

exists η > 0 such that for all ξ ∈ (ξ0 + ηB) ∩K, there exists a solution x(·)
of (P) such that

‖x(·)− y(·)‖C(I,X) ≤ 12M5ε.

P r o o f. Let η be a positive number such that η +
∫ T

0
q(t) dt < ε; also

let m(t) =
∫ t

0
l(s) ds. For any ξ ∈ (ξ0 + ηB) ∩ K, we define x0(t, ξ) =

ξ +
∫ t

0
ẏ(s) ds. It is easy to see that ‖x0(·, ξ) − y(·)‖ ≤ ‖ξ − ξ0‖ < η. Let

z0(t) ∈ πK(x0(t, ξ)) be a measurable selection of t → πK(x0(t, ξ)) and z(t)
be a measurable selection of πK(y(t)). Then

d(ẋ0(t, ξ), F (t, z0(t))) = d(ẏ(t), F (t, z0(t)))
≤ d(ẏ(t), F (t, z(t))) + l(t)‖z(t)− z0(t)‖
≤ q(t) + l(t)‖z(t)− y(t)‖+ l(t)‖y(t)− x0(t, ξ))‖

+ l(t)‖x0(t, ξ))− z0(t)‖
≤ q(t) + l(t)η + l(t)dK(x0(t, ξ)) + l(t)dK(y(t)).

By Proposition 1 in [2, p. 202], we have

d

dt
(dK(y(t))) ≤ d(ẏ(t), TK(πK(y(t)))) ≤ d(ẏ(t), TK(z(t)))

≤ d(ẏ(t), F (t, z(t))) ≤ q(t)

and, since dK(y(0)) = 0, we obtain

dK(y(t)) ≤
t∫

0

q(s) ds.
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Similarly, we get

dK(x0(t, ξ)) ≤
t∫

0

d(ẋ0(s, ξ), F (s, z0(s))) ds

≤
t∫

0

(q(s) + l(s)η) ds +
t∫

0

l(s)
s∫

0

q(u) du ds

+
t∫

0

l(s)dK(x0(s, ξ)) ds.

From Gronwall’s inequality and by interchanging the order of integration,
we obtain

dK(x0(t, ξ)) ≤
t∫

0

exp(m(t)−m(s))(q(s) + l(s)η) ds

+
t∫

0

exp(m(t)−m(s))l(s)
s∫

0

q(u) du ds

≤
t∫

0

exp(m(t)−m(s))q(s) ds + (exp(m(t))− 1)η

+
t∫

0

(exp(m(t)−m(s))− 1)q(s) ds

and
d(ẋ0(t, ξ), F (t, z0(t))) ≤ q(t) + l(t) exp(m(t))η

+ 2l(t) exp(m(t))
t∫

0

exp(−m(s))q(s) ds.

Set δ0(t) = ess sup{d(ẋ0(t, ξ), F (t, z(t))) | z(t) is a measurable selection
of πK(x0(t, ξ))}. Then

δ0(t) ≤ q(t) + l(t) exp(m(t))η + 2l(t) exp(m(t))
t∫

0

exp(−m(s))q(s) ds,

dK(x0(t, ξ)) ≤
t∫

0

δ0(s) ds.

By Lemma 2.2, we can choose a measurable selection v1(t) of F (t, z0(t))
such that

‖v1(t)− ẋ0(t, ξ)‖ ≤ 2d(ẋ0(t, ξ), F (t, z0(t))) ≤ 2δ0(t).
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Set x1(t) = ξ +
∫ t

0
v1(s) ds and let z1(t) be a measurable selection of

πK(x1(t)). Then

‖x1(t)− x0(t, ξ)‖ ≤
t∫

0

‖v1(s)− ẋ0(s, ξ)‖ ds ≤ 2
t∫

0

δ0(s) ds,

since

d(ẋ1(t), F (t, z1(t))) = d(v1(t), F (t, z1(t))) ≤ l(t)‖z0(t)− z1(t)‖
≤ l(t)‖z0(t)− x0(t, ξ)‖+ l(t)‖x0(t, ξ)− x1(t)‖

+ l(t)‖z1(t)− x1(t)‖

≤ 3l(t)
t∫

0

δ0(s) ds + l(t)dK(x1(t))

and

dK(x1(t)) ≤
t∫

0

d(ẋ1(s), F (s, z1(s))) ds

≤ 3
t∫

0

exp(m(t)−m(s))l(s)
s∫

0

δ0(u) du ds

≤ 3
t∫

0

(exp(m(t)−m(s))− 1)δ0(s) ds,

so that

d(ẋ1(t), F (t, z1(t))) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))δ0(s) ds.

Set δ1(t) = ess sup{d(ẋ1(t), F (t, z(t))) | z(t) is a measurable selection of
πK(x1(t))}. Then

δ1(t) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))δ0(s) ds,

dK(x1(t)) ≤
t∫

0

δ1(s) ds.

We claim that we may define sequences {xn}, {δn} of functions with the
following properties:

(i) δn(t) = ess sup{d(ẋn(t), F (t, z(t))) | z(t) is a measurable selection of
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πK(xn(t))} and

δn(t) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))δn−1(s) ds

≤ 3nl(t) exp(m(t))
t∫

0

[(m(t)−m(s))n−1/(n− 1)!]

× exp(−m(s))δ0(s) ds,

(ii) dK(xn(t)) ≤
∫ t

0
δn(s) ds,

(iii) ‖ẋn(t)− ẋn−1(t)‖ ≤ 2δn−1(t).

For n = 1 the above holds. Assume it holds up to i and let us show
it holds for i + 1. Let zi(t) be a measurable selection of πK(xi(t)) and let
vi+1(t) be a measurable selection of F (t, zi(t)) such that

‖vi+1(t)− ẋi(t)‖ ≤ 2d(ẋi(t), F (t, zi(t))) ≤ 2δi(t).

Set xi+1(t) = ξ +
∫ t

0
vi+1(s) ds. Then

‖xi+1(t)− xi(t)‖ ≤
t∫

0

‖vi+1(s)− ẋi(s)‖ ds ≤ 2
t∫

0

δi(s) ds.

Let zi+1(t) be a measurable selection of πK(xi+1(t)). Then

d(ẋi+1(t), F (t, zi+1(t))) ≤ l(t)‖zi(t)− zi+1(t)‖
≤ l(t)‖zi(t)− xi(t)‖+ l(t)‖xi(t)− xi+1(t)‖

+ l(t)dK(xi+1(t))

≤ 3l(t)
t∫

0

δi(s) ds + l(t)dK(xi+1(t)),

since

dK(xi+1(t)) ≤
t∫

0

d(ẋi+1(s), F (s, zi+1(s))) ds

≤ 3
t∫

0

exp(m(t)−m(s))l(s)
s∫

0

δi(u) du ds

≤ 3
t∫

0

(exp(m(t)−m(s))− 1)δi(s) ds.

Thus

d(ẋi+1(t), F (t, zi+1(t))) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))δi(s) ds.
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Therefore, set δi+1(t) = ess sup{d(ẋi+1(t), F (t, z(t))) | z(t) is a measurable
selection of πK(xi+1(t))}. We have

dK(xi+1(t)) ≤
t∫

0

δi+1(s) ds,

δi+1(t) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))δi(s) ds.

Finally, it follows from (i) that

δi+1(t) ≤ 3l(t) exp(m(t))
t∫

0

exp(−m(s))3il(s) exp(m(s))

×
s∫

0

[(m(s)−m(u))i−1/(i− 1)!] exp(−m(u))δ0(u) du ds

≤ 3i+1l(t) exp(m(t))
t∫

0

[(m(t)−m(s))i/i!] exp(−m(s))δ0(s) ds.

Hence, the proof of our claim is complete.
Note that from (iii), we have

(∗) ‖xi+1(·)− xn(·)‖

≤
T∫

0

‖ẋn+1(t)− ẋn(t)‖ dt ≤ 2
T∫

0

δn(t) dt ≤ 2
T∫

0

3nl(t) exp(m(t))

×
t∫

0

[(m(t)−m(s))n−1/(n− 1)!] exp(−m(s))δ0(s) ds dt

≤ 6[(3m(T ))n−1/(n− 1)!]
T∫

0

l(t) exp(m(t))
t∫

0

exp(−m(s))δ0(s) ds dt

≤ 6[(3m(T ))n−1/(n− 1)!]
T∫

0

[exp(m(T )−m(t))− 1]δ0(t) dt.

Thus, {xn(·)} is a Cauchy sequence in C(I,X) and so we may assume xn(·)
converges to x(·) in C(I,X). Since

∫ T

0
δn(t) dt → 0 and dK(xn(t))) ≤∫ T

0
δn(s) ds, we obtain x(t) ∈ K for all t ∈ I.
To show that x(·) is a solution, we choose a sequence {zn(t)} of measur-

able selections of πK(xn(t)) and observe that

d(ẋn(t), F (t, x(t))) ≤ d(ẋn(t), F (t, zn(t)))(∗∗)
+ l(t)‖zn(t)− xn(t)‖+ l(t)‖xn(t)− x(t)‖
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≤ δn(t) + l(t)
( t∫

0

δn(s) ds + ‖xn(t)− x(t)‖
)
.

Since {ẋn(·)} is a Cauchy sequence in L1(I, X), there exists a subsequence
of {ẋn(t)} which converges to ẋ(t) a.e. t ∈ I. Passing to the limit in (∗∗),
we find that x(·) is a solution.

From (∗), we have

‖xn(·)− y(·)‖
≤ ‖x0(·)− y(·)‖+ ‖x1(·)− x0(·)‖+ . . . + ‖xn(·)− xn−1(·)‖

≤ η + 2
T∫

0

δ0(t) dt + 6
n−1∑
i=1

[(3m(T ))i−1/(i− 1)!]

×
T∫

0

[exp(m(T )−m(t))− 1]δ0(t) dt

≤ η + 2
T∫

0

δ0(t) dt + 6 exp(3m(T ))
T∫

0

[exp(m(T )−m(t))− 1]δ0(t) dt

≤ η + 2
T∫

0

δ0(t) dt + 6 exp(4m(T ))

×
T∫

0

exp(−m(t))δ0(t) dt− 6 exp(3m(T ))
T∫

0

δ0(t) dt

≤ 12M5ε.

Theorem 3.2. Assume that F : [0, T ]×K → 2X is a multifunction with
closed images satisfying (H1)–(H4). Then for any x0 ∈ K,

SF (x0) = ScoF (x0).

P r o o f. It is enough to show that for any x0 ∈ K, ScoF (x0) ⊂ SF (x0).
Let y(·) ∈ ScoF (x0) and define G(·) = F (·, y(·)). It is easy to see that
G : I → 2X satisfies the requirement of Lemma 2.3 and so

y(·) ∈ ScoG(x0) ⊂ SG(x0).

For any ε > 0, there exists z ∈ SG(x0), i.e., ż(t) ∈ F (t, y(t)), z(0) = x0,
such that

‖z(·)− y(·)‖G ≤ ε/(12M6).
For any z0(t) ∈ πK(z(t)) measurable, since

d(ż(t), F (t, z0(t))) ≤ l(t)‖z0(t)− y(t)‖ ≤ l(t)‖z(t)− y(t)‖+ l(t)dK(z(t)),
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we have

dK(z(t)) ≤
t∫

0

d(ż(s), F (s, z0(s))) ds,

so that
d(ż(t), F (t, z0(t))) ≤ l(t)‖z(t)− y(t)‖

+ l(t)
t∫

0

l(s) exp(m(t)−m(s))‖y(s)− z(s)‖ ds,

and therefore
T∫

0

d(ż(t), F (t, z0(t))) dt

≤ ‖z(·)− y(·)‖
( T∫

0

l(t) dt +
T∫

0

l(t)
t∫

0

l(s) exp(m(t)−m(s)) ds dt
)

≤ ‖z(·)− y(·)‖(exp(m(T ))− 1) ≤ M‖z(·)− y(·)‖.

Set q(t) = ess sup{d(ż(t), F (t, z0(t))) | z0(t) is a measurable selection of
πK(z(t))}. Then

T∫
0

q(t) dt ≤ M‖z(·)− y(·)‖ ≤ ε/(12M5).

By Theorem 3.1, there exists x(·) ∈ SF (x0) such that ‖x(·)− z(·)‖ < ε.
Thus

d(y(·), SF (x0)) ≤ ‖x(·)− y(·)‖ ≤ ‖x(·)− z(·)‖+ ‖z(·)− y(·)‖
≤ (1 + 1/(12M6))ε.

Since ε is arbitrary, y ∈ SF (x0).

4. An application. Let X be a Banach space and Y be a separable
Banach space. Also let K, Kε (0 < ε ≤ 1) be closed subsets of X and let
U(·) : I → 2X be a measurable multifunction with nonempty closed values.

Consider a function f : I × X × Y × [0, 1] → X. We will assume the
following hypotheses:

(1) For all (x, u, ε) ∈ X × Y × [0, 1], t → f(t, x, u, ε) is measurable, and
for every t ∈ I, (x, u, ε) → f(t, x, u, ε) is continuous.

(2) There exists l(·) ∈ L1(I, R+) such that for almost every t ∈ I and
for all u ∈ U(t) and 0 ≤ ε ≤ 1,

‖f(t, x′, u, ε)− f(t, x′′, u, ε)‖ ≤ l(t)‖x′ − x′′‖.
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(3) For almost every t ∈ I and for all x ∈ X and 0 ≤ ε ≤ 1 the set
F (t, x, ε) = f(t, x, U(t), ε) is closed and contained in l(t)B.

(4) F (t, x) = F (t, x, 0) ⊂ TK(x) for (t, x) ∈ I ×K.
(5)

⋃
0<ε<1 Kε is compact, K is proximal and lim supε→0 Kε ⊂ K, where

the lim sup is defined in the Kuratowski sense, i.e.,

lim sup
ε→0

Kε = {x ∈ X | lim inf
ε→0

d(x,Kε) = 0}.

(6) Let g : X → R be continuous. Consider the optimal control problem

(Pε) J(u, ε) = g(x(T )) → inf

subject to

ẋ(t) = f(t, x, u, ε), x(0) = x0,(4.1)
x(t) ∈ Kε,(4.2)

where u ∈ Uad = {u(·) : I → Y | u(t) ∈ U(t) is measurable}.
We denote the value of (Pε) by Vε and the value of the original prob-

lem (P0) (ε = 0) by V ; we say that (Pε) is well-posed if Vε → V as ε → 0.
To prove well-posedness, we need the following hypothesis:
(7) There exists a minimizing sequence {un} for (P0) such that if xn(·, ε)

and xn(·) are solutions of (4.1), (4.2) and of the original equation (ε = 0)
respectively with un(·), then xn(T, ε) → xn(T ) as ε → 0.

Theorem 4.1. If hypotheses (1)–(7) hold , then the problem (Pε) is well-
posed.

P r o o f. By (7), there exist a minimizing sequence {un(·)} for (P0) and
solutions xn(·) of (4.1) and (4.2) (for ε = 0) with respect to un(·) such that
g(xn(T, ε))→g(xn(T )) as ε→0. Also note that Vε≤g(xn(T, ε)). So we get

(4.3) lim sup
ε→0

Vε ≤ V.

On the other hand, let εn → 0 (εn < 1). Choose admissible state-control
pairs (xn, un) for (4.1) and (4.2) such that

(4.4) J(un, εn) ≤ V (εn) + 1/n.

We note that xn(t) ∈ Kεn ⊂
⋃

0<ε<1 Kε and ‖ẋn(t)‖ ≤ l(t). From the
Ascoli–Arzelà theorem, taking a subsequence and keeping the same nota-
tions we may assume that xn(·) → x(·) in C(0, T ;X) and ẋn

w−→ ẋ(·) in
L1(I,X).

It is easy to show that (see [6])

ẋ(t) ∈ co lim sup
n→∞

F (t, xn(t), εn) ⊂ coF (t, x(t))

(t → F (t, x, ε) is measurable; x → F (t, x, ε) is l(t)-Lipschitz and ε →
F (t, x, ε) is continuous).
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By hypothesis (5), we get

x(t) ∈ lim sup
ε→0

Kε ⊂ K.

From the definition of F and hypotheses (1)–(5), we know that F and K
satisfy the hypotheses (H1)–(H4). By Theorem 3.2, there exists a sequence
{xm(·)} of solutions of the differential inclusions

(4.5) ẋm(t) ∈ F (t, xm(t)), xm(0) = x0 and xm(t) ∈ K

such that xm(·) → x(·) in C(0, T ;X). From [3, p. 214], there exists a
sequence {um(t)} ∈ U(t) of measurable functions such that

(4.6) ẋm(t) = f(t, xm(t), um(t), 0), xm(0) = x0 and xm(t) ∈ K.

Hence, we get g(x(T )) = limm→∞ g(xm(T )) ≥ V . Note that by passing to
the limit in (4.4), we obtain

(4.7) V ≤ g(x(T )) = lim
n→∞

g(xn(T, εn)) = lim
n→∞

J(un, εn) ≤ lim
n→∞

V (εn).

From (4.4)–(4.7), we deduce V (ε) → V as ε → 0.
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