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COMPUTER-AIDED MODELING AND SIMULATION

OF ELECTRICAL CIRCUITS WITH α-STABLE NOISE

Abstract. The aim of this paper is to demonstrate how the appropriate
numerical, statistical and computer techniques can be successfully applied
to the construction of approximate solutions of stochastic differential equa-
tions modeling some engineering systems subject to large disturbances. In
particular, the evolution in time of densities of stochastic processes solving
such problems is discussed.

1. Introduction. The past few years have witnessed an explosive
growth in interest in physical and engineering systems that could be studied
using stochastic and chaotic methods; see Berliner (1992), Chatterjee and
Yilmaz (1992), and Shao and Nikias (1993). “Stochastic” and “chaotic”
refer to nature’s two paths to unpredictability, or uncertainty. To scientists
and engineers the surprise was that chaos (making a very small change in the
universe can lead to a very large change at some later time) is unrelated to
randomness. Things are unpredictable if you look at the individual events;
however, one can say a lot about averaged-out quantities. This is where
the stochastic stuff comes in. Stochastic processes are recognized to play
an important role in a wide range of problems encountered in mathematics,
physics and engineering. Recent developments show that in many practical
applications leading to appropriate stochastic models a particular class of
Lévy α-stable processes is involved. While the attempt at mathematical un-
derstanding of these processes leads to severe analytical difficulties, there ex-
ist very useful approximate numerical and statistical techniques (see Janicki
and Weron (1994a)). Also non-Gaussian statistical methods in impulsive
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noise modeling are important when noises deviate from the ideal Gaussian
model. Stable distributions are among the most important non-Gaussian
models. They share defining characteristics with the Gaussian distribution,
such as the stability property and central limit theorems, and include in fact
the Gaussian distributions as a special case. To help the interested reader
better understand the stable models and necessary methodologies we discuss
here a tutorial example of the resistive-inductive electrical circuit subject to
large external disturbances.

Computer methods of constructing stochastic processes involve at least
two kinds of discretization techniques: the discretization of the continu-
ous time problem involving discrete time parameter and the approximate
representation of random variates with the aid of artificially produced fi-
nite statistical samples. So, we are interested in statistical methods of
data analysis such as quantiles or kernel probability densities estimates,
etc. Applying computer graphics, we attempt to explain to what extent
they can provide results good enough to be applied to solve approximately
quite complicated problems involving α-stable random variates (the discus-
sion of the 2nd order nonlinear stochastic electric circuit model is presented
in Janicki (1995)).

2. Computer generation of α-stable distributions. The most
common and convenient way to introduce α-stable random variables is to
define their characteristic function, which involves four parameters: α —
the index of stability, β — the skewness parameter, σ — the scale parameter
and µ — the shift. This function is given by

(2.1) log φ(θ) =

{

−σα|θ|α{1 − iβ(sgn θ) tan(απ/2)} + iµθ if α 6= 1,

−σ|θ|{1 + iβ π
2 (sgn θ) ln |θ|} + iµθ if α = 1,

where α ∈ (0, 2], β ∈ [−1, 1], σ ∈ R+, µ ∈ R.

For a random variable X distributed according to the above described
rule we will use the notation X ∼ Sα(σ, β, µ). Notice that S2(σ, 0, µ) and
S1(σ, 0, µ) give the Gaussian distribution N (µ, 2σ2) and the Cauchy distri-
bution, respectively.

When we start working with α-stable distributions, the main problem is
that, except for a few values of four parameters describing the characteristic
function, their density functions are not known explicitly. The best method
of computer simulation of a very important class of symmetric α-stable
random variables X ∼ Sα(1, 0, 0) for α ∈ (0, 2] consists in the following:

• generate a random variable V uniformly distributed on (−π/2, π/2)
and an exponential random variable W with mean 1;
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• compute

(2.2) X =
sin(αV )

{cos(V )}1/α
×

{

cos(V − αV )

W

}(1−α)/α

.

The formula (2.2) is generalized below by (2.3).
The algorithm providing skewed stable random variables Y ∼ Sα(1, β, 0)

with α ∈ (0, 1) ∪ (1, 2) and β ∈ [−1, 1] consists in the following:

• generate a random variable V uniformly distributed on (−π/2, π/2)
and an exponential random variable W with mean 1;

• compute

(2.3) Y = Dα,β ×
sin(α(V + Cαβ))

{cos(V )}1/α
×

{

cos(V − α(V + Cα,β))

W

}(1−α)/α

and

Cα,β =
arctan(β tan(πα/2))

α
,

Dα,β = [cos(arctan(β tan(πα/2)))]−1/α .

(In the case of α = 2 or α = 1 the only reasonable choice of β is β = 0,
so (2.2) is applicable. Notice also that if X ∼ Sα(1, β, 0), then σX + µ ∼
Sα(σ, β, µ).)

Generalizing the result of Kanter (1975) or slightly modifying the algo-
rithm of Chambers, Mallows and Stuck (1976), one can see that Y belongs
to the class of Sα(1, β, 0) random variables. For more details see Janicki and
Weron (1994a).

We regard the method defined by (2.2) and (2.3) as a good technique
of computer simulation of α-stable random variables, stochastic measures
and processes of different kinds. Of course, it has its own limitations in
applicability as any computer technique has.

3. Simulation of stable stochastic processes. Now we describe a
rather general technique of approximate computer simulation of univariate
α-stable stochastic processes {X(t) : t ∈ [0, T ]} with independent incre-
ments, which is based on the construction of a discrete time process of the
form {Xτ

ti
}I

i=0, defined by the formula

(3.1) Xτ
ti

= Xτ
ti−1

+ F(ti−1,X
τ
ti−1

) + Y τ
i ,

with a given Xτ
0 , and where Y τ

i ’s form a sequence of i.i.d. α-stable random
variables.

In computer calculations each random variable Xτ
ti

defined by (3.1)
is represented by its N independent realizations, i.e. a random sample
{Xτ

i (n)}N
n=1. So, let us fix N ∈ N large enough. The algorithm consists in

the following:
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1. Simulate a random sample {Xτ
0 (n)}N

n=1 for Xτ
0 .

2. For i = 1, . . . , I simulate a random sample {Y τ
i (n)}N

n=1 for an α-
stable random variable Y τ

i ∼ Sα(τ1/α, 0, 0), with appropriately chosen τ .
3. For i = 1, . . . , I, in accordance with (3.1), compute the random

sample Xτ
i (n) = Xτ

i−1(n) + F(ti−1,X
τ
i−1(n)) + Y τ

i (n), n = 1, . . . ,N .

4. Construct kernel density estimators fi = f I,N
i = f I,N

i (x) of the
densities of X(ti), using for example the optimal version of the Rosenblatt–
Parzen method.

Observe that we have produced N finite time series of the form
{Xτ

i (n)}I
i=0 for n = 1, . . . , N . We regard them as “good” approximations

of the trajectories of the process {X(t) : t ∈ [0, T ]}.
In particular, the above algorithm can be successfully applied to the

construction of approximate solutions to the following linear stochastic dif-
ferential equation driven by an α-stable Lévy motion:

(3.2)

X(t) = X0 +
t∫

0

(a(s) + b(s)X(s−)) ds

+
t∫

0

c(s) dLα(s) for t ∈ [0,∞),

with X(0) = X0 a given α-stable or discrete random variable.
Let us notice that this linear stochastic equation is of independent in-

terest because, as is easily seen, the general solution belongs to the class of
α-stable processes. It may be expressed in the form

X(t) = Φ(t, 0)X0 +
t∫

0

Φ(t, s)a(s) ds +
t∫

0

Φ(t, s)c(s) dLα(s),

where Φ(t, s) = exp{
∫ t

s
b(u) du}.

This explains why outliers or heavy tails appear in the constructed ap-
proximate solutions {Xτ

i (n)}I
i=0, n = 1, . . . ,N , to (3.2), which can be di-

rectly derived as a special case of (3.1). It is enough to define the set
{ti = iτ : i = 0, 1, . . . , I}, τ = T/I, describing a fixed mesh on the interval
[0, T ], and a sequence of i.i.d. random variables ∆Lτ

α,i playing the role of
the random α-stable measures of the intervals [ti−1, ti), i.e. α-stable random
variables defined by

(3.3) ∆Lτ
α,i = Lα([ti−1, ti)) ∼ Sα(τ1/α, 0, 0);

and to choose Xτ
0 = X0 ∼ Sα(σ, 0, µ), computing

(3.4) Xτ
ti

= Xτ
ti−1

+ (a(ti−1) + b(ti−1)X
τ
ti−1

)τ + c(ti−1)∆Lτ
α,i,

for i = 1, . . . , I.
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An appropriate convergence result justifying the method can be found
in Janicki, Michna and Weron (1994).

4. Visualization of univariate stochastic processes. In order to
obtain a graphical computer presentation of the discrete time stochastic
process of the form (3.1), and in particular to get some qualitative and
quantitative information on the electrical circuit problem discussed below,
we propose two different approaches. The first is based on the following:

1. Fix a rectangle [0, T ] × [c, d] that should include the trajectories of
{X(t)}.

2. For each n = 1, . . . , nmax (with fixed nmax ≪ N) draw the line
segments determined by the points (ti−1,X

τ
i−1(n)) and (ti,X

τ
i (n)) for i =

1, . . . , I, constructing nmax approximate trajectories of the process X (thin
lines in Figs. 4.1–4.3, where N = 2000, I = 1000, nmax = 10).

Fig. 4.1. Deterministic electric circuit equation with the random variable S2(1, 0, 1) as a
starting value of the solution

3. Fixing values of a parameter pj ∈ (0, 1), j = 1, . . . , J , it is possible do
derive from each statistical sample {Xτ

i (n)}N
n=1 with fixed i ∈ {0, 1, . . . , I}

estimators of corresponding quantiles qi,j = F−1
i (pj), where Fi = Fi(x)

denotes the unknown density distribution function of the random variable
Xτ

ti
represented by the statistical sample {Xτ

i (n)}N
n=1. In this way we obtain

an approximation of the so-called quantile lines (thick lines in Figs. 4.1–4.3,
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Fig. 4.2. Computer solution to the resistive-inductive electrical circuit equation driven by
Lévy motion for α = 2.0

Fig. 4.3. Computer solution to the resistive-inductive electrical circuit equation driven by
Lévy motion for α = 1.2

where J = 9, pj ∈ {0.1, 0.2, . . . , 0.9}), i.e., the curves qj = qj(t) defined by
the condition P{X(t) ≥ qj(t)} = pj .
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The second idea consists in the construction of kernel density estimators
for a finite sequence of random variables {Xτ

ti
} approximating unknown

values {Xti
} of the exact solution to (3.2), and represented by artificially

produced statistical samples {Xτ
i (n)}N

n=1, for a finite set of equidistant i.
So, let us recall briefly formulas describing kernel density estimators.

Suppose that we are interested in a sequence {ξ1, ξ2, . . . , ξn, . . .} of i.i.d.
random variables distributed according to the law described by an unknown
density function and we are given a random sample (a sequence of observed
values or realizations) {ξ(1), . . . , ξ(n)}. The well known Rosenblatt–Parzen
method of construction of a kernel density estimator fn = fn(x) is described
by the formula

fn(x) =
1

n

n
∑

i=1

1

bn
K

(

x − ξ(i)

bn

)

,

for a univariate density function f = f(x), and where the kernel function
K = K(u) should be nonnegative on R and such that

∫

R
K(u) du = 1.

Fig. 4.4. Evolution of densities for deterministic electric circuit equation with the random
variable S2(1, 0, 1) as a starting value of the solution

The crucial problem of optimal selection of the bandwidth parameter
bn was discussed by several authors (see, e.g., Härdle, Hall and Marron
(1989) and the references therein). An interesting iterative self-learning

algorithm leading to the optimal value of bn is discussed in Gajek and Lenic
(1993); however, it seems a little bit too costly in our setting, when statistical
samples should be rather large, because of appearance of significant outliers.
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Fig. 4.5. Evolution of densities for resistive-inductive electrical circuit driven by Lévy
motion for α = 2.0

In computer calculations which provided us with Figs. 4.4–4.6 satisfactory
values of this parameter were established experimentally.

Fig. 4.6. Evolution of densities for resistive-inductive electrical circuit driven by Lévy
motion for α = 1.2
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5. Resistive-inductive electrical circuit. The stable distributions
have already found applications in signal processing and communications.
For example, Mandelbrot and van Ness (1968) used Gaussian and stable
fractional stochastic processes to describe long-range dependence arising
in engineering, economics and hydrology. It was also used by Berger and
Mandelbrot (1963) to describe the patterns of error clustering in telephone
circuits. However, the most important application of the stable distributions
is in the area of impulsive noise modeling. It has recently been shown that
a general class of man-made and natural impulsive noise is indeed stable
under broad conditions, e.g. Stuck and Kleiner (1974) empirically found
that the noise over certain telephone lines can be best described by stable
laws with the index of stability α close to 2.

Here we present an example of a linear stochastic differential equation
involving stochastic integrals with stationary α-stable increments, which
has a well known physical interpretation in the deterministic case when
the random external noise is absent. This tutorial example allows us to
emphasize the role of the α-stable random disturbances and to demonstrate
how the solution depends on the parameter α.

Fig 5.1. Deterministic electric circuit corresponding to equation (5.2)

The deterministic part of the stochastic differential equation

(5.1) dX(t) = (4 sin(t) − X(t)) dt +
1

2
dLα(t)

can be interpreted as a particular case of the ordinary differential equation

(5.2)
di

ds
+

R

L
i =

E

L
sin(γs),

which describes the resistive-inductive electrical circuit, where i, R, L, E
and γ denote, respectively, electric force, resistance, induction, electric power
and pulsation. (Similar examples can be found in Gardiner (1983).) In order
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to obtain a realistic model it is enough to choose, for example, R = 2.5[kΩ],
L = 0.005[H], E = 10[V], γ = 500[1/s] and to rescale real time s using the
relation t = γs.

The simplest Euler type discretization of the equation (5.1) yields a sys-
tem of the form (3.1). The results of computer simulation and visualization
described above for two different values of the parameter α ∈ {2.0, 1.2} are
included in Figs. 4.1–4.6. They also contain a field of directions correspond-
ing to the deterministic part of (5.1), i.e., the equation

dx

dt
(t) = −x(t) + 4 sin(t).

This helps us to figure out how the drift acts “against” the diffusion as t
tends to infinity.

The discussion of the computer experiments concerning the 2nd order
nonlinear stochastic electric circuit model and based on a similar approach
is presented in Janicki (1995).
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