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A MODEL OF A RADIALLY SYMMETRIC CLOUD
OF SELF-ATTRACTING PARTICLES

Abstract. We consider a parabolic equation which describes the gravita-
tional interaction of particles. Existence of solutions and their convergence
to stationary states are studied.

Introduction. Consider a cloud of particles in Rn mutually interacting
via the gravitational potential generated by themselves, and suppose that
the particles are subject to a frictional, velocity-dependent force and a ran-
dom fluctuation. We are interested in time evolution of the mass distribution
in the cloud.

The evolution of the density f(x, v, t) of this system in the phase space
(x, v) is described by the equation of Vlasov–Fokker–Planck type [10]

(1) ft = −∇x · (vf) +∇v · ((∇xΦ + βv)f) + β∆vf,

where Φ is the gravitational potential of the cloud. For the sake of simplicity
we put all physical constants (except for β > 0) equal to one.

We will consider only the case when the x-space is at most 3-dimensional.
Then the gravitational potential Φ is equal to

(2) Φ(x, t) =
∫

Rn

%(y, t)En(x− y) dy,

where

%(x, t) =
∫

Rn

f(x, v, t) dv

is the spatial density of particles and En(s) is the fundamental solution of
the Laplacian in Rn, i.e. E1(s) = |s|/2, E2(s) = (2π)−1 ln |s|, E3(s) =
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−|s|−1/(4π) for n = 1, 2, 3 respectively.
We expect (for details see [10]) that in the adiabatic limit of large friction

(β → ∞) the density %, which we are interested in, satisfies the Fokker–
Planck equation

(3) %t = ∇ · (∇% + %∇Φ).

Assume that % is radially symmetric and define the integrated density
Q(r, t) =

∫
Br

%(x, t) dx. This satisfies the parabolic equation

(4) Qt = Qrr − (n− 1)r−1Qr + σ−1
n r1−nQQr,

where σn is the area of the unit sphere in Rn.
The equation (4) is supplemented with the initial and boundary condi-

tions

Q(r, 0) = Q0(r) for r ≥ 0,(5)
Q(0, t) = 0, Q(+∞, t) = M for t ≥ 0.(6)

The parameter M , 0 ≤ M ≤ +∞, can be interpreted as the total mass
of particles.

In [2], [3], [4], the equation (3) was considered in a bounded domain
with a natural no-flux boundary condition. In these papers the questions
of existence of solutions, their uniqueness, regularity, and convergence to
steady states as time tends to infinity were studied. Moreover, for large
mass M the nonexistence of stationary solutions ([4], [8], [9]) and blow-up
phenomena for the evolution problem were shown ([2], [4]).

For a discussion of self-similar solutions of (3) in Rn, n ≥ 2, we refer
to [1].

In Section 1 the existence, uniqueness and asymptotic behaviour of so-
lutions of the problem (4)–(6) in the one-dimensional case are considered.
Section 2 deals with stationary solutions of our problem in Rn, n=2, 3, and
nonexistence of global-in-time solutions of the nonstationary problem in R2.

1. For n = 1 the equation (4) takes the form

(7) Qt = Qrr + QQr,

known as Burgers’ equation [7].
Define R2

+ = {(r, t) : r, t > 0}, R+ = [0,+∞).
We say that Q ∈ C2(R2

+)∩C1(R2
+) is a classical solution of the problem

(4)–(6) if Q satisfies (4) in R2
+ and the conditions (5), (6).

Throughout this section we assume that the initial data Q0(r) is a contin-
uous nondecreasing function such that Q0(0) = 0 and Q0(+∞) = M < +∞.

Theorem 1. There exists a unique classical solution Q(r, t) of the prob-
lem (5)–(7).
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P r o o f. Let us introduce a new dependent variable v by the formula
Q = 2vr/v, which represents the Hopf–Cole transformation [7]. It is easy to
check that Q is a solution of (5)–(7) if and only if v is a positive solution of
the problem

vt = vrr,(8)

v(r, 0) = exp
(

1
2

r∫
0

Q0(s) ds

)
≡ f(r),(9)

vr(0, t) = 0.(10)

It is well known ([6, Ch. 1]) that (8)–(10) has a unique positive solution v
and

v(r, t) =
1√
4πt

+∞∫
0

(K(r − ξ, t) + K(r + ξ, t))f(ξ) dξ,(11)

vr(r, t) =
1

2
√

4πt

+∞∫
0

(K(r − ξ, t)−K(r + ξ, t))f(ξ)Q0(ξ) dξ,(12)

where K(s, t) = exp(−s2/(4t)).
Combining (11), (12) and the Hopf–Cole transformation we get

(13) Q(r, t) =

∫ +∞
0

(K(r − ξ, t)−K(r + ξ, t))f(ξ)Q0(ξ) dξ∫ +∞
0

(K(r − ξ, t) + K(r + ξ, t))f(ξ) dξ
.

From (13) we see that 0 ≤ Q(r, t) ≤ M for t > 0, r > 0.
For a fixed ε > 0 we choose N such that M −Q0(ξ) < ε for ξ > N . For

such N we can write the following inequality:

Q(r, t) ≥ (M − ε)

∫ +∞
0

(K(r − ξ, t)−K(r + ξ, t))f(ξ) dξ∫ +∞
0

(K(r − ξ, t) + K(r + ξ, t))f(ξ) dξ
(14)

− (M − ε)

∫ N

0
(K(r − ξ, t)−K(r + ξ, t))f(ξ) dξ∫ +∞

0
(K(r − ξ, t) + K(r + ξ, t))f(ξ) dξ

,

valid for r > 0, t > 0. The first term on the right hand side of the last
formula tends to M −ε as r → +∞, the second one goes to 0. Hence Q(r, t)
converges to M , and it is easy to see that the convergence is locally uniform
in t.

R e m a r k 1. Let Q and Q̃ be the solutions of (5)–(7) starting from the
initial data Q0, Q̃0. Using (13) it can be proved in a standard way that for
each T > 0 and ε > 0 there exists δ > 0 such that |Q0(r) − Q̃0(r)| < δ for
r ≥ 0 implies |Q(r, t)− Q̃(r, t)| < ε for 0 < t < T and r ≥ 0.
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Theorem 2. If t tends to +∞, then the solution of (5)–(7) converges to
the stationary solution Qs(r) = M(eMr − 1)/(eMr + 1) = M tanh(Mr/2)
locally uniformly in r.

P r o o f. A stationary solution Qs(r) of (5)–(7) satisfies

Qs
rr + QsQs

r = (Qs
r + (Qs)2/2)r = 0,

Qs(0) = 0, Qs(+∞) = M.

Clearly, this problem is integrable and its unique solution is

Qs(r) = M
eMr − 1
eMr + 1

= M tanh(Mr/2).

Define

Φ1(r, t) =
r/
√

4t∫
−∞

exp
(
− y2 −M

√
ty +

1
2

r−
√

4ty∫
0

ϕ(s) ds

)
dy,

Φ2(r, t) =
+∞∫

r/
√

4t

exp
(
− y2 + M

√
ty +

1
2

√
4ty−r∫
0

ϕ(s) ds

)
dy,

Φ3(r, t) =
r/
√

4t∫
−∞

exp
(
− y2 −M

√
ty +

1
2

r−
√

4ty∫
0

ϕ(s) ds

)
× ϕ

(
r −

√
4ty

)
dy,

Φ4(r, t) =
+∞∫

r/
√

4t

exp
(
− y2 + M

√
ty +

1
2

√
4ty−r∫
0

ϕ(s) ds

)
× ϕ

(√
4ty − r

)
dy,

where ϕ(r) = Q0(r) −M . It follows from our assumption imposed on Q0

that −M ≤ ϕ(r) ≤ 0 and ϕ(r) → 0 as r → +∞. Introducing the new
variable y = (r − ξ)/

√
4t we get

+∞∫
0

K(r − ξ, t)f(ξ) dξ =
√

4t exp(Mr/2)Φ1(r, t).

In a similar way, using the new variable y = (r + ξ)/
√

4t we have
+∞∫
0

K(r + ξ, t)f(ξ) dξ =
√

4t exp(−Mr/2)Φ2(r, t).

Similarly we can transform the integrals in (12), and in this way we get

Q(r, t) =
eMr/2(MΦ1(r, t) + Φ3(r, t))− e−Mr/2(MΦ2(r, t) + Φ4(r, t))

eMr/2Φ1(r, t) + e−Mr/2Φ2(r, t)
.
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To prove the theorem it is enough to show that Φ1/Φ2 tends to 1, and Φ3/Φ2,
Φ4/Φ2 converge to 0 as t → +∞.

Putting

I1(r, t) =
+∞∫

r/
√

4t

exp
(
− y2 + M

√
ty +

1
2

√
4ty+r∫
0

ϕ(s) ds

)
dy,(15)

I2(r, t) =
r/
√

4t∫
−r/

√
4t

exp
(
− y2 + M

√
ty +

1
2

r+
√

4ty∫
0

ϕ(s) ds

)
dy(16)

we have Φ1(r, t) = I1(r, t) + I2(r, t). Now we fix r and choose N > r such
that |ϕ(s)| < ε for s > N − r. For such N we get the following inequality:

I1(r, t) ≥
+∞∫

N/
√

4t

exp
(
− y2 + M

√
ty +

1
2

√
4ty−r∫
0

ϕ(s) ds(17)

+
1
2

√
4ty+r∫

√
4ty−r

ϕ(s)ds

)
dy

≥ exp(−εr)
(

Φ2(r, t)−
N/
√

4t∫
r/
√

4t

exp
(
− y2 + M

√
ty

+
1
2

√
4ty−r∫
0

ϕ(s) ds

)
dy

)
≥ exp(−εr)

(
Φ2(r, t)−

N − r√
4t

exp
(
− r2

4t
+

MN

2

))
,

valid for r > 0, t > 0. Recalling that ϕ(s) ≥ −M , we have Φ2(r, t) ≥√
πeMr/2/4, for sufficiently large t. Combining (17) and the above estimate

we obtain

(18) exp(−εr)(1− ε) ≤ I1(r, t)
Φ2(r, t)

≤ 1,

valid for large t and small ε. Obviously I2/Φ2 → 0 as t → +∞. Hence (18)
shows that Φ1/Φ2 → 1. Similarly we can check that Φ3/Φ2 and Φ4/Φ2 tend
to 0. This completes the proof of Theorem 2.

From Theorem 2 and Remark 1 we deduce the following

R e m a r k 2. For fixed N > 0, ε > 0 and initial data Q0, Q̃0 there exists
δ > 0 such |Q0(r)− Q̃0(r)| < δ for r ∈ R+ implies that |Q(r, t)− Q̃(r, t)| ≤ ε
for 0 < r < N and t > 0.
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According to the physical interpretation, Q(r, t) should be a nondecreas-
ing function of r. By the above remark it is enough to verify this fact for Q
starting from strictly increasing initial data Q0.

Theorem 3. If Q′0(r) > 0 for each r ≥ 0 then Qr(r, t) > 0 for t ≥ 0,
r ≥ 0.

P r o o f. If Q is solution of (5)–(7) then W ≡ Qr satisfies

(19) Wt = Wrr + QWr + W 2.

Our assumptions and the Hopf lemma ([6]) applied to (7) imply the existence
of a neighbourhood U of the boundary of R2

+ such that W (r, t) > 0 for
(r, t) ∈ U . Assume that the set B ≡ {(r, t) ∈ R2

+ : W (r, t) < 0} is not
empty and let (r0, t0) be a point of the boundary of B nearest to the origin.
Obviously W (r0, t0) = 0. Applying the Hopf lemma in the domain {0 ≤ r ≤
r0, 0 ≤ t ≤ t0} to (19) we get Wr(r0, t0) 6= 0. Hence by the implicit function
theorem there exists a unique function r(t) defined on some neighbourhood
K of t0 such that W (r(t), t) = 0 and r(t0) = r0. Define the set D ≡ {(r, t) :
t ∈ K, r(t) ≤ r ≤ r(t) + ε}, where ε is a small positive number so that
D ⊂ B. The function Q restricted to D attains its maximum at some point
(r(t1), t1). By the Hopf lemma Qr(r(t1), t1) 6= 0, which contradicts the
definition of r(t). In this way we proved that Qr ≥ 0. If Qr(r0, t0) = 0
then by the maximum principle applied to (19), Qr(r, t0) = 0 for each
0 ≤ r < +∞. This leads to a contradiction with the assumption (6).

Below we have an easy consequence of Remark 2 and Theorem 3.

R e m a r k 3. The solution of the problem (5)–(7) depends continuously
on the initial data.

2. In Section 1 we proved in an elementary way that for M ≥ 0 and n = 1
there exists a unique stationary solution of the problem (4)–(6). In higher
dimensions the situation is more complicated. Note that for n ≥ 2, with
the help of a stationary solution Qs(r) we can produce a family of solutions
putting Qs

R(r) = R2−nQs(Rr). Hence if a stationary solution exists, it is
not unique (except for Qs(r) = crn−2).

In the two-dimensional case it is convenient to introduce the variable
y = r2, which allows us to transform (4) into

(20) Qt = 4yQyy + π−1QQy.

Hence each stationary solution Qs of (20) satisfies the equation 4πyQyy +
QQy = 0, which is integrable, and its first integral is

(21) 8πyQy + Q(Q− 8π) = const.
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From (21) and the assumption Q(0) = 0, after an integration we get

(22) Qs(r) = 8πCr2/(8π − C + Cr2),

where C is a constant 0≤C <8π, which physically can be interpreted as the
mass of particles in the ball of radius 1. From (22) we see that Qs(+∞)=8π.
Hence in the two-dimensional case each nonzero stationary solution of (4)–
(6) has the total mass equal to 8π. In fact, it can be proved by applying the
method of moving planes [5] that all stationary solutions of (3) in R2 with
finite total mass are radially symmetric, hence have the form (22).

For the study of stationary solutions of (4) in R3 we use the phase plane
method developed in [2], [8].

Assume that Qs is a stationary solution in R3. Introducing the new
independent variable τ = log r and putting

(23) v(r) = (4π)−1Qs
r(r), w(r) = (4πr)−1Qs(r),

we can check that v and w satisfy the system

(24) v′ = 2v − vw, w′ = v − w, ′ =
d

dτ
.

We are interested in the solutions of (24) which satisfy

(25) w(τ) ≥ 0, v(τ) ≥ 0.

We prove that there are four trajectories of (24) satisfying (25): the line
γ1 = (v = 0, w > 0), the stationary points P1 = (0, 0), P2 = (2, 2), and the
separatrix γ2 connecting P1 to P2.

Indeed, the origin is a saddle, P2 is a sink and L(v, w) = (w − 2)2/2 +
(v − 2) − 2 log(v/2) is a Lyapunov function for (24). Hence the basin of
attraction of P2 contains the whole positive quadrant. Thus the separatrix
γ2 starting from P1 ends in P2, and turns around P2 infinitely many times
(the eigenvalues of the linearization of (24) at P2 have imaginary parts equal
to ±

√
7).

Let us denote by β1, β2 two pieces of γ2:

β1 = {(v(τ), w(τ)) : τ ∈ (−∞, τ0),
w(τ) ≤ 2 for τ ∈ (−∞, τ0), w(τ0) = 2},

β2 = {(v(τ), w(τ)) : τ ∈ (τ0, τ1), w(τ0) = 2, v(τ1) = 2,

w(τ) 6= 2 for τ ∈ (τ0, τ1)}.
Obviously if the initial condition (v(0), w(0)) belongs to the domain

bounded by the curve β1 and the lines (w = 0, v > 0), w = 2, then the solu-
tion of (24) passing through this point crosses the line w = 0 at some moment
τ < 0. It is easily seen that the solution (v(τ), w(τ)) 6= P2 of (24) starting
from any point in the region bounded by γ1, the line (v = 2, w ≥ w(τ1))
and the curve β1 ∪ β2 crosses the line (v = 2, w > 2) at some τ < 0.
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We claim that if (v(τ), w(τ)) is a solution of (24) and v(0) > 2, w(0) > 2,
then v(τ)=2 for some τ <0. Translating the origin to the point (2, 2) in the
(v, w) plane, and next introducing the polar coordinates (r, ϕ), (24) becomes

ϕ′ = sin2 ϕ + r cos ϕ sin2 ϕ− sinϕ cos ϕ + 1 ≡ f1(r, ϕ),

r′ = − r sinϕ cos ϕ− r2 cos2 ϕ sin2 ϕ− r sin2 ϕ ≡ f2(r, ϕ).

Our claim follows from f1(r, ϕ)>0 for ϕ∈ (0, π/2). Hence the separatrix is
the unique nonconstant solution (v(τ), w(τ)) of (24) with v(τ)>0 for all τ .

Each trajectory (v(τ), w(τ)) of (24) satisfying (25) defines the stationary
solution Qs(r) = 4πrw(r) of (4). Note that Qs

r = 4πv ≥ 0, hence Qs

satisfies our physical assumption. P1 corresponds to Qs(r) ≡ 0. P2 defines
Qs(r) = 8πr, the solution found by S. Chandrasekhar in the thirties, in
connection with his studies of the stellar structure.

The explicit form of the stationary solution corresponding to the sepa-
ratrix γ2 is not available. The separatrix γ2 is a bounded curve which turns
around P2 infinitely many times. Hence for each c ≤ c0 = 4π max w(τ)
there exists a stationary solution of (24) such that Qs(1) = c, and there is
no stationary solution for c > c0. Moreover, stationary solutions are unique
for sufficiently small c, and there are infinitely many solutions for c = 8π;
for c 6= 8π the number of solutions is finite but grows to infinity when c
approaches 8π.

γ1 corresponds to the stationary solution Qs(r) ≡ const > 0, which is
not of physical interest.

Note that each stationary solution in R3 (except for Qs(r) ≡ const ≥ 0)
has infinite total mass and Qs(r)/r → 8π as r → +∞.

It is worth noting that the structure of the set of stationary solutions of
the equation (4) considered in a bounded domain can be very complicated,
and depends strongly on the geometry of this domain (cf. [8], [9]). Moreover,
the explicit form of the solution is not available for n ≥ 3.

In [2], [4] it was proved that, under some assumptions on initial data,
solutions of (3) considered in a bounded domain blow up in finite time. We
prove that a similar phenomenon occurs in R2.

Theorem 4. If Q(r, t) is a solution of (4)–(6) with n = 2, Q0(+∞) > 8π
and Qr(r, t) > 0, then Q(r, t) ceases to exist after a finite time.

P r o o f. We will use equation (4) in the form (20). Choose C such that
8π < C < Q0(+∞). It follows from the implicit function theorem that there
exists a smooth function R(t) such that Q(R(t), t) = C. Define an auxiliary
function

(26) W (t) =
R(t)∫
0

Q(y, t) dy.
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It is easy to check that

W ′(t) = CR′(t) + 4R(t)Qy(R(t), t)− 4C +
1
2π

C2(27)

≥ CR′(t) +
1
2π

C2 − 4C.

Integrating (27) over [0, t] we get

(28) W (t) ≥ CR(t)− CR(0) + W (0) +
(

1
2π

C2 − 4C

)
t.

From the obvious inequality CR(t) ≥ W (t) and (28) we have 0 ≥ W (0) −
CR(0) + (C2/(2π) − 4C)t, which implies that the maximal time of the ex-
istence of solution does not exceed (CR(0)−W (0))/(C2/(2π)− 4C).

R e m a r k 4. One can prove that the assumption Q′0(r) > 0 in the two-
dimensional case also implies Qr(r, t) > 0 like for n = 1. The arguments
are similar to those used in the proof of Theorem 3. The only problem is
that we cannot use directly the Hopf lemma, because the equation (20) is
not uniformly parabolic. However, by inspection of the proof, we see that
in our case the Hopf lemma is still valid. Hence we can use this argument
in the proof of Remark 3 in the same manner as in Theorem 3.
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