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1. Introduction. Let {ak}k≥0 be a linear recurrence of nonnegative
integers defined by

(1) ak+n = c1ak+n−1 + . . .+ cnak (k = 0, 1, 2, . . .),

where a0, . . . , an−1 are not all zero and c1, . . . , cn are nonnegative integers
with cn 6= 0. Put

(2) Φ(X) = Xn − c1Xn−1 − . . .− cn.
In what follows, Q and Q denote the fields of rational and algebraic

numbers respectively. In 1929, Mahler [4] proved the following theorem: Let
{ak}k≥0 be a linear recurrence satisfying (1). Suppose that Φ(X) is irre-
ducible over Q and the roots %1, . . . , %n of Φ(X) satisfy %1 > max{1, |%2|, . . .
. . . , |%n|}. If α is an algebraic number with 0 < |α| < 1, then the number∑∞
k=0 α

ak is transcendental.
In this paper, we establish two theorems on the algebraic independence

of the values of power series generated by linear recurrences with conditions
on Φ(X) weaker than those of Mahler (see Remark 1 below).

Let {ak}k≥0 and {bk}k≥0 be linear recurrences satisfying (1). We write
{ak}k≥0 ∼ {bk}k≥0 if there is a nonnegative integer l such that

ak = bk+l (0 ≤ k ≤ n− 1) or bk = ak+l (0 ≤ k ≤ n− 1).

Then ∼ is an equivalence relation. Its negation is written as {ak}k≥0 6∼
{bk}k≥0. We denote by f (l)(z) the lth derivative of a function f(z).

Theorem 1. Let {a(i)
k }k≥0 (i = 1, . . . , s) be linear recurrences satisfying

(1). Suppose that Φ(±1) 6= 0 and the ratio of any pair of distinct roots of
Φ(X) is not a root of unity. Let

fi(z) =
∞∑

k=0

za
(i)
k (1 ≤ i ≤ s)

[177]
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and let α be an algebraic number with 0 < |α| < 1. Then {f (l)
i (α)}1≤i≤s, l≥0

are algebraically independent if and only if {a(i)
k }k≥0 6∼ {a(j)

k }k≥0 (1 ≤ i <
j ≤ s).

Theorem 2. Let {ak}k≥0 be a linear recurrence satisfying the same con-
ditions as in Theorem 1. Suppose that {ak}k≥0 is not a geometric progres-
sion. Let

f(z) =
∞∑

k=0

zak

and let α1, . . . , αr be algebraic numbers with 0 < |αi| < 1 (1 ≤ i ≤ r). Then
the following three properties are equivalent :

(i) {f (l)(αi)}1≤i≤r, l≥0 are algebraically dependent.
(ii) 1, f(α1), . . . , f(αr) are linearly dependent over Q.

(iii) There exist a nonempty subset {αi1 , . . . , αis} of {α1, . . . , αr}, roots
of unity ζ1, . . . , ζs, an algebraic number γ with αiq = ζqγ (1 ≤ q ≤ s), and
algebraic numbers ξ1, . . . , ξs, not all zero, such that

s∑
q=1

ξqζ
ak
q = 0

for all sufficiently large k.

R e m a r k 1. Since we do not assume that Φ(X) is irreducible over Q,
our assumption on Φ(X) is weaker than that of Mahler, because of the
following fact: Suppose that the polynomial Φ(X) defined by (2) with n ≥ 2
is irreducible over Q. Then the roots %1, . . . , %n of Φ(X) satisfy the condition
%1 > max{1, |%2|, . . . , |%n|} if and only if none of %i/%j (i 6= j) is a root of
unity. (A proof of this statement will be given in Section 2.)

R e m a r k 2. In the case where {ak}k≥0 is a geometric progression, Lox-
ton and van der Poorten [3] obtained the following result: Let f(z) =∑∞
k=0 z

dk , where d is an integer greater than 1, and let α1, . . . , αr be al-
gebraic numbers with 0 < |αi| < 1 (1 ≤ i ≤ r). Then the following three
properties are equivalent:

(i) {f (l)(αi)}1≤i≤r, l≥0 are algebraically dependent.
(ii) 1, f(α1), . . . , f(αr) are linearly dependent over Q.

(iii) There exist a nonempty subset {αi1 , . . . , αis} of {α1, . . . , αr}, non-
negative integers k1, . . . , ks, roots of unity ζ1, . . . , ζs, an algebraic number γ
with αd

kq

iq
= ζqγ (1 ≤ q ≤ s), and algebraic numbers ξ1, . . . , ξs, not all zero,

such that
s∑
q=1

ξqζ
dk

q = 0 (k = 0, 1, 2, . . .).
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R e m a r k 3. As a special case of the result of Nishioka [6], the three
properties (i)–(iii) in Theorem 2 are equivalent also for gap series

∑∞
k=0 z

ak ,
where {ak}k≥0 is an increasing sequence of nonnegative integers such that
limk→∞ ak+1/ak = ∞. In the case of a linear recurrence {ak}k≥0 satisfy-
ing the conditions of Theorem 1, we have limk→∞ ak+1/ak = % > 1 (see
Remark 4 in Section 2).

The author is grateful to Prof. K. Nishioka for her valuable advice.

2. Lemmas. Let Ω = (ωij) be an n×n matrix with nonnegative integer
entries. Then the maximum % of the absolute values of the eigenvalues of
Ω is itself an eigenvalue (cf. Gantmacher [2, p. 66, Theorem 3]). If z =
(z1, . . . , zn) is a point of Cn with C the set of complex numbers, we define
a transformation Ω : Cn → Cn by

(3) Ωz =
( n∏

j=1

z
ω1j
j , . . . ,

n∏

j=1

z
ωnj
j

)
.

We suppose that the matrix Ω and an algebraic point α = (α1, . . . , αn),
where αi are nonzero algebraic numbers, have the following four properties:

(I) Ω is nonsingular and none of its eigenvalues is a root of unity, so
that in particular % > 1.

(II) Every entry of the matrix Ωk is O(%k) as k tends to infinity.
(III) If we put Ωkα = (α(k)

1 , . . . , α
(k)
n ), then

log |α(k)
i | ≤ −c%k (1 ≤ i ≤ n)

for all sufficiently large k, where c is a positive constant.
(IV) If f(z) is any nonzero power series in n variables with complex

coefficients which converges in some neighborhood of the origin, then there
are infinitely many positive integers k such that f(Ωkα) 6= 0.

We note that the property (II) is satisfied if every eigenvalue of Ω of
absolute value % is a simple root of the minimal polynomial of Ω.

Let K be an algebraic number field. In what follows, the rings of poly-
nomials and formal power series in variables z1, . . . , zn with coefficients in
K are denoted by K[z1, . . . , zn] and K[[z1, . . . , zn]], respectively.

Lemma 1 (Nishioka [7]). Assume that f1(z), . . . , fm(z) ∈ K[[z1, . . . , zn]]
converge in an n-polydisc U around the origin and satisfy a functional equa-
tion of the form

(4)



f1(z)

...
fm(z)


 = A



f1(Ωz)

...
fm(Ωz)


+



b1(z)

...
bm(z)


 ,
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where A is an m × m matrix with entries in K and bi(z) ∈ K[z1, . . . , zn]
(1 ≤ i ≤ m). Suppose that the n × n matrix Ω and a point α whose
components are nonzero algebraic numbers have the properties (I)–(IV) and
α ∈ U . If f1(z), . . . , fr(z) (r ≤ m) are linearly independent over K modulo
K[z1, . . . , zn], then f1(α), . . . , fr(α) are algebraically independent.

In what follows, N0 denotes the set of nonnegative integers.

Lemma 2 (Skolem–Mahler–Lech’s theorem, cf. Cassels [1]). Let C be a
field of characteristic zero. Let %1, . . . , %d be nonzero distinct elements in
C and P1(X), . . . , Pd(X) nonzero polynomials of X with coefficients in C.
Then

(5) R =
{
k ∈ N0

∣∣∣ f(k) =
d∑

i=1

Pi(k)%ki = 0
}

is the union of a finite set and a finite number of arithmetic progressions. If
R is an infinite set , then %i/%j is a root of unity for some distinct i and j.

Lemma 3 (Masser [5]). Let Ω be an n× n matrix with nonnegative inte-
ger entries for which the property (I) holds. Let α be an n-dimensional vec-
tor whose components α1, . . . , αn are nonzero algebraic numbers such that
Ωkα → (0, . . . , 0) as k tends to infinity. Then the negation of the property
(IV) is equivalent to the following :

There exist integers i1, . . . , in not all zero and positive integers a, b such
that

(α(k)
1 )i1 . . . (α(k)

n )in = 1

for all k = a+ lb (l = 0, 1, 2, . . .).

Let {ak}k≥0 be a linear recurrence satisfying (1). We put

(6) Ω =




c1 1 0 . . . 0

c2 0 1
. . .

...
. . . 0...

... . . . 1
cn 0 . . . 0



.

Lemma 4. Suppose that Φ(±1) 6= 0 and the ratio of any pair of distinct
roots of Φ(X) is not a root of unity. If α is an algebraic number with 0 <
|α| < 1, then the matrix Ω defined by (6) and α = (1, . . . , 1︸ ︷︷ ︸

n−1

, α) have the
properties (I)–(IV).

P r o o f. The property (I) is satisfied, since the characteristic polyno-
mial of the matrix Ω defined by (6) is Φ(X). Let %1, . . . , %d be the distinct
eigenvalues of Ω. Since every entry of Ω is nonnegative, we may assume
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%1 ≥ max{|%2|, . . . , |%d|} and then %1 > 1. For each i (0 ≤ i ≤ n − 1), we
define the sequence {a(i)

k }k≥0 by

a
(i)
k+n = c1a

(i)
k+n−1 + . . .+ cna

(i)
k (k = 0, 1, 2, . . .)

with

a
(i)
0 = 0, . . . , a(i)

i−1 = 0, a(i)
i = 1, a(i)

i+1 = 0, . . . , a(i)
n−1 = 0.

Then

Ωk =



a

(n−1)
k+n−1 . . . a

(n−1)
k

. . . . . . . . . . . . . . . . . . . .

a
(0)
k+n−1 . . . a

(0)
k


 (k = 0, 1, 2, . . .).

Since each a
(i)
k can be expressed as an f(k) in (5), the sequence {a(i)

k }k≥0

has only finitely many zeros by Lemma 2. Hence the entries of Ωλ are
positive for sufficiently large λ. By Perron’s theorem (cf. Gantmacher [2,
p. 53, Theorem 1]), it follows that %1 is a simple root of Φ(X) and has the
property %1 > max{|%2|, . . . , |%d|}. Therefore the property (II) is satisfied.

We can write

(7) a
(i)
k = b(i)%k1 + o(%k1) (0 ≤ i ≤ n− 1),

where at least one of b(i) is not zero. Since a(i)
k ≥ 0 (k = 0, 1, 2, . . .), all the

b(i) are nonnegative. Noting


a

(n−1)
k+n . . . a

(n−1)
k+1

. . . . . . . . . . . . . . . . . . .

a
(0)
k+n . . . a

(0)
k+1




=




c1 1 0 . . . 0

c2 0 1
. . .

...
. . . 0...

... . . . 1
cn 0 . . . 0






a

(n−1)
k+n−1 . . . a

(n−1)
k

. . . . . . . . . . . . . . . . . . . .

a
(0)
k+n−1 . . . a

(0)
k


 ,

we have

a
(i)
k+1 = cn−ia

(n−1)
k + a

(i−1)
k (1 ≤ i ≤ n− 1), a

(0)
k+1 = cna

(n−1)
k .

Thus

b(i)%1 = cn−ib(n−1) + b(i−1) (1 ≤ i ≤ n− 1), b(0)%1 = cnb
(n−1),

so that

b(i) ≥ b(i−1)/%1 (1 ≤ i ≤ n− 1), b(0) ≥ b(n−1)/%1.
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This implies that b(i) > 0 for any i, since at least one of b(i) is positive. Put
Ωkα = (α(k)

n−1, . . . , α
(k)
0 ). Then

α
(k)
i = (a(i)

n−1, . . . , a
(i)
0 )Ωkα = αa

(i)
k (0 ≤ i ≤ n− 1).

Hence the property (III) is satisfied.
Assume that there exist integers i0, . . . , in−1 not all zero and positive

integers a, b such that

(α(k)
n−1)in−1 . . . (α(k)

0 )i0 = 1

for all k = a+ lb (l = 0, 1, 2, . . .). Let {a∗k}k≥0 be a linear recurrence defined
by (1) with a0 = i0, . . . , an−1 = in−1. Then

αa
∗
k = (in−1, . . . , i0)Ωkα = 1,

namely a∗k = 0 for all k = a + lb (l = 0, 1, 2, . . .). Since {a∗k}k≥0 is nonzero
linear recurrence, there are distinct i and j such that %i/%j is a root of unity
by Lemma 2. This contradicts the assumption in the lemma. Therefore the
property (IV) is satisfied. This completes the proof of the lemma.

R e m a r k 4. Let {ak}k≥0 be as in Theorem 1. Then we have

ak = b%k1 + o(%k1),

where b =
∑n−1
i=0 aib

(i) > 0, since ak =
∑n−1
i=0 aia

(i)
k and a0, . . . , an−1 are not

all zero.

P r o o f o f t h e s t a t e m e n t i n R e m a r k 1. We only have to prove
that none of %i/%j (i 6= j) is a root of unity if %1 > max{1, |%2|, . . . , |%n|},
since the converse is already proved in the proof of Lemma 4. Suppose that
%i/%j is a root of unity for some distinct i and j. We choose an automorphism
σ of the field Q such that %σi = %1. Then %1/%

σ
j is a root of unity, and so

%1 = |%σj |, which contradicts the inequality %1 > max{1, |%2|, . . . , |%n|}.

Lemma 5. Let {a(i)
k }k≥0 (i = 1, 2) be linear recurrences satisfying (1).

Suppose that Φ(±1) 6= 0 and the ratio of any pair of distinct roots of Φ(X)
is not a root of unity. Denote by {a(i)

k }∗k≥0 the set of numbers appearing in

{a(i)
k }k≥0, so that {a(i)

k }∗k≥0 (i = 1, 2) are infinite sets by Lemma 2. Then

{a(1)
k }∗k≥0 ∩{a(2)

k }∗k≥0 is an infinite set if and only if {a(1)
k }k≥0 ∼ {a(2)

k }k≥0.

P r o o f. We only have to prove that {a(1)
k }k≥0 ∼ {a(2)

k }k≥0 if {a(1)
k }∗k≥0∩

{a(2)
k }∗k≥0 is an infinite set. Assume that there are infinitely many pairs k1

and k2 such that a(1)
k1

= a
(2)
k2

. By Remark 4, we have

a
(i)
k = b(i)%k1 + o(%k1) (i = 1, 2),
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where %1 > 1 and b(1), b(2) > 0. For any positive number ε there is a non-
negative integer k0 = k0(ε) such that

(b(i) − ε)%k1 ≤ a(i)
k ≤ (b(i) + ε)%k1 (i = 1, 2)

for all k ≥ k0. Then we have

(b(1) − ε)%k1
1 ≤ (b(2) + ε)%k2

1 , (b(2) − ε)%k2
1 ≤ (b(1) + ε)%k1

1

for infinitely many k1, k2 ≥ k0. Choosing ε < min{b(1), b(2)}, we get

0 <
b(1) − ε
b(2) + ε

≤ %k2−k1
1 ≤ b(1) + ε

b(2) − ε .
Hence there are infinitely many pairs k1 and k2 such that k2 − k1 = l for
some integer l. Letting

bk = a
(1)
k − a(2)

k+l (k ≥ max{0,−l}),
we see that the linear recurrence {bk} satisfies (1) and has infinitely many
zeros. By Lemma 2, bk = 0 for any k ≥ max{0,−l}, and the lemma is
proved.

3. Proofs of Theorems 1 and 2

P r o o f o f T h e o r e m 1. We only have to prove that {f (l)
i (α)}1≤i≤s,l≥0

are algebraically independent if {a(i)
k }k≥0 6∼ {a(j)

k }k≥0 (1 ≤ i < j ≤ s). Let

Pi(z) = z
a

(i)
n−1

1 . . . z
a

(i)
0
n (1 ≤ i ≤ s)

be monomials of z1, . . . , zn, which we denote similarly to (3) by

(8) Pi(z) = (a(i)
n−1, . . . , a

(i)
0 )z.

By (3) and (8), we get

Pi(Ωkz) = z
a

(i)
k+n−1

1 . . . z
a

(i)
k
n (k = 0, 1, 2, . . .),

where Ω is the matrix defined by (6), and then define the power series

gi(z) =
∞∑

k=0

Pi(Ωkz) (1 ≤ i ≤ s).

Then fi(z) = gi(1, . . . , 1, z) and gi(z) satisfies the functional equation

gi(z) = gi(Ωz) + Pi(z) (1 ≤ i ≤ s).
Letting

D1 = z1
∂

∂z1
, . . . , Dn = zn

∂

∂zn
,

we see that Dk1
1 . . . Dkn

n gi(z) (k1 + . . . + kn = L) is a linear combina-
tion of {Dl1

1 . . . Dln
n gi(Ωz)}l1+...+ln=L over Q modulo Q[z1, . . . , zn]. Hence



184 T. Tanaka

{Dl1
1 . . . Dln

n gi(z)}k1+...+kn≤L satisfy the functional equation of the form
(4) for any nonnegative integer L. By Lemma 4, the matrix Ω and α =
(1, . . . , 1, α) have the properties (I)–(IV). If {f (l)

i (α)}1≤i≤s, 0≤l≤L are al-
gebraically dependent, then so are {Dl

ngi(α)}1≤i≤s, 0≤l≤L. It follows that
{Dl

ngi(z)}1≤i≤s, 0≤l≤L are linearly dependent over Q modulo Q[z1, . . . , zn]
by Lemma 1. Thus there are rational numbers ξil (1 ≤ i ≤ s, 0 ≤ l ≤ L),
not all zero, such that

h(z) =
s∑

i=1

L∑

l=0

ξilD
l
ngi(z) ∈ Q[z1, . . . , zn].

Letting

Ri(X) =
L∑

l=0

ξilX
l (1 ≤ i ≤ s),

we get

h(z) =
s∑

i=1

∞∑

k=0

Ri(a
(i)
k )z

a
(i)
k+n−1

1 . . . z
a

(i)
k
n .

Put
S = {i ∈ {1, . . . , s} | Ri(X) 6= 0}.

Then S is not empty. For any i ∈ S, Ri(a
(i)
k ) 6= 0 for all sufficiently large

k, since {a(i)
k }k≥0 is strictly increasing ultimately. Hence, if S has only one

element, h(z) 6∈ Q[z1, . . . , zn]. This is a contradiction. Suppose that S has
at least two elements. Since h(z) ∈ Q[z1, . . . , zn], there are distinct i, j ∈ S
such that {a(i)

k }∗k≥0 ∩ {a(j)
k }∗k≥0 is an infinite set, where the notation is the

same as in Lemma 5, thereby we have {a(i)
k }k≥0 ∼ {a(j)

k }k≥0. This completes
the proof of the theorem.

P r o o f o f T h e o r e m 2. Obviously (iii) implies (ii), and (ii) implies
(i). We only have to prove that (i) implies (iii).

There exist multiplicatively independent algebraic numbers β1, . . . , βm
with 0 < |βj | < 1 (1 ≤ j ≤ m) such that

αi = ζi

m∏

j=1

β
lij
j (1 ≤ i ≤ r),

where ζ1, . . . , ζr are roots of unity and lij (1 ≤ i ≤ r, 1 ≤ j ≤ m) are
nonnegative integers (cf. Loxton and van der Poorten [3]). Let yjp (1 ≤ j ≤
m, 1 ≤ p ≤ n) be variables and let y = (y11, . . . , y1n, . . . , ym1, . . . , ymn).
Define

gi(y) =
∞∑

k=0

ζaki

m∏

j=1

(yak+n−1
j1 . . . yakjn)lij (1 ≤ i ≤ r).
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Then we have

f(αi) = gi(1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βm) (1 ≤ i ≤ r).

Take a positive integer N such that ζNi = 1 for i = 1, . . . , r. We can choose a
positive integer t and a nonnegative integer u such that ak+t ≡ ak (mod N)
for any k ≥ u. Let

(9) Ω1 =




c1 1 0 . . . 0

c2 0 1
. . .

...
. . . 0...

... . . . 1
cn 0 . . . 0




and set

(10) Ω = diag(Ωt1, . . . , Ω
t
1︸ ︷︷ ︸

m

).

It follows that

gi(Ωy) =
∞∑

k=0

ζaki

m∏

j=1

(yak+t+n−1
j1 . . . y

ak+t
jn )lij (1 ≤ i ≤ r).

Let

hi(y) =
∞∑

k=u

ζaki

m∏

j=1

(yak+t+n−1
j1 . . . y

ak+t
jn )lij

=
∞∑

k=t+u

ζaki

m∏

j=1

(yak+n−1
j1 . . . yakjn)lij (1 ≤ i ≤ r).

Then

gi(y)− hi(y) =
t+u−1∑

k=0

ζaki

m∏

j=1

(yak+n−1
j1 . . . yakjn)lij ,

gi(Ωy)− hi(y) =
u−1∑

k=0

ζaki

m∏

j=1

(yak+t+n−1
j1 . . . y

ak+t
jn )lij .

Hence

(11) gi(y)− gi(Ωy) ∈ Q[y] (1 ≤ i ≤ r).
For each i, there exists at least one of j such that lij 6= 0, since |αi| is less
than 1. Choosing such a j for each i and letting

Di1 = l−1
ij yj1

∂

∂yj1
, . . . , Din = l−1

ij yjn
∂

∂yjn
,
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we see that Dk1
i1 . . . D

kn
in gi(y) (k1 + . . .+ kn = L) is a linear combination of

{Dl1
i1 . . . D

ln
ingi(Ωy)}l1+...+ln=L over Q modulo Q[y].

We shall verify that the matrix Ω defined by (10) and

β = (1, . . . , 1︸ ︷︷ ︸
n−1

, β1, . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, βm)

have the properties (I)–(IV). By the proof of Lemma 4, the matrix Ω1 de-
fined by (9) has the property (I), its eigenvalues %1, . . . , %d satisfy %1 >
max{|%2|, . . . , |%d|}, and %1 is a simple root of the characteristic polynomial
of it. Hence Ω also has the properties (I) and (II). Put

Ωkβ = (β(k)
11 , . . . , β

(k)
1n , . . . , β

(k)
m1, . . . , β

(k)
mn) (k = 0, 1, 2, . . .).

Define {a(i)
k }k≥0 (i = 0, . . . , n − 1) as in the proof of Lemma 4. Then we

have

β
(k)
jp = β

a
(n−p)
kt
j (1 ≤ j ≤ m, 1 ≤ p ≤ n).

Since

a
(n−p)
kt = b(n−p)(%t1)k + o((%t1)k) (1 ≤ p ≤ n),

where b(n−p) > 0 for every p, Ω and β have the property (III). Assume
that there exist mn integers i11, . . . , i1n, . . . , im1, . . . , imn, not all zero, and
positive integers a, b such that

m∏

j=1

n∏
p=1

β
(k)ijp
jp = 1

for all k = a + lb (l = 0, 1, 2, . . .). Let {a(j)
k }k≥0 (j = 1, . . . ,m) be linear

recurrences defined by

a
(j)
k+n = c1a

(j)
k+n−1 + . . .+ cna

(j)
k (k = 0, 1, 2, . . .)

with a
(j)
0 = ijn, . . . , a

(j)
n−1 = ij1. Then

m∏

j=1

β
a

(j)
kt
j = 1

holds for all k = a+ lb (l = 0, 1, 2, . . .). Here {a(j)
k }k≥0 is nonzero for at least

one of j, and for such j there is a positive integer k0 = a + l0b (l0 ∈ N0)
such that a(j)

k0t
6= 0 by Lemma 2. This contradicts the fact that β1, . . . , βm

are multiplicatively independent. Therefore the property (IV) is satisfied.
If {f (l)(αi)}1≤i≤r, 0≤l≤L are algebraically dependent, then so are

{Dl
ingi(β)}1≤i≤r, 0≤l≤L. Hence {Dl

ingi(y)}1≤i≤r, 0≤l≤L are linearly depen-
dent over Q modulo Q[y] by Lemma 1. Thus there are algebraic numbers
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ξil (1 ≤ i ≤ r, 0 ≤ l ≤ L), not all zero, such that

G(y) =
r∑

i=1

L∑

l=0

ξilD
l
ingi(y) ∈ Q[y].

Letting

Ri(X) =
L∑

l=0

ξilX
l (1 ≤ i ≤ r),

we get

G(y) =
r∑

i=1

∞∑

k=0

Ri(ak)ζaki

m∏

j=1

(yak+n−1
j1 . . . yakjn)lij .

Hence

G(1, . . . , 1︸ ︷︷ ︸
n−1

, y1, . . . , 1, . . . , 1︸ ︷︷ ︸
n−1

, ym) =
r∑

i=1

∞∑

k=0

Ri(ak)ζaki
( m∏

j=1

y
lij
j

)ak
(12)

∈ Q[y1, . . . , ym].

Put

S = {i ∈ {1, . . . , r} | Ri(X) 6= 0}.
Then S is not empty. Suppose that λ ∈ S. Let

{i1, . . . , is} = {i ∈ S | lij = lλj (1 ≤ j ≤ m)}.
We assert that

(13)
s∑
q=1

Riq (ak)ζakiq = 0

for all sufficiently large k. To the contrary we assume that there exist in-
finitely many k such that (13) does not hold. Then by (12), there exist some
index µ ∈ S \ {i1, . . . , is} and infinitely many pairs k1, k2 such that

( m∏

j=1

y
lλj
j

)ak1
=
( m∏

j=1

y
lµj
j

)ak2
.

Since lλjak1 = lµjak2 (1 ≤ j ≤ m), either lλj = lµj = 0 or lλj lµj > 0 holds
for each j. Put

T = {j ∈ {1, . . . ,m} | lλj lµj > 0}.
Then T is not empty. For any j ∈ T , {lλjak}k≥0 ∼ {lµjak}k≥0 by Lemma 5
and lλj/lµj is equal to a constant c. Hence there exists a nonnegative integer
l such that

ak+l = cak (k = 0, 1, 2, . . .).
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(We replace c by c−1 if necessary.) If l = 1, then ak = a0c
k (k = 0, 1, 2, . . .).

This contradicts the assumption in the theorem. If we assume l ≥ 2, then
at least two of the roots of Ψ(X) = X l − c are those of Φ(X). This also
contradicts the assumption, since the ratio of any pair of distinct roots of
Ψ(X) is a root of unity. Hence l = 0 and so c = 1. Therefore lλj = lµj (1 ≤
j ≤ m), which contradicts the choice of µ. Hence (13) holds. Set

γ =
m∏

j=1

β
li1j
j .

Then γ is an algebraic number with αiq = ζiqγ (1 ≤ q ≤ s). Let

L = max
1≤q≤s

degRiq (X).

By (13), we have
L∑

l=0

( s∑
q=1

ξiqlζ
ak
iq

)
alk = 0

for all sufficiently large k, where ξiql = 0 if l > degRiq . We rewrite the above
equation as follows:

s∑
q=1

ξiqLζ
ak
iq

= −
L−1∑

l=0

( s∑
q=1

ξiqlζ
ak
iq

)
al−Lk .

Then the right-hand side converges to 0 as k tends to infinity, but the left-
hand side takes only finitely many values. Therefore the left-hand side is
equal to 0 for all sufficiently large k. This completes the proof of the theorem.

4. Examples

Example 1. Let {a(i)
k }k≥0 (i = 1, 2, 3, 4) be linear recurrences defined

by

(14) a
(i)
k+3 = a

(i)
k+2 + 16a(i)

k+1 + 20a(i)
k (k = 0, 1, 2, . . . , i = 1, 2, 3, 4)

with

a
(1)
0 = 1, a(1)

1 = 3, a(1)
2 = 33, a

(2)
0 = 0, a(2)

1 = 5, a(2)
2 = 29,

a
(3)
0 = 2, a(3)

1 = 3, a(3)
2 = 29, a

(4)
0 = 1, a(4)

1 = 5, a(4)
2 = 25.

Then the polynomial

Φ(X) = X3 −X2 − 16X − 20 = (X − 5)(X + 2)2

satisfies the conditions in Theorem 1. By (14), we see that {a(i)
k }k≥0 is a

strictly increasing sequence for each i. Hence {a(i)
k }k≥0 6∼ {a(j)

k }k≥0 (1 ≤
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i < j ≤ 4). Define

f1(z) =
∞∑

k=0

za
(1)
k =

∞∑

k=0

z5k+k(−2)k ,

f2(z) =
∞∑

k=0

za
(2)
k =

∞∑

k=0

z5k+(k−1)(−2)k ,

f3(z) =
∞∑

k=0

za
(3)
k =

∞∑

k=0

z5k+(−2)k ,

f4(z) =
∞∑

k=0

za
(4)
k =

∞∑

k=0

z5k .

If α is an algebraic number with 0 < |α| < 1, then {f (l)
i (α)}1≤i≤4, l≥0 are

algebraically independent.

Example 2. Let {ak}k≥0 be a linear recurrence defined by

ak+3 = 2ak+2 + (m− 1)(3m+ 1)ak+1 + 2m(m− 1)2ak (k = 0, 1, 2, . . .)

with

a0 = 1, a1 = m+ 1, a2 = 6m2 − 4m+ 2,

where m is an integer greater than 2.
Since we have

(15) ak = (2m)k + k(1−m)k,

the conditions in Theorem 2 are satisfied. Define f(z) =
∑∞
k=0 z

ak and
set ζ = e2π

√−1/m. If α is an algebraic number with 0 < |α| < 1, then
{f (l)(ζjα)}j=0,...,m−1, l≥0 are algebraically independent. In fact, if this is
not the case, there are algebraic numbers ξ0, . . . , ξm−1, not all zero, such
that

(16)
m−1∑

j=0

ξj(ζj)ak = 0

for all sufficiently large k by Theorem 2. On the other hand, we see that
ak ≡ k (mod m) for any k ≥ 1 by (15). Therefore (16) holds only if ξ0 =
. . . = ξm−1 = 0. This is a contradiction.

For any given distinct algebraic numbers α1, . . . , αr with 0 < |αi| < 1
(i = 1, . . . , r), we can choose an integer m greater than 2 for which the
linear recurrence {ak}k≥0 in this example does not have the property (iii)
in Theorem 2. Then the values {f (l)(αi)}i=1,...,r, l≥0 defined by the power
series f(z) =

∑∞
k=0 z

ak are algebraically independent.
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