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Partitions with numbers in their gaps

by

Douglas Bowman (Urbana, Ill.)

1. Partitions with gaps. Bijections between various restricted parti-
tions of integers have been extensively studied (see [2], [3]). In this paper
we introduce a generalization of partitions, which are really a kind of re-
stricted composition [3], and obtain bijections between certain classes of
them and classes of ordinary partitions. Our generalization arises naturally
in connection with solutions of q-difference equations and continued frac-
tions. In fact, continued fractions provide an easy framework for analyzing
these generalized partitions.

Throughout this paper we write an ordinary partition as

n1 + . . .+ nk, n1 ≥ . . . ≥ nk.
Define n0 =∞ and nk+1 = 0.

We consider the class C(S,m) of partitions with parts ni taken from a
set S = {a1, a2, . . .}, where a1 < a2 < . . . We require that if ni = ar and
ni+1 = as are two consecutive parts, then r−s ≥ m. For such a partition we
define the gapspace gi between ni and ni+1 to be r − s−m. By convention
we put g0 =∞ and gk = t−m, where nk = at.

Before proceeding we give some examples of gapspaces.

Examples. 1. Consider partitions into parts which differ by at least 3;
thus S = Z+ and m = 3. One such partition is 15 + 10 + 2.

The gapspace between 10 and 2 is (10 − 2) − 3 = 5 and the gapspace
between 15 and 10 is (15− 10)− 3 = 2.

2. Consider partitions into non-consecutive odd integers; thus ar = 2r−1
and m = 2. One partition of this type is:

63 + 51 + 17 + 13 + 7 + 1.

The gapspaces between the parts are:

∞, 4, 15, 0, 1, 1, −1.
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We now introduce the class of generalized partitions to be studied in this
paper. We start with partitions from the class C(S,m). Note that such a
partition can be written uniquely in the form

an1 + an2 + . . .+ ank , n1 >m n2 >m . . . >m nk,

where x >m y means that x ≥ y + m. We now fix a positive integer j
and insert up to gl parts j in the gap between anl and anl+1 . The resulting
compositions are the objects of our study. Recall that two compositions are
counted as distinct if their sequences of parts are distinct. Define C(S,m, j)
to be the class of compositions thus obtained. We refer to these compositions
in picturesque language as “partitions with numbers in their gaps”. We give
some examples of partitions with ones in the gaps.

Examples. 1. We first consider C(Z+, 2, 1), i.e. partitions into natural
numbers with minimal difference two with 1’s in the gaps. We start with a
partition into parts with minimal difference 2:

21 + 19 + 12 + 7 + 1.

Then up to gl ones are inserted into the lth gap; thus

21 + 19 + 1 + 1 + 1 + 12 + 7 + 1

and
21 + 19 + 12 + 1 + 1 + 1 + 7 + 1

and
21 + 19 + 12 + 1 + 1 + 7 + 1 + 1

are counted as distinct partitions of 63. Another partition satisfying the
conditions for this class of partitions is:

1 + . . .+ 1︸ ︷︷ ︸
i ones

+21 + 19 + 12 + 7 + 1.

Recall that g0 =∞, thus we may insert i ones for any non-negative integer i.
It is easily found that the partitions of 3 of this type are:

3
1 + 2

1 + 1 + 1.

The partitions of 4 of this type are:

4
3 + 1
1 + 3

1 + 1 + 2
1 + 1 + 1 + 1,
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and the partitions of 5 are:

5
4 + 1
1 + 4

1 + 3 + 1
1 + 1 + 3

1 + 1 + 1 + 2
1 + 1 + 1 + 1 + 1.

Calling the number of partitions of n of this type P ∗(n), it follows that
P ∗(n) = 3, 5, and 7, for n = 3, 4, 5.

2. Consider partitions into distinct non-consecutive odd numbers exclud-
ing 3 with ones in the gaps. Thus m = 2 and

ar =
{ 1 for r = 1,

2r + 1 for r > 1.

To obtain the partitions of 11 in this class we first begin by forming
partitions of numbers less than or equal to 11 into distinct non-consecutive
odd numbers excluding 3. These partitions are:

11
9 + 1

9
7 + 1

7
5 + 1

5
1.

To these partitions we now insert up to gl ones into the lth gap so that
the sum of the resulting partition is 11. This process yields:

11
9 + 1 + 1
1 + 9 + 1
1 + 1 + 9

1 + 1 + 1 + 7 + 1
1 + 1 + 1 + 1 + 7

1 + 1 + 1 + 1 + 1 + 1 + 5
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
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Some of these partitions arise non-uniquely from our initial list of par-
titions. For example the partition 9 + 1 + 1 arises from both the partition
9 + 1 and the partition 9, in the former case by inserting one 1 between the
9 and the 1, while in the latter case by inserting two 1’s in the gap after
the 9 (g1 = 2). Thus there are eight partitions of 11 in this example. The
non-uniqueness problem could have been avoided by first listing just those
partitions into parts greater than 1 and then inserting 1’s according to the
rule. The definition of gapspace assures that this would give the complete
list of partitions of 11 we are considering.

We are now in a position to state some theorems. It may have been
noticed in the first example that P ∗ coincided with the ordinary partition
function for the values considered. This is a consequence of the first theorem.

Theorem 1. The number of partitions of n into parts with minimal
difference two with ones in the gaps is equal to p(n).

A similar theorem giving a bijection with another well studied class of
partitions is:

Theorem 2. The number of partitions of n into distinct non-consecutive
odd parts (ai = 2i− 1, m = 2) with ones in the gaps is equal to the number
of partitions of n into distinct parts.

Corresponding to our second example we have

Theorem 3. The number of partitions of n into distinct non-consecutive
odd parts excluding 3 with ones in the gaps is equal to the number of parti-
tions of n+ 1 into an odd number of distinct parts.

In the theorems so far we had m = 2. The following two theorems are
for m = 1.

Theorem 4. The number of partitions of n into distinct even parts with
ones in the gaps is equal to the number of partitions of n into parts satisfying
n1 ≥ n2 > n3 ≥ n4 > . . .

Theorem 5. The number of partitions of n into distinct odd parts with
ones in the gaps is equal to the number of partitions of n into parts satisfying
n1 > n2 ≥ n3 > n4 ≥ . . .

It is well known that the partitions in these last two theorems are
equinumerous with partitions into parts ≡ 1, 2, 5, 6, 8, 9, 11, 12, 14, 15, 18, 19
(mod 20) and ≡ 1, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19 (mod 20) respectively. See
[6] and [7].

2. Proof of the theorems. In this section we give proofs of the last
five theorems. In fact, they all are combinatorial interpretations of special-
izations of the m = 2 case of the canonical q-difference equation for the
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general mΦm−1. The following proposition is also used; it leads to partitions
with parts in the gaps. It is interesting to note that partitions with numbers
in their gaps give combinatorial interpretations of the partial quotients of
two classes of continued fractions.

Proposition 1. Let Pn and P ′n denote the n-th numerators of the con-
vergents of the continued fractions

Pn
Qn

= 1 + qj +
qa2 − qj
1 + qj +

qa3 − qj
1 + qj + · · ·

qan+1 − qj
1 + qj

and
P ′n
Q′n

= 1 + qj + qa1 +
−qj

1 + qj + qa2 + · · ·
−qj

1 + qj + qan+1
.

Let S = {a2, a3, . . . , an+1} and S′ = S ∪ {a1}. Then

1. Pn is the generating function for partitions from the set C(S, 2, j),
where the gapspace before the largest part ak is n− k + 1.

2. P ′n is the generating function for partitions from the set C(S′, 1, j),
where the gapspace before the largest part ak is n− k + 1.

P r o o f. The standard recurrences for Pn and P ′n are

(1) Pn = Pn−1 + qj(Pn−1 − Pn−2) + qan+1Pn−2

and

(2) P ′n = P ′n−1 + qan+1P ′n−1 + qj(P ′n−1 − P ′n−2).

New partitions enumerated by Pn are built up in the exponents of q by
adjoining j or an+1 to the left of certain of those previously enumerated.
The proof proceeds by induction. Let An and A′n be the generating functions
for partitions of the types C(S, 2, j) and C(S′, 1, j) respectively. It is easy to
see that Pn = An and P ′n = A′n for n = 0, 1. Assume Pi = Ai and P ′i = A′i
for 0 ≤ i < n. Now partitions enumerated by An and A′n fall into two classes:

1. those not containing the part an+1, and
2. those containing the part an+1.

This leads to two cases:

C a s e 1. Consider any partition π enumerated by An not containing
the part an+1. Let ak be the part in π with the largest subscript; so k ≤ n.
Now the gapspace before ak is n−k+1 by the definition of An. Suppose this
gap is not full. Then by the induction hypothesis, π is enumerated by Pn−1.
On the other hand, if the gap is full, then the number of j’s preceding ak is
exactly n− k + 1, and π is not enumerated by the term Pn−1 in (1), again
by induction and the definition of An. Then removing one of the j’s leaves
a partition π′ with n − k j’s preceding ak. By induction π′ is enumerated
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by Pn−1. Moreover, it has a full gap in An−1 = Pn−1 and so as above is not
enumerated by Pn−2. Hence π is enumerated by the term qj(Pn−1 − Pn−2)
in (1). This case applies mutatis mutandis to the corresponding case for A′n
and P ′n.

C a s e 2a. Consider any partition π enumerated by An containing the
part an+1. Since m = 2, the part with the next largest subscript is ak
with k < n. Then the gapspace between an+1 and ak is n − k − 1. Hence
removing an+1 from π leaves a partition π′ beginning with at most n−k−1
j’s followed by ak, k < n. By induction π′ is enumerated by Pn−2. Hence π
is enumerated by the term qan+1Pn−2.

C a s e 2b. Consider any partition π enumerated by A′n containing the
part an+1. Since m = 1, the part with the next largest subscript is ak with
k ≤ n. Then the gapspace between an+1 and ak is n − k. Hence removing
an+1 from π leaves a partition π′ beginning with at most n− k j’s followed
by ak, k ≤ n. By induction π′ is enumerated by P ′n−1. Hence π is enumerated
by the term qan+1P ′n−1. This completes the proof.

Lemma 1. Suppose

(3) cmym = bmym+1 + amym+2 for m ≥ 1.

Let
Pm
Qm

= b1 +
a1c2
b2 +

a2c3
b3 + · · ·

amcm+2

bm+2
,

so that

(4) Pk = bk+1Pk−1 + akck+1Pk−2 for k ≥ 1.

Then

(5) c1c2 . . . cny1 = Pn−1yn+1 + anPn−2yn+2 for n ≥ 1.

P r o o f. When n = 1 the lemma asserts that c1y1 = P0y2 + a1P−1y3

= b1y2 + a1y3, which is (3) with m = 1. Assume the result true for n = k.
Then the result for n = k + 1 follows easily from the induction hypothesis,
(3) and (4).

The cm = 1 case of this lemma is given in [8].

P r o o f o f T h e o r e m s 1–5. As noted in [4] the sequences (see [5] for
notation)

(6)
ym = 2Φ1

(−aq,−bq
cq2 ;xqm−1

)
, am = abxqm+1 − cq,

bm = 1 + cq + (a+ b)xqm, cm = 1− xqm−1
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and the continued fraction

(7) 1 + cq + (a+ b)xq +
(abxq2 − cq)(1− xq)

1 + cq + (a+ b)xq2 + · · ·
(abxqn+1 − cq)(1− xqn)

1 + cq + (a+ b)xqn+1

satisfy the conditions of Lemma 1. Putting a = b = 0 and c = 1 in (6) gives

ym =
∑

n≥0

q(m−1)nxn

(q2)n(q)n
,

am = −q, bm = 1 + q, cm = 1− xqm−1.

The continued fraction becomes

1 + q +
xq2 − q
1 + q+

xq3 − q
1 + q + · · ·

xqn+1 − q
1 + q

.

Let Pn be the numerator convergent of this continued fraction. Equation (5)
becomes

(8) (xq)n−1(1− x)y1 = Pn−1yn+1 − qPn−2yn+2.

Formally limn→∞ yn = 1. It is clear from the proof of Proposition 1 that as
n → ∞, Pn formally tends to a limit which we call P . (The coefficient of
xmqn is the number of partitions of n from C(Z+, 2, 1) containing m parts
greater than or equal to 2.) Thus letting n→∞ in (8) gives

(9) (xq)∞(1− x)y1 = (1− q)P.
Notice that

lim
x→1

c1y1 = lim
x→1

(1− x)
∑

n≥0

xn

(q2)n(q)n
=

1
(q2)∞(q)∞

.

Letting x→ 1 in (9) gives

(q)∞
1

(q2)∞(q)∞
= (1− q)P,

where now P is the generating function for C(Z+, 2, 1). Thus P = 1/(q)∞. It
is well known that 1/(q)∞ is the generating function for ordinary partitions
and so Theorem 1 is proved.

Theorem 2 is similar. Here a = c = 1 and b = −1. Equations (6) become

ym =
∑

n≥0

(−q)n
(q)n

q(m−1)nxn,

am = −xqm+1 − q, bm = 1 + q, cm = 1− xqm−1.

The continued fraction becomes

1 + q +
x2q3 − q
1 + q+

x2q5 − q
1 + q + · · ·

x2q2n+1 − q
1 + q

.
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Equation (5) becomes

(1 + xqm−1)ym = (1 + q)ym+1 − (q + xqm+1)ym+2.

Similarly,

lim
x→1

c1y1 =
(−q)∞
(q2)∞

.

The same reasoning as before shows that the limiting numerator convergent
of the continued fraction

1 + q +
q3 − q
1 + q+

q5 − q
1 + q + · · ·

is (−q)∞. Proposition 1 and the well known fact that this product is the
generating function for partitions into distinct parts gives Theorem 2.

To get Theorem 3, notice that by Theorem 3 of [4] the fact that the
limiting numerator of the last continued fraction is (−q)∞ implies that the
limiting denominator is

(q)∞
1− q 2Φ1

(−q, q
q2 ; q

)
=

(q)∞
1− q

∑

n≥0

(−q)n
(q2)n

qn =
(q)∞

2q

∑

n≥0

(−1)n+1

(q2)n+1
qn+1

=
(q)∞

2q

[
(−q)∞
(q)∞

− 1
]

=
1
2q

[(−q)∞ − (q)∞].

On the other hand, the limiting denominator is equal to the limiting numer-
ator of

1 + q +
q5 − q
1 + q+

q7 − q
1 + q + · · ·

.

By Proposition 1, Theorem 3 is proved.

To get Theorems 4 and 5, put q → qk, b → ql−k/x, c → qj−k and let
a, x→ 0. Then equations (6) become

ym =
∑

n≥0

qk(
n
2)+lnqk(m−1)n

(qk+j ; qk)n(qk; qk)n
,

am = −qj , bm = 1 + qj + qk(m−1)+l, cm = 1.

The continued fraction is then

1 + qj + ql +
−qj

1 + qj + qk+l +
−qj

1 + qj + q2k+l + · · ·
.

Equation (5) becomes

(10) y1 = Pn−1yn+1 − qjPn−2yn+2.
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By Proposition 1, as n → ∞, Pn → P , where P is the generating function
for partitions from C(S, 1, j) and S = {kn + l : n ≥ 0}. So as n → ∞, we
get y1 = (1− qj)P from (10), which implies

P =
∑

n≥0

qk(
n
2)+ln

(qj ; qk)n+1(qk; qk)n
.

When k = 2, j = 1 and l = 2, 1 respectively, the sum on the right generates
partitions of the type required in Theorems 4 and 5. This is not too hard to
see directly, and is proved in [7].

In a future paper we shall give extensions of these theorems which also
include not only the celebrated partition theorem of I. Schur (see [2], [9])
but also the generalization of it due to Alladi and Gordon [1].
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