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1. Introduction. The purpose of this paper is to estimate the following
function associated with a commutative ring A for the case when A is the
ring of integers of a number field. For any integer n ≥ 1 define

gA(n) = inf{r | Σ∞1 (A,n) ⊆ Σr
1(A,n)}

where Σr
1(A,n) denotes the set of all sums of r squares of n-ary linear forms

over A, and Σ∞1 (A,n) =
⋃∞
r=1Σ

r
1(A,n). If A is a field this function was

studied in [BLOP], where for example it is shown, for any local or global
field A, that gA(n) = n + 3 for all n ≥ 3. If the ring A is Z, i.e. the ring
of rational integers, the estimate of gZ(n) through an explicit function of
n was unknown. We will find in Section 3 an explicit function f(n) with
gZ(n) ≤ f(n) for all n.

Actually, this question was raised by Mordell. He ([Mo]1) and later him-
self and Ko (see [Mo]2, [Ko]) proved that for n ≤ 5, every positive definite
classical integral quadratic form of rank n is a sum of n+3 squares of integral
linear forms.

Since the positive definite form g(X1, . . . , X6) =
∑6
i=1X

2
i +(

∑6
i=1Xi)2−

2X1X2 − 2X2X6 is never a sum of squares of integral linear forms ([Mo]3),
this forces to formulate the problem in terms of the g-function, and not
in terms of expressing positive definite integral quadratic forms as sums of
integral linear forms.

In Section 4 we extend the method used in Section 3 to the general case
and we estimate gOK (n) for OK the ring of integers of a totally real number
field. The idea behind all this is to estimate explicitly a certain constant
appearing in the representation Theorem 1 of [HKK]. If K is not real, using
the theory of indefinite forms one easily shows that gOK (n) = n + 3 for
all n. In Section 2 we will briefly consider the case of a local ring A. The
classification theory of local lattices developed by O’Meara and Riehm (see
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[O’M]2, [R]) leads in this case easily to the fact that gA(n) = n + 3, n ≥ 3.
These local results will be used in Sections 3 and 4.

All definitions and basic facts about quadratic forms will be taken from
O’Meara’s book [O’M]1.

The author thanks J. S. Hsia for helpful comments during the prepara-
tion of this work and also the referee for the suggestions made, particularly
concerning the proof of Proposition 2.

The main fact relating the function gA(n) to the representation of forms
by forms is the following result (see [BLOP] for the case in which the ring
A is a field):

Proposition 1. Let A be an integral domain with 2 6= 0. For aij = aji ∈
A let φ(X1, . . . , Xn) =

∑
1≤i,j≤n aijXiXj be a quadratic form defined over

A. If Li(X1, . . . , Xn), 1 ≤ i ≤ r, are r linear forms over A in X1, . . . , Xn,
then

φ(X1, . . . , Xn) =
r∑

i=1

Li(X1, . . . , Xn)2

if and only if the form φ is represented over A by the form Ir = Y 2
1 +. . .+Y 2

r .

P r o o f. For 1 ≤ j ≤ r, let Lj = bj1X1 + . . . + bjnXn with bij ∈ A for
1 ≤ i ≤ n. Assume that

φ(X1, . . . , Xn) =
r∑

j=1

[Lj(X1, . . . , Xn)]2.

Comparing coefficients we obtain

(1) aii =
r∑

j=1

b2ji for 1 ≤ i ≤ n,

and since 2 6= 0,

(2) ail =
r∑

j=1

bjibjl for 1 ≤ i ≤ n, 1 ≤ l ≤ n.

Let Mφ = Ae1 ⊕ . . . ⊕ Aen be the A-lattice associated with φ. For the
form Ir we also denote by Ir its associated A-lattice. Consider in Ir the
vectors bi = (b1i, . . . , bri), 1 ≤ i ≤ n, and define

σ : Mφ → Ir by σ(ei) = bi.

Equations (1) and (2) then imply that σ is an isometry. Conversely, any
representation σ : Mφ → Ir defines vectors bi = (b1i, . . . , bri) ∈ Ir through
σ(ei) = bi. By setting Lj(X1, . . . , Xn) = bj1X1 + . . . + bjnXn, we get
φ(X1, . . . , Xn) =

∑r
j=1 L

2
j .
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2. The g-function of local rings. Let us fix in this section a local
ring A, i.e. the ring of integers of a local field K, which we assume to be of
characteristic 0.

Theorem 1. For any n ≥ 1,

gA(n) ≤ n+ 3.

If A = Zp is the ring of p-adic integers, then

gZp(n) = n+ 3 for all n ≥ 1.

P r o o f. If 2 ∈ A∗ is a unit, the result follows from Proposition 1 and the
fact that the form In+3 = X2

1 + . . . + X2
n+3 is associated with a maximal

unimodular lattice over A (see [Ki]) and hence In+3 represents any integral
lattice of rank ≤ n by Lemma (1.1) of [HKK], which is valid for any local
ring as above. Let us assume that 2 is not a unit in A. Let L be any integral
lattice over A of rank n. Then we have to check the representation conditions
of Riehm’s Third Main Theorem in [R] to prove that L is represented by In+3

over A, i.e. S(L) ⊆ S(In+3) and g(L) ⊆ g(In+3), where S denotes the scale
group and g the norm group (see loc. cit.). Since L is integral, the conditions
are obviously satisfied. This shows gA(n) ≤ n+ 3. In the case when A = Zp
is the ring of p-adic integers, we have to show that gZp(n) ≥ n + 3 for all
n ≥ 1. This follows from the following general fact.

Proposition 2. Let A be a domain and K = Quot(R) be its quotient
field. Then

gK(n) ≤ gA(n) for all n.

P r o o f. Let φ = a1X
2
1 + . . .+ anX

2
n be an n-dimensional quadratic form

over K, which is a sum of squares of n-ary linear forms over K. Scaling we
may assume that for certain d ∈ A, d2φ is a sum of squares of linear forms
in A. Hence d2φ is a sum of at most gA(n) squares of integral linear forms
in A. Thus φ is a sum of the same number of squares of linear forms with
coefficients in the field K.

3. The g-function of Z. In this section we will find an explicit function
f(n) with gZ(n) ≤ f(n) for all n. The fact that gZ(n) = n+ 3 for n ≤ 5 (see
[Mo]1, [Mo]2, [Ko]) follows easily from the existence of only one class in the
genus of Im for m ≤ 8 (see [BI]). Although this is not true for m ≥ 9, one
could still hope that gZ(n) = n + 3 for all n. But we are far from getting
such a bound for gZ(n).

The proof of the finiteness of gZ(n) (see [I], [BI]) given here leads to
the following estimate of gZ(n) in terms of the constant c(Im) of the form
Im = X2

1 + . . .+X2
m appearing in the representation Theorem 1 of [HKK].
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Proposition 3. For all n ≥ 1,

gZ(n) ≤ 8 +
n∑

i=6

c(I2i+6).

P r o o f. Let N be a positive definite integral lattice with associated
quadratic form Q of rank n. Assume that N is represented by Ir for some
r. Let µ(N) = min{Q(x) | x ∈ N, x 6= 0} be the minimum of the lattice N .
Let us consider the following two cases:

(i) µ(N) ≥ c(I2n+6). Then Section 2 and Theorem 1 in [HKK] imply
that N is represented by I2n+6.

(ii) µ(N) < c(I2n+6). In this case we assume that the form Q =∑n
i,j=1 aijXiXj is reduced in the sense of Minkowski. Since N is represented

by Ir we have

Q(X1, . . . , Xn) =
r∑

j=1

[Lj(X1, . . . , Xn)]2,

where each Lj(X1, . . . , Xn) = b1jX1 + . . . + bnjXn is a linear form with
integral coefficients. Comparing coefficients we get

a11 =
r∑

j=1

b21j .

By assumption a11 < c(I2n+6). Therefore at most [c(I2n+6)] of the integral
coefficients b1j can be non-zero (here [x] denotes the integral part of x).
Hence

Q(X1, . . . , Xn) =
[c(I2n+6)]∑

j=1

[Lj(X1, . . . , Xn)]2+
r∑

j=[c(I2n+6)]+1

[Lj(X2, . . . , Xn)]2,

where the summation in the second term involves linear forms in n − 1
variables. Hence

gZ(n) ≤ c(I2n+6) + gZ(n− 1).

Since gZ(5) = 8 we obtain the desired result.

In order to obtain an explicit bound for gZ(n) we must estimate c(Im).
For the sake of completeness we mention below some results from [HKK]
which will be needed. The following result is (1.2) in [HKK].

Lemma 1. Let L be a positive Z-lattice of rank l ≥ 3. Let q be a prime
such that Lq = L⊗Zq is isotropic and assume that the genus of L coincides
with its spinor genus. Then there is an integer s ≥ 1 such that L represents
every Z-lattice N satisfying

qsLp represents Np for every prime p.



Sums of squares of integral linear forms 235

The integer s in the above lemma can be determined using the following
construction from [BeH]1. Let L be a positive Z-lattice with quadratic form
Q. For a prime p we write d(Lp) for the usual discriminant of Lp if l = dimL
is even, and half the discriminant of Lp if l is odd. The lattice L is called
good at p if Q(Lp) ⊆ Zp and d(Lp) ∈ Z∗p. If L is good at p one can associate
(see loc. cit.) with (L, p) a graph (L : p) whose vertices are those lattices
K in gen(L) with Kq = Lq for all primes q 6= p. The distance function on
the vertices is defined by dis(L,K, p) = r if and only if [Lp : Lp ∩Kp] = pr.
We call L,K neighbors if r = 1, and in this case L and K are connected
by one edge. This graph contains representative classes from at most two
spinor genera, and if a spinor genus is represented in the graph, then every
class in its spinor genus is represented (see [BeH]2). With these remarks one
easily gets

Proposition 4. Let L be as in Lemma 1. If L is good at the prime q,
then the integer s can be taken as s = h(L) − 1, where h(L) is the class
number of L. If the lattice L is unimodular , dimL ≥ 5 and q = 2, then s
can be taken as s = h(L)− 1.

P r o o f. Since L is good at q we can consider its graph (L : q) which
contains representatives of each class in the spinor genus of L. Then noticing
that for neighboring lattices L,K we have qK ⊆ L and that isomorphic
lattices have isomorphic sets of neighbors, we obtain the first statement.
The second one follows directly from [O’M]1, (106:B).

The last result which we need is Lemma (1.7) from [HKK]:

Lemma 2. For a positive lattice N let µ(N) be its minimum. Then there
is a constant bn > 0 such that for any Minkowski-reduced basis (vi)ni=1 of
the lattice N, the matrix (B(vi, vj))− bnµ(N)In is positive definite (here In
is the unit matrix and B is the bilinear form associated with Q).

Lemma 3. With the same notations as in Lemma 2

bn = n−(n−1)
(

4
5

)−(n−3)(n−4)/2(
π

4

)n[
Γ

(
n

2
+ 1
)]−2

if n ≥ 5.

P r o o f. Let us introduce some notation. For two symmetric matrices
A,B of the same size we write A > B (resp. A ≥ B) if A−B is positive defi-
nite (resp. positive semi-definite). Set N0 = diag(B(v1, v1), . . . , B(vn, vn)) =
diag(Q(v1), . . . , Q(vn)) for the diagonal matrix with entries Q(v1), . . .
. . . , Q(vn). Using Minkowski’s reduction theory (see [vdW] or [Ki]) and Lem-
mas (1.3.2), (1.3.3) in [Ki] we conclude

(B(vi, vi))− bnN0 > 0.



236 M. I. Icaza

But since N0 − µ(N)In ≥ 0, we conclude

(B(vi, vi))− bnµ(N)In > 0.

With these preliminary results we are able to estimate the constants
c(I2n+6), n ≥ 1, appearing in Proposition 1.

Proposition 5. For any n ≥ 1,

c(I2n+6) ≤ 1
bn
n2 24(h(In+3)−1)

(h(Im) = class number of Im).

P r o o f. We will effectively construct the proof of (1.3) in [HKK]. LetN =∑n
i=1 Zvi be a positive definite lattice with {vi}ni=1 a Minkowski-reduced

basis. Let L = K = In+3 be two copies of In+3. Choose vectors (vhi , . . . , v
h
n),

vhi ∈ K, 1 ≤ h ≤ t, such that for any set (xi,2) ∈ Kn
2 there is some h with

(∗) vhi ≡ xi,2 (mod 22sK2),

where s = h(L)−1. Let K = Ze1⊕ . . .⊕Zen+3 with {ei} being the standard
basis. Then vhi =

∑n+3
j=1 aijej and

(B(vhi , v
h
j )) = (aij)t(aij) ≤ Tr((aij)t(aij))In.

From (∗) it follows that we may assume 0 ≤ aij < 22s. Hence

Tr((aij)t(aij)) < n224s.

Put c′ = c′(K, 2sL) = n224s. Then c′In − (B(vhi , v
h
j )) is positive definite

for all 1 ≤ h ≤ t. Assume now µ(N) > (1/bn)c′. Then by the previous
lemma

(B(vi, vj))− µ(N)bnIn > 0.

From the local representation theory (see Section 2) we can find xi,2 ∈ K2

for all i with

B(vi, vj) = B(xi,2, xj,2)

(i.e. N is represented by In+3 over Z2). Thus from (∗) we have xi,2 =
vhi + 22szi,2, zi,2 ∈ K2, for 1 ≤ i ≤ n. Then

A : = (B(vi, vj)−B(vhi , v
h
j ))

= 22s(B(vhi , zi,2) +B(zi,2, zj,2) + 22sB(zi,2, zj,2)).

The choices made above imply that A is positive definite. From [O’M]2,
Theorem 3, we see that A is represented by 2sL2 over Z2, and from Section 2
we conclude that A is represented by 2sLp for all p 6= 2. Since s = h(L)− 1
satisfies the conditions of Lemma 1 (see Lemma 1.2 of [HKK]), we see that
A is represented by L. Hence we have

B(vi, vj) = B(vhi +Wi, v
h
j +Wj)
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with Wi ∈ L, 1 < i < n. This shows that N is represented by L ⊥ K =
I2n+6, and therefore we can take c(I2n+6) = (1/bn)n224s.

Inserting this result in Proposition 1 we get

Theorem 2. For every n ≥ 6,

gZ(n) ≤ 8 +
24(h(In+3)−1)

bn

[
n(n+ 1)(2n+ 1)

6
− 55

]
.

4. The g-function of global rings. The purpose of this section is to
extend Theorem 2 of Section 3 to the ring of integers of a totally real number
field. Let K/Q be a totally real number field of degree [K : Q] = l. Since
the ideas are similar to those in the previous section, we will only sketch
the proofs. The main point is to replace Minkowski’s reduction theory by
Humbert’s reduction theory of forms defined over K (see [H]1, [H]2) and
also the representation Theorem 1 of [HKK] by its generalization to K,
i.e. Theorem 3 of [HKK]. The proof of the finiteness of gZ(n) (see [I], [BI])
follows almost identically for gOK (n) and one gets in particular the following
analogue of Proposition 1, where c(M) now denotes the constant associated
with any positive definite OK-lattice M in Theorem 3 of [HKK].

Proposition 6. For any totally real number field K,

gOK (n) ≤
n∑

i=2

c(I2i+6) + 5.

P r o o f. For any positive definite OK-lattice N of rank n, we denote by
µ(N) = min{TrK/Q(Q(x)) | 0 6= x ∈ N} its minimum. We consider again
two separate cases:

(i) µ(N) ≥ c(I2n+6). Then Theorem 1 in Section 2 and Theorem 3 in
[HKK] imply that N is represented by I2n+6.

(ii) µ(N) < c(I2n+6). Then we assume that the form Q =
∑n
i,j=1 aijXiXj

is reduced in the sense of Humbert. Hence if

Q(X1, . . . , Xn) =
r∑

j=1

[Lj(X1, . . . , Xn)]2,

where the linear forms Lj(X1, . . . , Xn) = b1jX1 + . . . + bnjXn have coeffi-
cients in OK , we obtain

a11 =
r∑

j=1

b21j .

Hence µ(N) = TrK/Q(a11) =
∑r
j=1 TrK/Q(b21j). Since the field K is totally

real we deduce as before that at most [c(I2n+6)] of the b1j are non-zero.
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By the same argument as for the case of gZ(n) and using the fact that
gOK (1) ≤ 5, we obtain the stated result.

Once again we want to estimate c(I2i+6). We will need the following
notation. Let σ1, . . . , σl : K → R be the real embeddings of K. Then for any
integral basis α = {α1, . . . , αl} of K set

βα = max{|σi(αj)| | 1 ≤ i, j ≤ l} and β = min
α
βα,

where α runs over all integral bases of OK . This number β can be estimated
in terms of the discriminant dK of K. Let us fix a basis W = {W1, . . . ,Wl}
of OK such that β = |σt(Ws)| for some t, s. We have at once

Lemma 4. Let p be a prime number. The set R = {λ =
∑l
i=1 aiWi | 0 ≤

ai ≤ pr−1} is a set of representatives for OK/
∏g
i=1 Pri , where Pi runs over

all primes in OK over (p). Moreover , for any λ ∈ R,

|σi(λ)| ≤ (pr − 1)β.

For any positive OK-lattice N let µ(N) be its minimum. Then the ana-
logue of Lemma 2 says now that if {vi}ni=1 is a Humbert-reduced basis of
N, the matrix (B(vi, vj))− bnµ(N)In is positive definite for some constant
bn depending only on n and K. The estimate of bn can be done using the
reduction constants c1, c2, c3 appearing in Section 1 of [H]2, but we will omit
the details. Now the main result of this section is

Proposition 7. For any n ≥ 2,

c(I2n+6) ≤ 4
bn
β2n234(h(In+3)−1),

where h(In) denotes the class number of the lattice In.

P r o o f. Let S = {P | P prime in OK , P ∩ Z = (2)} ∪ {Q | Q prime in
OK , Q ∩ Z = (3)}. For P ∈ S, P dyadic, set rP = 1 and for non-dyadic
Q ∈ S set 2s = rQ = 2(h(In+3) − 1). Fix Q1 ∈ S, Q1 non-dyadic. Let
M = L = In+3 be two copies of In+3 and set c′ = 4β2n232r. Suppose N is
an n-dimensional positive definite OK-lattice with {vi} a Humbert-reduced
basis. Assume µ(N) > c′/bn. We will show that N is represented by I2n+6,
i.e. c(I2n+6) ≤ c′/bn. From the local results of Section 2 we know that N
is represented by (I2n+6)P for all primes P of K. Choose a finite set of
n-tuples (vhi , . . . , v

h
n), 1 ≤ h ≤ t, with vhi ∈ M such that for any n-tuple

(xi,P), P ∈ S, 1 ≤ i ≤ n, with xi,P ∈MP there is some h with

vhi ≡ xi,P (mod PrPMP).

Using the same arguments as in the proof of Proposition 5 we obtain

(σ(B(vhi , v
h
j ))) < 4β2n232rIn
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for any embedding σ of K in R. Hence

c′In − (B(vhi , v
h
j )) > 0

is positive definite (over K). But since µ(N) > c′/bn we conclude that
(B(vi, vj)) − c′In > 0. Thus the matrix A = (B(vi, vj)) − (B(vhi , v

h
j )) is

positive definite. The local results of Section 2 imply that A is represented
by Qs1LP for all P 6∈ S and for P ∈ S,P 6= Q1. But Theorem 1 of [O’M]2
says that A is also represented by Qs1LQ1 . The general version of Lemma 1
(see Section 3 of [HKK]) implies that A is represented by L = In+3. Thus
N is represented by I2n+6, and hence c(I2n+6) ≤ c′/bn.

We have thus shown

Theorem 3. With all notations as above, let r = 2(h(In+3) − 1). Then
for n ≥ 2,

gOK (n) ≤ 5 +
4
bn
β2n232r

[
n(n+ 1)(2n+ 1)

6
− 1
]
.

R e m a r k s. (1) If K/Q is not real, then using the theory of spinor genus
(see [O’M]1) we easily show that

gOK (n) = n+ 3 for n ≥ 1.

(2) The same arguments as in (1) can be used to show gZ[1/p](n) = n+3,
n ≥ 1, for any prime p.
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[H]2 —, Réduction des formes quadratiques dans un corps algébrique fini , ibid. 23
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