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1. Introduction. Several effective bounds have been established for the
heights of the solutions of Thue equations, Thue–Mahler equations and,
more generally, norm form equations (for references, see e.g. [1], [11], [21],
[4], [22], [2]). Except in [2], their proofs involved the theory of linear forms
in logarithms and its p-adic analogue as well as certain quantitative results
concerning independent units of number fields. The best known explicit
estimates for Thue equations and norm form equations in integers are due
to Győry and Papp [14], and for Thue–Mahler equations and norm form
equations in S-integers to Győry [9], [13]. These led to many applications.

The bounds in [14] depend among other things on some parameters of
the number field M involved in our equations (2.1) and (3.1), respectively.
These results of [14] were extended in [9] and [13] to wider classes of norm
forms, to equations of Mahler type and to S-integral solutions. However, the
estimates in [9] and [13] are weaker in terms of certain parameters because
the corresponding bounds depend on the normal closure ofM, too. The main
purpose of this paper is to give considerable improvements (cf. Theorems
1, 2) of the estimates of [9] and [13]. Our bounds are independent of the
normal closure of M. In particular, for the equations considered in [14], our
Theorems 1 and 2 provide much better estimates than those in [14].

We give some applications of Theorems 1 and 2 as well. In Section 3,
we improve (cf. Theorems 3, 4) the best known bounds for the solutions of
Thue equations and Thue–Mahler equations over Z. This section can be read
independently of the other parts of the paper. In Section 4, we derive some
improvements (cf. Theorem 5) of the previous explicit lower estimates for
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linear forms with algebraic coefficients at integral points. In particular, our
estimates improve upon the best known explicit improvement of Liouville’s
approximation theorem.

Sections 5 and 6 are devoted to the proofs of our theorems. In the proofs
we extend and generalize some arguments of [14]. Further, we utilize among
others some recent improvements of Waldschmidt [24] and Kunrui Yu [25]
concerning linear forms in logarithms, some recent estimates of Hajdu [15]
concerning fundamental systems of S-units, some recent estimates of the
authors [3] for S-regulators and some new ideas of Schmidt [20] and the
authors [3].

2. Bounds for the solutions of norm form equations. Let K be an
algebraic number field and let M be a finite extension of K with [K : Q] = k,
[M : Q] = d and [M : K] = n ≥ 3. Let RM be the regulator, hM the class
number and r = rM the unit rank of M. Let S be a finite set of places on K
containing the set of infinite places S∞, and let T be the set of all extensions
to M of the places in S. Let P denote the largest of the rational primes lying
below the finite places of S (with the convention that P = 1 if S = S∞).
Denote by s ≥ 0 the number of finite places in S, by t the cardinality of
T and by RT the T -regulator of M (for the definition and properties of the
T -regulator, see Section 5). Let OS denote the ring of S-integers in K.

For any algebraic number α, we denote by h(α) the (absolute) height of
α (cf. Section 5). Throughout this paper we write log∗a for max{log a, 1}.

Let α1 = 1, α2, . . . , αm (m ≥ 2) be elements of M, linearly independent
over K and having (absolute) heights at most A (≥ e). Let β be a non-
zero element of K with (absolute) height at most B and with S-norm (cf.
Section 5) not exceeding B∗ (≥ e). Consider the norm form equation

(2.1) NM/K(x1α1 + . . .+ xmαm) = β in x1, . . . , xm ∈ OS .
Theorem 1. Suppose that αm is of degree ≥ 3 over K(α1, . . . , αm−1).

Then all solutions x1, . . . , xm of (2.1) with xm 6= 0 satisfy

(2.2) max
1≤i≤m

h(xi) < B(m−1)/n

× exp{c1PNRT (log∗RT )(log∗(PRT )/ log∗P )(RM + shM + log(AB∗))},
where N = d(n− 1)(n− 2) and

c1 = c1(d, t,N) = 3t+25t5t+12N3t+4d.

Further , if in particular S = S∞ (i.e. s = 0), then the bound in (2.2) can be
replaced by

(2.3) B(m−1)/n exp{c2RM(log∗RM)(RM + log(AB∗))},
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where
c2 = c2(d, r, n) = 3r+26(r + 1)7r+19d4r+2n2(n+r+6).

It is clear that t ≤ r + 1 + ns. Further, the factor log∗(PRT )/ log∗P
in (2.2) does not exceed 2 log∗RT , and, if log∗RT ≤ log∗P , then it is at
most 2. Finally, by Lemma 3 (cf. Section 5), we have

(2.4) RT ≤ RMhM(d log∗P )sn.

From Theorem 1 we deduce the following

Theorem 2. Suppose that , in (2.1), αi+1 has degree ≥ 3 over K(α1, . . .
. . . , αi) for i = 1, . . . ,m−1. Then all solutions of (2.1) satisfy (2.2). Further ,
if S = S∞ (i.e. s = 0), then the bound in (2.2) can be replaced by (2.3).

Theorems 1 and 2 considerably improve Corollaries 2 and 3 of Győry
[13] in terms of RM, hM, P , d, r, t and n. Further, they imply significant
improvements of Corollary 2 of Győry [9], Theorems 3, 4 of Győry [12] and
Theorem 1 of Kotov [16]. In contrast with the bounds in [9], [13], [12] and
[16], our estimates do not depend on the parameters of the normal closure
of M over K. For S = S∞, Theorem 2 is an extension and, in terms of n, r
and RM, a considerable improvement of Theorem 1 of Győry and Papp [14].

Our general bounds are still large for practical use. However, some new
ideas in our proofs can be useful in the resolution of concrete equations.

Sprindžuk [22] and Gaál (see e.g. [7]) established some effective results for
inhomogeneous norm form equations as well. By combining the arguments
of [22], [7] with those of the present paper, the bounds obtained in [22] and
[7] for the solutions can also be improved.

3. Bounds for the solutions of Thue equations and Thue–Mahler
equations. In this section we apply Theorem 2 to Thue equations and
Thue–Mahler equations over Z.

Let F (X,Y ) ∈ Z[X,Y ] be an irreducible binary form of degree n ≥ 3,
and let b be a non-zero rational integer with absolute value at most B (≥ e).
LetM = Q(α) for some zero α of F (X, 1), and denote by RM, hM and r = rM
the regulator, class number and unit rank of M. Further, let H (≥ 3) be
an upper bound for the height (i.e. the maximum absolute value of the
coefficients) of F . The Thue equation

(3.1) F (x, y) = b in x, y ∈ Z
is a special case of equation (2.1).

The first estimate in Theorem 3 below is a special case of Theorem 2.
The second estimate easily follows from the first one (see Section 6).

Theorem 3. All solutions x, y of equation (3.1) satisfy

(3.2) max{|x|, |y|} < exp{c3RM(log∗RM)(RM + log(HB))}
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and

(3.3) max{|x|, |y|} < exp{c4H2n−2(logH)2n−1 logB},
where

c3 = c3(n, r) = 3r+27(r+1)7r+19n2n+6r+14, c4 = c4(n) = 33(n+9)n18(n+1).

Let p1, . . . , ps (s > 0) be distinct rational primes not exceeding P . Con-
sider now the Thue–Mahler equation

(3.4) F (x, y) = bpz11 . . . pzss in x, y, z1, . . . , zs ∈ Z
with (x, y, p1 . . . ps) = 1 and z1, . . . , zs ≥ 0.

The following theorem is a consequence of Theorem 2.

Theorem 4. All solutions of equation (3.4) satisfy

(3.5) max{|x|, |y|, pz11 . . . pzss }
< exp{c5PN (log∗P )ns+2RMhM(log∗(RMhM))2(RM + shM + log(HB))}

and

(3.6) max{|x|, |y|, pz11 . . . pzss }
< exp{c6PN (log∗P )ns+2H2n−2(logH)2n−1 logB},

where N = n(n− 1)(n− 2) and

c5 = c5(n, s) = 3n(2s+1)+27n2n(7s+13)+13(s+ 1)5n(s+1)+15,

c6 = c6(n, s) = 25nn3nc5(n, s).

In case of equations considered over Z, Theorem 3 improves the Corollary
of Győry and Papp [14] in terms of n, r and RM. Further, for irreducible F ,
our estimate (3.5) gives a significant improvement of Corollary 1 of Győry
[9] in RM, hM, P , n, r and s. Theorem 4 can be regarded as an explicit
version of Theorem 1.1 in Chapter V of Sprindžuk [22].

4. Lower bounds for some linear forms with algebraic coeffi-
cients. The bounds obtained in [14], [10], [22] for the solutions of norm
form equations implied lower bounds for linear forms with algebraic coeffi-
cients at integral points. As consequences of our Theorem 2 we considerably
improve upon these lower estimates.

Let again K and M be algebraic number fields with K ⊂M and with the
same parameters as in Section 2. Let OK and OM denote the rings of integers
of K andM, respectively. Let RK and rK be the regulator and unit rank of K.
Denote by ΩM (resp. Ω∞) the set of all (resp. all infinite) places on M. For
v ∈ ΩM, denote by | · |v the corresponding valuation normalized as in Section
5 below. Let Γ∞ and Γ0 be finite subsets of Ω∞ and ΩM \Ω∞, respectively,
and put Γ = Γ∞ ∪ Γ0. We denote by r1 and r2 the numbers of real and
complex places in Γ∞. Further, suppose that Γ0 contains t0 ≥ 0 finite places
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and that the corresponding prime ideals of OM lie above rational primes not
exceeding P (for t0 = 0, let P = 1). Let S denote the set of places on K,
induced by the places in Γ0 ∪Ω∞. Further, let T be the set of all extensions
to M of the places in S, and let RT denote the T -regulator of M.

We recall that the size of an algebraic number α, denoted by α , is the
maximum of the absolute values of the conjugates of α.

Using the above notations, we deduce from Theorem 2 the following
result.

Theorem 5. Suppose that α0 = 1, α1, . . . , αm are elements in M with
(absolute) heights at most A (≥ e) such that M = K(α1, . . . , αm) and that
αi+1 is of degree ≥ 3 over K(α0, . . . , αi) for i = 0, . . . ,m− 1. Then for any
x = (x0, . . . , xm) ∈ Om+1

K \ {0} there exists an S-unit ε ∈ OK such that
ε−1x ∈ Om+1

K \ {0} and

(4.1)
∏

v∈Γ
|(ε−1x0)α0 + . . .+ (ε−1xm)αm|v > κ1X

−d+r1+2r2+τ1 ,

X = max
0≤i≤m

ε−1xi ,

where

κ1 = (2m)−d+r1+2r2A−(d2+1)(dm+1) exp{−(RM + t0hM)},
τ1 = ((t0 + 1)2k−1k2k−1c1P

N (log∗P )RT (log∗RT )2RKhK)−1.

Further , if Γ contains only infinite places, κ1 and τ1 can be replaced by

κ2 = (2m)−d+r1+2r2A−(d2+1)(dm+1) exp{−RM},
τ2 = (2kc2RM log∗RM)−1,

respectively. (Here c1, c2 denote the constants occurring in Theorem 1.)

Our Theorem 1 has a similar consequence. Theorem 5 generalizes and
improves Theorem 2 of [14]. Further, it is an improvement of Corollary 1
of [10].

The next corollary is concerned with the case K = Q. For any complex
number ξ, we denote by ‖ξ‖ the distance from ξ to the nearest rational
integer.

Corollary 1. Let α0 = 1, α1, . . . , αm be algebraic numbers with (ab-
solute) heights at most A (≥ e) such that αi+1 is of degree ≥ 3 over
Q(α0, . . . , αi) for i = 0, . . . ,m − 1. Further , let M = Q(α1, . . . , αm) with
degree n and regulator RM. Then, putting σ = 1 or 2 according as M is real
or not , we have for any (x1, . . . , xm) ∈ Zm \ {0},

‖x1α1 + . . .+ xmαm‖ > κ3X
−(n−σ−τ3)/σ, X = max

1≤i≤m
|xi|,
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where
κ3 = (2m)−2(n−σ)/σA−(n2+1)(nm+2)/σ exp{−RM/σ},
τ3 = (3n+26n15n+20RM log∗RM)−1.

This is an extension and improvement of the Corollary in [14]. For m = 1,
this result of [14] provided an explicit version of a theorem of Feldman [6].
Our Corollary 1 above gives the best (up to now) effective improvement of
Liouville’s approximation theorem: If α is a real algebraic number of degree
n ≥ 3 with (absolute) height at most A (≥ e) then, putting M = Q(α), we
have ∣∣∣∣α−

y

x

∣∣∣∣ >
2−2n+2A−(n2+1)(n+2) exp{−RM}

xn−τ3

for every rational y/x with x > 0.
Corollary 2 below considerably improves Corollary 3 of [10] which was

an explicit version of a previous theorem of Kotov and Sprindžuk [17].

Corollary 2. Let K, M and Γ be as in Theorem 5, and let θ ∈M with
M = K(θ) and with (absolute) height at most A (≥ e). Then for all α ∈ K
we have

(4.2)
∏

v∈Γ
|θ − α|v > κ4(h(α))−kd+τ1/2

while for all α ∈ OK we have

(4.3)
∏

v∈Γ
|θ − α|v > κ4(h(α))k(−d+r1+2r2)+τ1/2,

where κ4 = κ1(2Ad)−d+r1+2r2 with the choice m = 1.

5. Auxiliary results. In this section, we introduce some notation. Fur-
ther, we formulate some lemmas and two estimates for linear forms in loga-
rithms which will be used in the next section, in the proofs of our theorems.

For an algebraic number field K, we denote by OK the ring of integers of
K and by ΩK the set of places on K. Put k = [K : Q]. We choose a valuation
| · |v for every v ∈ ΩK in the following way : if v is infinite and corresponds
to σ : K → C then we put, for α ∈ K, |α|v = |σ(α)|kv , where kv = 1 or 2
according as σ(K) is contained in R or not; if v is finite and corresponds to
the prime ideal p in K then we put |α|v = N(p)− ordp(α) for α ∈ K \ {0} and
|0|v = 0. The set of valuations thus normalized is uniquely determined and
satisfies the product formula for valuations

(5.1)
∏

v∈ΩK
|α|v = 1 for any α in K \ {0}.

We shall assume throughout the paper that the valuations under con-
sideration are normalized in the above sense. Further, it will be frequently
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used that if a place w on a finite extension M of K is an extension of a place
v on K then

(5.2) |α|w = |α|[Mw:Kv]
v for α ∈ K

and, if the place v is finite,

(5.3) |NM/K(α)|v =
∏

w place onM
w|v

|α|w for α ∈M.

Here Kv and Mw denote the completions of K and of M at the places v and
w, respectively.

The (absolute) height of α ∈ K is defined by

h(α) =
∏

v∈ΩK
max{1, |α|v}1/k.

It depends only on α, and not on the choice of K. We shall frequently use
that h(α−1) = h(α) for α ∈ K \ {0}, and

h(α1 . . . αm) ≤ h(α1) . . . h(αm), h(α1 + . . .+ αm) ≤ mh(α1) . . . h(αm)

for α1, . . . , αm ∈ K. Further, we have

(5.4)
∑

v∈ΩK
|log |α|v| = 2k log h(α) for α ∈ K \ {0}.

There exists a λ(d) > 0, depending only on d, such that log h(α) ≥ λ(d)
for any non-zero algebraic number α of degree d which is not a root of unity.
For d = 1, we can take λ(d) = log 2. For d ≥ 2, Stewart, Dobrowolski and
others gave lower bounds for λ(d); very recently, Voutier [23] has improved
these bounds by showing that one can take

(5.5) λ(d) =
2

d(log(3d))3 for d ≥ 2.

Let S be a finite subset of ΩK containing the set of infinite places S∞.
Denote by OS the ring of S-integers, and by O∗S the group of S-units in K.
For α ∈ K\{0}, the ideal (α) generated by α can be uniquely written in the
form a1a2 where the ideal a1 (resp. a2) is composed of prime ideals outside
(resp. inside) S. The S-norm of α, denoted by NS(α), is defined as N(a1).
The S-norm is multiplicative, and, for S = S∞, NS(α) = |NK/Q(α)|. For
any α ∈ K\{0}, we have NS(α) =

∏
v∈S |α|v. Further, if α ∈ OS \{0}, then

NS(α) is a positive integer and NS(α) ≤ (h(α))k.
Let q be the cardinality of S. Let v1, . . . , vq−1 be a subset of S, and let

{ε1, . . . , εq−1} be a fundamental system of S-units in K. Denote by RS the
absolute value of the determinant of the matrix (log |εi|vj )i,j=1,...,q−1. It is
easy to verify that RS is a positive number which is independent of the choice
of v1, . . . , vq−1 and of the fundamental system of S-units {ε1, . . . , εq−1}. RS
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is called the S-regulator of K. If in particular S = S∞, then RS is just the
regulator, RK, of K.

For the proofs of Lemmas 1 to 3 below we refer the reader to [3].
Put

c7 = c7(k, q) = ((q − 1)!)2/(2q−2kq−1)

and

c8 = c8(k, q) = c7(λ(k))2−q, c9 = c9(k, q) = c7k
q−2/λ(k).

Lemma 1. There exists in K a fundamental system {ε1, . . . , εq−1} of
S-units with the following properties:

(i)
q−1∏

i=1

log h(εi) ≤ c7RS ;

(ii) log h(εi) ≤ c8RS , i = 1, . . . , q − 1;

(iii) the absolute values of the entries of the inverse matrix of
(log |εi|vj )i,j=1,...,q−1 do not exceed c9.

This is a slight improvement of a theorem of Hajdu [15].
Denote by hK and r = rK the class number and unit rank of K. Let

p1, . . . , ps be the prime ideals corresponding to the finite places in S, and
denote by P the largest of the rational primes lying below p1, . . . , ps. Put
c10 = c10(k, r) = rr+1(kλ(k))−(r−1)/2.

Lemma 2. For every α ∈ OS \ {0} and every integer n ≥ 1 there exists
an S-unit ε such that

h(εnα) ≤ NS(α)1/k exp{n(c10RK + shK log∗P )}.
Lemma 3. If s > 0, then we have

RS ≤ RKhK
s∏

i=1

logN(pi) ≤ RKhK(k log∗P )s

and

RS ≥ RK
s∏

i=1

logN(pi) ≥ c11(log 2)(log∗P ),

where c11 = 0.2052.

We remark that, in our Theorems 1 and 2, the improvements of the
previous bounds in terms of RM, hM and P are mainly due to the use of
fundamental systems of S-units, S-regulators as well as Lemmas 1 to 3.

We also need an explicit version of a lemma due to Sprindžuk [22]. Let
M be an extension of K with [M : K] = n. Denote by d, RM, hM and rM the
degree, regulator, class number and unit rank of M.
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Lemma 4. With the above notations, we have

hK ≤ nhM and RK ≤ rM!n(2λ(d))−(rM−1)RM.

P r o o f. For the first inequality, see [22], page 21; the second inequality
can be easily derived from Lemma 2.3 in Chapter II of [22].

The application of Propositions 1 and 2 below enables us to considerably
improve the previous bounds for the solutions of equation (2.1) in terms of d,
r, n and t. Moreover, we shall pay a particular attention to the dependence
on these parameters.

Let α1, . . . , αm (m ≥ 2) be non-zero algebraic numbers such that K =
Q(α1, . . . , αm). Let H1, . . . , Hm be real numbers such that

(5.6) logHi ≥ max
{

log h(αi),
|logαi|

3.3k
,

1
k

}
, i = 1, . . . ,m,

where log denotes the principal value of the logarithm. Let b1, . . . , bm be
rational integers and put B = max{|b1|, . . . , |bm|, 3}. Further, set

Λ = αb11 . . . αbmm − 1.

In Proposition 1, it will be convenient to use the following technical condi-
tions :

(5.7) B ≥ logHm exp{4(m+ 1)(7 + 3 log(m+ 1))},
(5.8) 7 + 3 log(m+ 1) ≥ log k.

As was shown in [3], Proposition 1 is a consequence of Corollary 10.1 of
Waldschmidt [24].

Proposition 1 (M. Waldschmidt [24]). If Λ 6= 0, bm = 1 and (5.7),
(5.8) hold , then

|Λ| ≥ exp
{
−c12(m)km+2 logH1 . . . logHm log

(
2mB

logHm

)}
,

where c12(m) = 1500 · 38m+1(m+ 1)3m+9.

In Proposition 2, let v = vp be a finite place on K, corresponding to
the prime ideal p of OK. Let p denote the rational prime lying below p, and
denote by | · |v the non-archimedean valuation normalized as above. Instead
of (5.6), assume now that H1, . . . , Hm are real numbers such that

logHi ≥ max{log h(αi), |logαi|/(10k), log p}, i = 1, . . . ,m.

The following proposition is a simple consequence of the main result of
Kunrui Yu [25].

Proposition 2 (Kunrui Yu [25]). Let

Φ = c13(m)(k/
√

log p)2(m+1)pk logH1 . . . logHm log(10mk logH),
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where c13(m) = 22000(9.5(m + 1))2(m+1) and H = max{H1, . . . , Hm, e}. If
Λ 6= 0 then

|Λ|v ≥ exp{−k(log p)Φ log(kB)}.
Further , if bm = 1 and Hm ≥ Hi for i = 1, . . . ,m − 1, then H can be
replaced by max{H1, . . . , Hm−1, e} and for any δ with 0 < δ ≤ 1, we have

|Λ|v ≥ exp{−k(log p) max{Φ log(δ−1Φ/ logHm), δB}}.
R e m a r k. We remark that, in Propositions 1 and 2, the condition K =

Q(α1, . . . , αm) can be removed. It is enough to assume that K is an algebraic
number field of degree k which contains α1, . . . , αm. This observation will
be needed in Section 6.

6. Proofs

P r o o f o f T h e o r e m 1. We keep the notation of Section 2 and use
some ideas of [3]. Further, we generalize some arguments of [14]. We may and
shall assume that α1, . . . , αm are algebraic integers in (2.1) with α1 ∈ Z\{0}.
This can be achieved by multiplying equation (2.1) by the nth power of the
product of the denominators of α2, . . . , αm and replacing the bounds A, B
for the heights of the αi and β by A1 = Ad(m−1)+1 and B1 = BAdn(m−1),
respectively, and the bound B∗ for the S-norm of β by B∗1 = B∗Akdn(m−1).
Further, we assume that β ∈ OS \ {0} since otherwise (2.1) is not solvable.

Let now x = (x1, . . . , xm) ∈ OmS be an arbitrary but fixed solution of
(2.1) with xm 6= 0. Denote by L the number field K(α1, . . . , αm−1), by TL
the set of all extensions to L of the places in S, and by OL,TL the ring of
TL-integers in L. Putting

x = x1α1 + . . .+ xm−1αm−1, y = xm and τ = αm,

equation (2.1) can be written as

(6.1) NL/K(NM/L(x+ yτ)) = β in x ∈ OL,TL , y ∈ OS \ {0},
whence

(6.2) NM/L(x+ yτ) = β1

with some β1 ∈ OL,TL \ {0}. Since β1 is a divisor of β in OL,TL , its TL-norm
satisfies NTL(β1) ≤ NTL(β) ≤ (B∗1)l/k, where l = [L : Q]. It follows from
Lemmas 2 and 4 that there exist a unit ε in OL,TL and β2 ∈ OL,TL such that
β2 = β1ε

n1 with n1 = [M : L] and

(6.3) h(β2)

≤ (B∗1)1/k exp{n2(r!rr+1(dλ2(d))−(r−1)2−rRM + shM log∗P )} =: C1.

From (6.2) we get

(6.4) NM/L((εx) + (εy)τ) = β2.
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We are going to give an upper bound for h(εy) and h(εx). Denote by
G the normal closure of M over K, and by TG the set of all extensions to
G of the elements of S. Putting t1 = Card(TG) and g = [G : K], we have
t1 ≤ tg/n and g ≤ n!. Assume that

(6.5) h(εy) > max{C2t1
1 , (2t1A2

1)3n1t1}.
Let τi, µi = (εx) + (εy)τi, i = 1, . . . , n1, denote the corresponding con-

jugates of τ and µ = (εx) + (εy)τ , respectively, over L. There is no loss of
generality in assuming that µ1, . . . , µn0 are distinct, where, by assumption,
n0 ≥ 3. Let v∗ ∈ TG for which |εy|v∗ is maximal. We may assume that
|µ1|v∗ ≤ . . . ≤ |µn0 |v∗ . Then |µ1 − µi|v∗ ≤ 2|µi|v∗ for i = 1, . . . , n0, and so

(6.6) |µi|v∗ ≥ 1
2 |µ1 − µi|v∗ = 1

2 |εy|v∗ |τ1 − τi|v∗ ≥ 1
2 |τ1 − τi|v∗h(εy)gk/t1 .

Hence it follows from (6.4) and (6.5) that

(6.7) |µ1|v∗ ≤ |β2|n0/n1
v∗

( n0∏

i=2

|µi|v∗
)−1
≤ h(εy)−gk/t1 .

Fix a v ∈ TG with v 6= v∗, and take j ∈ {1, . . . , n0} for which |µj |v is
minimal. Then, by (6.4) and (6.3), |µj |v ≤ |β2|1/n1

v ≤ h(β2)gk/n1 ≤ C
gk/n1
1

and so, using (6.5) and |µ1 − µj |v = |εy|v|α1 − αj |v, we obtain

(6.8) |µ1|v ≤ |µ1 − µj |v + |µj |v ≤ h(εy)2gk.

Further, |µi|v ≤ |µ1−µi|v + |µ1|v ≤ 2h(εy)2gk for each i and v ∈ TG. Hence,
for each v ∈ TG, we have

(6.9) |µ1|v = |β2|v
( n1∏

i=2

|µi|v
)−1
≥ h(εy)−2gkn1 .

Let OT denote the ring of T -integers in M. Since, by (6.4), µ1 is a divisor
of β2 in OT , we have NT (µ1) ≤ NT (β2) ≤ h(β2)d ≤ Cd1 . We recall that t
denotes the cardinality of T . Let ε1, . . . , εt−1 be T -units in M with the
properties specified in Lemma 1. By Lemma 2, there are rational integers
z1, . . . , zt−1 and γ1 ∈ OT such that

(6.10) µ1 = γ1ε
z1
1 . . . ε

zt−1
t−1

and that

(6.11) h(γ1) ≤ C1 exp{c10(d, r)RM + nshM log∗P} =: C2.

It follows from (6.10) that

z1 log |ε1|w + . . .+ zt−1 log |εt−1|w = log |µ1/γ1|w
for each w ∈ T . Put Z = max{|z1|, . . . , |zt−1|, 3} and T = {w1, . . . , wt}. On
applying now Lemma 2 and Lemma 1(iii) and using (6.8), (6.9), (5.4), (6.5)
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and (6.11), we infer that (1)

Z ≤ c14

t−1∑

i=1

|log |µ1/γ1|wi |(6.12)

≤ 2dc14(log h(µ1) + log h(γ1)) ≤ c15 log h(εy),

where c14 = c9(d, t) and c15 = 5d(tg/n)n1c14.
Consider the identity

(6.13) (τ2 − τ3)µ1 + (τ3 − τ1)µ2 + (τ1 − τ2)µ3 = 0.

In view of (6.6), (6.7) and (6.5), we get∣∣∣∣1 +
(τ1 − τ2)µ3

(τ3 − τ1)µ2

∣∣∣∣
v∗

=
∣∣∣∣
(τ2 − τ3)µ1

(τ3 − τ1)µ2

∣∣∣∣
v∗
≤ h(εy)−gk/t1 .

Denote by εi,j and γj the conjugates of εi and γ1 over K corresponding to
µj , and put

ηi = εi,3/εi,2 for i = 1, . . . , t− 1 and ηt =
τ2 − τ1
τ3 − τ1 ·

γ3

γ2
·

Then h(ηt) ≤ 4A4
1C

2
2 =: C3. Further, putting

Λ = ηz11 . . . η
zt−1
t−1 η

zt
t − 1 with zt = 1

we get

(6.14) 0 < |Λ|v∗ < h(εy)−gk/t1 .

Denote by u∗ the restriction of v∗ to the field M123 = M(τ1, τ2, τ3), and
normalize | · |u∗ as above. Then, by (6.14) and (5.2), we have

(6.15) 0 < |Λ|u∗ < h(εy)−gk/t1 .

First assume that u∗ is infinite. To apply Proposition 1, we define d1 =
[M123 : Q] and

(6.16)
logHi = (d1λ(d1))−1 log h(ηi), i = 1, . . . , t− 1,

logHt = (d1λ(d1))−1 logC3.

Then d1 ≤ N . Further, it is easy to check that 7 + 3 log(t+ 1) ≥ log d1. We
may assume that

(6.17) Z ≥ logHt exp{4(t+ 1)(7 + 3 log(t+ 1))}.
Indeed, it follows from (6.10), (6.11) and Lemma 1(ii) that

h(µ1) ≤ C2

t−1∏

i=1

h(εi)|zi| ≤ C2 exp{(t− 1)c16RTZ},

(1) In certain applications, it can be more useful to work with our upper bounds of
Z, provided by (6.12), (6.19), (6.22) and (6.24).
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where c16 = c8(d, t) = ((t − 1)!)2/d(2dλ(d))t−2. Hence, if (6.17) does not
hold, we get an upper bound for h(µ1) and also for h(µ2). Then we can
derive from µ1 = (εx) + (εy)τ1, µ2 = (εx) + (εy)τ2 an explicit bound for
h(εy) which is better than that occurring in (6.19) below.

We have | · |u∗ = |σ( · )|du∗ for some σ : M123 → C and du∗ ≤ 2. Applying
σ to equation (6.13) and then omitting σ everywhere, we may assume that
| · |u∗ = | · |du∗ . On applying now Proposition 1 to |Λ|u∗ and using (6.12) and
Lemma 1(i), we derive that

(6.18) |Λ|u∗ ≥ exp
{
−c17RT logHt log

(
2tc15 log h(εy)

logHt

)}
,

where c17 = du∗c12(t)dt+2
1 (d1λ(d1))−(t−1)2t−1c18, with c18 = c7(d1, t) =

((t− 1)!)2/(2t−2dt−1
1 ). Now (6.15) and (6.18) imply that

log h(εy)
logHt

≤ t1
gk
c17RT log

(
2tc15 log h(εy)

logHt

)
.

Together with (6.16), (5.5) and the inequalities (t − 1)! ≤ (t − 1)te−t+2,
t+ 1 ≤ e1/tt, this gives

(6.19) log h(εy) ≤ c19RT (log∗RT ) logC3 =: C4

with c19 = 3t+22t5t+11N3(log 3N)3t+1.
When S = S∞, we have t = r + 1 and we get the upper bound

log h(εy) ≤ c′19RM(log∗RM) logC3 =: C ′4

with c′19 = 3r+23(r + 1)5r+16N3(log 3N)3r+4.
Next assume that u∗ is finite. To apply Proposition 2, we put now

logHi = (d1λ(d1))−1 log h(ηi) + log∗P, i = 1, . . . , t− 1,

logHt = (d1λ(d1))−1 logC3 + log∗P.

Then we get (cf. [3])

(6.20) logH1 . . . logHt−1 ≤ 2c20RT (log∗P )t−2,

where c20 = t((t− 1)!)2d−t1 (λ(d1))−t+1.
We distinguish two cases. First assume that logC3 < c16RT . Then, by

Lemmas 1 and 3, we have

(6.21) logH := max
1≤i≤t

logHi ≤ c21RT

with c21 = c16(d1λ(d1))−1 + (c11 log 2)−1. We now apply to |Λ|u∗ the first
part of Proposition 2. Putting

Φ = c22
P d1

(log∗P )t+1 logH1 . . . logHt log(10td1 logH)
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with c22 = c13(t)(d2
1/ log 2)t+1, we infer that

|Λ|u∗ ≥ exp{−d1(log∗P )Φ log(d1Z)}.
Together with (6.15) and (6.12) this implies that

log h(εy) ≤ d1
t1
gk

(log∗P )Φ log(c15d1 log h(εy)).

By combining this with (6.20), (6.21), (6.5), (5.5) and the inequalities logC3

< c16RT and (t− 1)! ≤ (t− 1)te−t+2, we get

(6.22) log h(εy)

≤ c23P
d1RT (log∗RT )(log∗(PRT )/(log∗P )2)(logC3 + log∗P ),

where c23 = 3t+25t5t+11N3t.
Finally, assume that logC3 ≥ c16RT . Then, by Lemmas 1 and 3, we have

Ht ≥ Hi for i = 1, . . . , t− 1 and

logH := max
1≤i≤t−1

logHi ≤ c21RT .

Consider now the above defined Φ with this value of logH. First we give an
upper bound for h(εy) in terms of Φ.

If Z < Φ(log∗P )/(c16RT ) then, by (6.10), (6.11), Lemma 1(ii) and (6.20),

h(µ1) ≤ C2h(ε1)|z1| . . . h(εt−1)|zt−1|

≤ C2 exp{(t− 1)c16RTZ} ≤ C2 exp{Φ(log∗P )}.
Together with εy = (µ1 − µ2)/(τ1 − τ2) this gives

(6.23) log h(εy) ≤ 3Φ(log∗P ).

Assume now that Z ≥ Φ(log∗P )/(c16RT ). We apply the second part of
Proposition 2 to |Λ|u∗ . Putting δ = Φ(log∗P )/(Zc16RT ) we obtain

|Λ|u∗ ≥ exp
{
−d1(log∗P )Φ log

(
Zc16RT

log∗P logHt

)}
.

Hence, by (6.12) and (6.15), we get

log h(εy) ≤ t1
gk
d1(log∗P )Φ log

(
c15c16RT log h(εy)

log∗P logHt

)
.

This implies that

log h(εy) ≤ 2
t1
gk
d1(log∗P )Φ log{(t1/gk)d1c15c16RT (Φ/ logHt)}.

Together with (6.23) this yields

(6.24) log h(εy)

≤ c23P
d1RT (log∗RT )(log∗(PRT )/(log∗P )2)(logC3 + log∗P ) =: C5

with the constant c23 defined above.
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We note that C5 ≥ C4. In what follows, we denote by C6 the expression
C ′4 or C5 according as S = S∞ or S 6= S∞. Then C6 is larger than the bound
in (6.5). Thus log h(εy) ≤ C6 in each case considered above.

It follows from (6.7) and (6.8) that h(µ1) ≤ h(εy)2gkt1 and so, from
µ1 = (εx) + (εy)τ we infer that

h(εx) ≤ 2A1 exp{(2gkt1 + 1)C6}.
For κ = x/y, we have h(κ) ≤ 2A1 exp{(4gkt1 + 1)C6}. Then it follows from
(6.1) that ynNM/K(κ+ τ) = β, whence

h(y) ≤ 4A2
1B

1/n
1 exp{(4gkt1 + 1)C6}

and

h(x) ≤ 8A3
1B

1/n
1 exp{(8gkt1 + 2)C6} =: C7.

We recall that

y = xm, x = x1α1 + . . .+ xm−1αm−1.

Taking the conjugates of x over K and using Cramer’s rule, we get

max
1≤i≤m−1

h(xi) ≤ ((m− 1)!)2(m−1)A
2(m−1)2(m−1)!
1 Cm−1

7 .

Now, using (5.5), it is easily seen that in Theorem 1 the estimate (2.2)
follows with

c1 = 3t+25t5t+12N3t+4d.

Further, if S = S∞, the bound in (2.2) can be replaced by (2.3) with

c2 = 3r+26(r + 1)7r+19d4r+2n2(n+r+6),

and this completes the proof of Theorem 1.

P r o o f o f T h e o r e m 2. Let x1, . . . , xm be a solution of (2.1), and let
m′ be the largest integer for which xm′ 6= 0. Then (2.1) implies

(6.25) NM/K(x1α1 + . . .+ xm′αm′) = β.

For m′ ≥ 2, the estimates occurring in Theorem 2 immediately follow from
Theorem 1. If m′ = 1, then equation (6.25) reduces to xn1 = β and the
assertion follows.

P r o o f o f T h e o r e m 3. Let x, y be a solution of equation (3.1). This
equation can be written as

(6.26) NM/Q(x− αy) = b/a0 =: β in x, y ∈ Z,
where a0 is the coefficient of Xn in F (X,Y ) and α is a zero of F (X, 1) with
M = Q(α). Then h(α) ≤ (

√
n+ 1H)1/n (see e.g. [5]) and h(β) ≤ |b| · H.

Now estimate (3.2) follows from the second part of Theorem 2.
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Denote by q the number of complex places on M. Then combining the
estimate n < log |DM| (see e.g. [8]) with an upper bound for RMhM in terms
of |DM| and n (see [18]) we get

(6.27) RMhM < ((n− 1)!)−1|DM|1/2(log |DM|)n−1.

Further, as is known, we have |DM| ≤ |D(F )|, where D(F ) denotes the
discriminant of F . Finally, it follows from arguments of Lewis and Mahler
[19] that |D(F )| ≤ n2n−1H2n−2. Now, combining estimate (3.2) with these
inequalities, we obtain (3.3).

P r o o f o f T h e o r e m 4. Let x, y, z1, . . . , zs be a solution of (3.4). Put
zi = nui + vi with ui, vi ∈ Z, 0 ≤ vi < n for i = 1, . . . , s. Further, let

x′ =
x

pu1
1 . . . puss

, y′ =
y

pu1
1 . . . puss

and b′ = b
pv1

1 . . . pvss
a0

.

Using the above notation, denote by S the set of places on Q consisting of
the ordinary absolute value and the finite places corresponding to the primes
p1, . . . , ps. Let OS be the ring of S-integers in Q. Then (3.4) takes the form

NM/Q(x′ − αy′) = b′ in x′, y′ ∈ OS .
Denote by T the set of extensions to M of the places in S, and let RT denote
the T -regulator of M. Then Theorem 2 implies that

(6.28) max{h(x′), h(y′)}
< exp{c24P

NRT (log∗RT )(log∗(PRT )/ log∗P )(RM + shM + log(HB′))}
=: C8,

where N = n(n− 1)(n− 2), c24 = c1(n, s+ 1, N) and B′ ≤ BHP sn.
By assumption, x or y is relatively prime to pi for each i. Hence (6.28)

gives puii ≤ C8 and so

max{|x|, |y|, pu1
1 . . . puss } < C3

8 .

By Lemma 3, we have RT ≤ RMhM(n log∗P )ns. Thus we obtain

(6.29) max{|x|, |y|, pz11 . . . pzss }
< C3n

8 Pns

< exp{c25P
N (log∗P )ns+2RMhM

× (log∗(RMhM))2(RM + shM + log(HB))}
with c25 = 1.8nns+4(log n)2s3c24, whence (3.5) follows. Finally, using the
above upper estimates for RMhM, |DM| and |D(F )|, we deduce from (6.29)
the estimate (3.6) of Theorem 4.

P r o o f o f T h e o r e m 5. We keep the notation of Section 4. Let a
denote the product of the leading coefficients of the minimal defining poly-
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nomials of α0 = 1, α1, . . . , αm over Z. Then α′i := aαi ∈ OM, |a| ≤ Adm and
h(α′i) ≤ Adm+1 for i = 0, . . . ,m. Let x = (x0, . . . , xm) ∈ Om+1

K \ {0} and
write l(x) = x0α

′
0 + . . .+xmα′m. Denote by p1, . . . , pu the prime ideals in OK

corresponding to the finite places in S. Obviously, we have u ≤ t0. Consider
in OK the following decomposition into ideals:

(NM/K(l(x))) = apv1
1 . . . pvuu ,

where a is an integral ideal in OK which is relatively prime to p1, . . . , pu.
We recall that RK, hK and rK denote the regulator, class number and unit
rank of K. Let πj be a generator of the principal ideal phKj for j = 1, . . . , u.
In view of Lemma 2, πj can be chosen so that

(6.30) h(πj) ≤ C9 exp{hK log∗P},
where C9 = exp{c10(k, rK)RK}. Denoting by wj the quotient in the Eu-
clidean division of vj by hK, we obtain

(6.31) NM/K(l(x)) = δπw1
1 . . . πwuu ,

where δ ∈ OK and phKj - δ, j = 1, . . . , u.
For j = 1, . . . , u, set wj = qjn+ zj with rational integers qj , zj for which

0 ≤ zj < n. Further, denote by dj the greatest non-negative integer for
which dj ≤ qj and πdjj divides xi in OK for i = 0, . . . ,m. By Lemma 2, there
are a unit η and a β in OK such that δπz11 . . . πzuu = ηnβ and

(6.32) h(β) ≤ |NK/Q(β)|1/kCn9 .
Put ε = ηπd1

1 . . . πduu , % = πe11 . . . πeuu with ej = qj−dj and x′ = (x′0, . . . , x
′
m)

= ε−1x. Then ε is an S-unit in OK and x′ ∈ Om+1
K \ {0}. Further, (6.31)

implies that

(6.33) NM/K(l(%−1x′)) = β.

It follows that

|NK/Q(β)| = NS(β)
u∏

j=1

|β|−1
pj ≤ NS(β)PuknhK .

Hence, in view of (6.32), we infer that

(6.34) h(β) ≤ NS(β)1/kPunhKCn9 .

We have %−1x′ ∈ Om+1
S \ {0}. On applying now Theorem 2 to equation

(6.33) and using Lemma 4 and (6.34), we get the estimate

(6.35) max
0≤i≤m

h(%−1x′i) < expC11

with C11 = C10(RM + t0hM + (dm + 1) logA + logNS(β)) and C10 =
3c1PNRT (log∗RT )2.
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Write γ = β%n. Then, by (6.33), γ ∈ OK and NS(γ) = NS(β). We recall
that for each j, either ej = 0 or there is an x′i such that πj does not divide
x′i. Hence it follows from (6.35) that ej ≤ 2C11, whence, by (6.30),

(6.36) h(%) ≤ exp{2t0C11(c10(k, rK)RK + hK log∗P )}.
Putting X = max0≤i≤m x′i , from (6.35), (6.36) and x′i ≤ h(x′i)

k we get

X ≤ exp{(2t0 + 1)kC11(c10(k, rK)RK + hK log∗P )}
whence, using c10(k, rK)RK + hK log∗P ≤ 2k−4k2(k−1)RKhK(log∗P ), it fol-
lows that

(6.37) NS(γ) ≥ X1/C12A−(dm+1)C13

where C12 = (t0 + 1)2k−1k2k−1c1P
N (log∗P )RT (log∗RT )2RKhK and C13 =

exp{−(RM + t0hM)}. Further, in view of (6.33),

(6.38) NM/K(l(x′)) = γ.

Put Ω0 = ΩM \ Ω∞ and T0 = T \ Ω∞. By the product formula (5.1) in
M, we have

(6.39)
∏

w∈Γ
|l(x′)|w =

∏

w∈Ω∞\Γ∞
|l(x′)|−1

w

∏

w∈Ω0\T0

|l(x′)|−1
w

∏

w∈T0\Γ0

|l(x′)|−1
w .

We can bound
∏
w∈Ω∞\Γ∞ |l(x′)|w from above by

∏
w∈Ω∞\Γ∞(2m)dw

× Ad(dm+1)Xdw , where dw = 1 or 2 according as w is a real or complex
place. Further, using (5.3), (6.37) and the product formula in K, from (6.38)
we obtain ∏

w∈Ω0\T0

|l(x′)|−1
w =

∏

p prime ideal inOK
p 6=p1,...,pu

|γ|−1
p = NS(γ)(6.40)

≥ X1/C12A−(dm+1)C13.

Finally, we have |l(x′)|w ≤ 1 for each w ∈ T0\Γ0. Hence, using (6.39), (6.40)
and

∏
w∈Γ |a|w ≤ Ad

2m, we infer that
∏

w∈Γ
|l(x′)/a|w ≥ κ1X

−d+r1+2r2+τ1

with κ1 = (2m)−d+r1+2r2A−(d2+1)(dm+1)C13 and τ1 = 1/C12, which is just
estimate (4.1) of our theorem.

The second part (when Γ = Γ∞) of Theorem 5 follows in a similar way
from the bound (2.3) occurring in Theorem 1.

P r o o f o f C o r o l l a r y 1. Let (x1, . . . , xm) ∈ Zm \ {0}. Denoting by
−y the nearest rational integer to x1α1 + . . .+ xmαm, we have

‖x1α1 + . . .+ xmαm‖ = |y + x1α1 + . . .+ xmαm| > 0.
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We may obviously assume that ‖x1α1 + . . .+xmαm‖ < 1. Then, noting that
|y| ≤ 1 +mAnX ≤ 2mAnX and applying the second part of Theorem 5, we
get

|y + x1α1 + . . .+ xmαm| > κ3X
−(n−σ−τ3)/σ,

with the constants κ3, τ3 specified in our Corollary 1.

P r o o f o f C o r o l l a r y 2. We follow the proof of Corollary 3 of [10].
Let a0 denote the leading coefficient of the minimal defining polynomial of
α over Z. Then a0α ∈ OK. Consider x1θ + x2 with x1 = a0, x2 = −a0α. By
Theorem 5 there exists an S-unit ε in OK such that ε−1x1, ε−1x2 ∈ OK and

(6.41)
∏

v∈Γ∪Ω∞
|(ε−1x1)θ − (ε−1x2)|v > κ1X

τ1 , X = max
i=1,2

ε−1xi

with m = 1 in κ1. However, we have
∏
v∈Γ∪Ω∞ |ε−1|v ≤ 1. Further, it follows

that

h(α) = h
(
ε−1x2

ε−1x1

)
≤ h(ε−1x2)h(ε−1x1) ≤ X2

and |a0θ − a0α|v ≤ 2dvAdh(α)kdv , where dv is defined as in the proof of
Theorem 5. Thus, we deduce from (6.41) that

(6.42)
∏

v∈Γ
|θ − α|v > κ4h(α)k(−d+r1+2r2)+τ1/2a

−(r1+2r2)
0

with κ4 = κ1(2Ad)−d+r1+2r2 and if α ∈ OK, (4.3) follows. If α is not integral,
then a0 ≤ (h(α))k and (6.42) implies (4.2).

References

[1] A. Baker, Transcendental Number Theory, 2nd ed., Cambridge University Press,
1979.

[2] E. Bombier i, Effective diophantine approximation on Gm, Ann. Scuola Norm.
Sup. Pisa (IV) 20 (1993), 61–89.
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