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1. Introduction. Several effective bounds have been established for the
heights of the solutions of Thue equations, Thue—Mahler equations and,
more generally, norm form equations (for references, see e.g. [1], [11], [21],
[4], [22], [2]). Except in [2], their proofs involved the theory of linear forms
in logarithms and its p-adic analogue as well as certain quantitative results
concerning independent units of number fields. The best known explicit
estimates for Thue equations and norm form equations in integers are due
to Gyéry and Papp [14], and for Thue-Mahler equations and norm form
equations in S-integers to Gy6ry [9], [13]. These led to many applications.

The bounds in [14] depend among other things on some parameters of
the number field M involved in our equations (2.1) and (3.1), respectively.
These results of [14] were extended in [9] and [13] to wider classes of norm
forms, to equations of Mahler type and to S-integral solutions. However, the
estimates in [9] and [13] are weaker in terms of certain parameters because
the corresponding bounds depend on the normal closure of M, too. The main
purpose of this paper is to give considerable improvements (cf. Theorems
1, 2) of the estimates of [9] and [13]. Our bounds are independent of the
normal closure of M. In particular, for the equations considered in [14], our
Theorems 1 and 2 provide much better estimates than those in [14].

We give some applications of Theorems 1 and 2 as well. In Section 3,
we improve (cf. Theorems 3, 4) the best known bounds for the solutions of
Thue equations and Thue-Mahler equations over Z. This section can be read
independently of the other parts of the paper. In Section 4, we derive some
improvements (cf. Theorem 5) of the previous explicit lower estimates for
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linear forms with algebraic coefficients at integral points. In particular, our
estimates improve upon the best known explicit improvement of Liouville’s
approximation theorem.

Sections 5 and 6 are devoted to the proofs of our theorems. In the proofs
we extend and generalize some arguments of [14]. Further, we utilize among
others some recent improvements of Waldschmidt [24] and Kunrui Yu [25]
concerning linear forms in logarithms, some recent estimates of Hajdu [15]
concerning fundamental systems of S-units, some recent estimates of the
authors [3] for S-regulators and some new ideas of Schmidt [20] and the
authors [3].

2. Bounds for the solutions of norm form equations. Let K be an
algebraic number field and let M be a finite extension of K with [K : Q] = k,
M: Q] =dand [M: K] =n > 3. Let Ry be the regulator, hy the class
number and r = ry the unit rank of M. Let S be a finite set of places on K
containing the set of infinite places S, and let T" be the set of all extensions
to M of the places in S. Let P denote the largest of the rational primes lying
below the finite places of S (with the convention that P = 1if S = S).
Denote by s > 0 the number of finite places in S, by ¢ the cardinality of
T and by Rp the T-regulator of M (for the definition and properties of the
T-regulator, see Section 5). Let Og denote the ring of S-integers in K.

For any algebraic number «, we denote by h(«) the (absolute) height of
a (cf. Section 5). Throughout this paper we write log*a for max{loga, 1}.

Let a1 = 1,a9,...,ay, (m > 2) be elements of M, linearly independent
over K and having (absolute) heights at most A (> e). Let # be a non-
zero element of K with (absolute) height at most B and with S-norm (cf.
Section 5) not exceeding B* (> e). Consider the norm form equation

(2.1) Nyyg(zi01 + ...+ Zma,) =8 inzy,...,2, € Og.

THEOREM 1. Suppose that o, is of degree > 3 over K(ay, ..., m_1).
Then all solutions x1,. .., Ty of (2.1) with x,, # 0 satisfy

(2.2) [nax h(z;) < Bm=b/n
% expler PV R (log” Re) (log" (PRr),/ log” P) (Ru + shu + log(AB))},
where N =d(n —1)(n —2) and
c1 = 1 (d, t, N) = 3+235t+12 \3tad,

Further, if in particular S = So (i.e. s = 0), then the bound in (2.2) can be
replaced by

(2.3) B =D/™ expley Ry (log™ Ry ) (Rur + log(AB*))},
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where
eo = ea(d, T, n) = 3720 (4 1)TrHIGUr+22(ntr+6),
It is clear that t < r + 1 + ns. Further, the factor log*(PRr)/log" P
in (2.2) does not exceed 2log" Ry, and, if log" Ry < log™P, then it is at
most 2. Finally, by Lemma 3 (cf. Section 5), we have

(2.4) Ry < Ryhy(dlog™ P)*™.
From Theorem 1 we deduce the following

THEOREM 2. Suppose that, in (2.1), a;+1 has degree > 3 over K(ag,. ..
cooyaq) fori=1,...,m—1. Then all solutions of (2.1) satisfy (2.2). Further,
if =085 (i.e. s=0), then the bound in (2.2) can be replaced by (2.3).

Theorems 1 and 2 considerably improve Corollaries 2 and 3 of Gyo6ry
[13] in terms of Ry, hy, P, d, v, t and n. Further, they imply significant
improvements of Corollary 2 of Gy6ry [9], Theorems 3, 4 of Gyéry [12] and
Theorem 1 of Kotov [16]. In contrast with the bounds in [9], [13], [12] and
[16], our estimates do not depend on the parameters of the normal closure
of M over K. For § = S,, Theorem 2 is an extension and, in terms of n, r
and Ry, a considerable improvement of Theorem 1 of Gy6ry and Papp [14].

Our general bounds are still large for practical use. However, some new
ideas in our proofs can be useful in the resolution of concrete equations.

Sprindzuk [22] and Gaél (see e.g. [7]) established some effective results for
inhomogeneous norm form equations as well. By combining the arguments
of [22], [7] with those of the present paper, the bounds obtained in [22] and
[7] for the solutions can also be improved.

3. Bounds for the solutions of Thue equations and Thue—Mahler
equations. In this section we apply Theorem 2 to Thue equations and
Thue-Mahler equations over Z.

Let F(X,Y) € Z[X,Y] be an irreducible binary form of degree n > 3,
and let b be a non-zero rational integer with absolute value at most B (> e).
Let Ml = Q(«v) for some zero « of F'(X, 1), and denote by Ry, hy and 7 = iy
the regulator, class number and unit rank of M. Further, let H (> 3) be
an upper bound for the height (i.e. the maximum absolute value of the
coefficients) of F'. The Thue equation

(3.1) F(z,y)=b inzx,yeZ

is a special case of equation (2.1).
The first estimate in Theorem 3 below is a special case of Theorem 2.
The second estimate easily follows from the first one (see Section 6).

THEOREM 3. All solutions x, y of equation (3.1) satisfy
(32)  max{lel, |yl} < explesFus(log” Rae) (Fys + log(H )}
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and

(3.3) mac{]a], [y} < expies " (log H)*"log B},

where

C3 = ea(n, ) = 372 (p g 1)TrHIOR20 0TI () — 33(n49) 18(nk D),
Let p1,...,ps (s > 0) be distinct rational primes not exceeding P. Con-

sider now the Thue-Mahler equation

(3.4) F(z,y)=bpi'...p2* inx,y,21,...,2s €L

with (z,y,p1...ps) =1 and z1,...,2, > 0.
The following theorem is a consequence of Theorem 2.

THEOREM 4. All solutions of equation (3.4) satisfy

(3.5)  max{|z|, |y|,p*...pZ}
< exp{es PY (log" P)"**2 Rytha (log™ (Ruthaa))* (R + shu + log(H B)) }

and

(3.6)  max{|z|,|y|,pi*...p>}
< exp{cg PN (log* P)"* T2 H?*"~2(log H)?" ! log B},
where N = n(n —1)(n —2) and

cs = 05(,”, S) — 3n(2s+1)+27n2n(7s+13)+13(S + 1)5n(5+1)+15’

c6 = cg(n, s) = 2°"n3"c5(n, s).

In case of equations considered over Z, Theorem 3 improves the Corollary
of Gy6ry and Papp [14] in terms of n, r and Ry. Further, for irreducible F,
our estimate (3.5) gives a significant improvement of Corollary 1 of Gy6ry
[9] in Rm, hy, P, n, r and s. Theorem 4 can be regarded as an explicit
version of Theorem 1.1 in Chapter V of Sprindzuk [22].

4. Lower bounds for some linear forms with algebraic coeffi-
cients. The bounds obtained in [14], [10], [22] for the solutions of norm
form equations implied lower bounds for linear forms with algebraic coeffi-
cients at integral points. As consequences of our Theorem 2 we considerably
improve upon these lower estimates.

Let again K and M be algebraic number fields with K € M and with the
same parameters as in Section 2. Let Ok and Oy denote the rings of integers
of K and M, respectively. Let Rx and rx be the regulator and unit rank of K.
Denote by 2y (resp. {2+) the set of all (resp. all infinite) places on M. For
v € {2y, denote by |-|, the corresponding valuation normalized as in Section
5 below. Let I's, and I be finite subsets of (2o, and 2y \ {2, respectively,
and put I' = I, U Iy. We denote by r; and ro the numbers of real and
complex places in I'»,. Further, suppose that Iy contains ¢y > 0 finite places
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and that the corresponding prime ideals of Oy lie above rational primes not
exceeding P (for to = 0, let P = 1). Let S denote the set of places on K,
induced by the places in Iy U {2.,. Further, let T" be the set of all extensions
to M of the places in S, and let Ry denote the T-regulator of M.

We recall that the size of an algebraic number «, denoted by [al, is the
maximum of the absolute values of the conjugates of .

Using the above notations, we deduce from Theorem 2 the following
result.

THEOREM 5. Suppose that ag = 1,1, ..., a., are elements in M with
(absolute) heights at most A (> e) such that M = K(aq,...,a.,) and that
a;y1 18 of degree > 3 over K(ag,...,a;) fori=0,...,m — 1. Then for any

x = (20,...,2m) € Ogt1\ {0} there ewists an S-unit ¢ € Ok such that
e~lx e Ogtt\ {0} and

(4.1) H (e zo)ag + ... 4 (€7 e |y > Ky X AT F2r2 T

vel
_ —1
X = max le” ax4l,

0<i<m

where
Ky = (2m>7d+r1+2T2A7(d2+1)(dm+1) exp{—(Ru + tohu)},
71 = ((to + 1)2" "1 k* e, PN (log* P) Ry (log* Rr)® Richi) .
Further, if I' contains only infinite places, k1 and T can be replaced by
Ko = (zm)—d+r1+2r2A—(d2+1)(dm+1) exp{—Ru},
T2 = (2kca Ry log" Ryp) ™,
respectively. (Here c1, co denote the constants occurring in Theorem 1.)

Our Theorem 1 has a similar consequence. Theorem 5 generalizes and
improves Theorem 2 of [14]. Further, it is an improvement of Corollary 1
of [10].

The next corollary is concerned with the case K = Q. For any complex
number &, we denote by ||£|| the distance from £ to the nearest rational
integer.

COROLLARY 1. Let ag = 1,04,...,q, be algebraic numbers with (ab-
solute) heights at most A (> e) such that a;+1 is of degree > 3 over
Q(ag,...,a;) for i = 0,...,m — 1. Further, let M = Q(ay,...,a) with
degree n. and requlator Ry;. Then, putting o = 1 or 2 according as M is real
or not, we have for any (x1,...,xmy) € Z™ \ {0},

101 + oo F T Q|| > K3 s = max |T;|,
T +...+ X~ (n—o=ms)/o X
1<i<m



278 Y. Bugeaud and K. Gyéry

where
2
K3 = (2m)—2(n—(r)/crA—(n +1)(nm+2) /o exp{—RM/a},
Ty = (3n+26n15n+20RM 1Og*RM)—1 .

This is an extension and improvement of the Corollary in [14]. For m = 1,
this result of [14] provided an explicit version of a theorem of Feldman [6].
Our Corollary 1 above gives the best (up to now) effective improvement of
Liouville’s approximation theorem: If « is a real algebraic number of degree
n > 3 with (absolute) height at most A (> e) then, putting M = Q(«), we

have
Y|
T

2-2n+2 4~ (WD) expl— Ry}

xn—Tg

for every rational y/x with = > 0.
Corollary 2 below considerably improves Corollary 3 of [10] which was
an explicit version of a previous theorem of Kotov and Sprindzuk [17].

COROLLARY 2. Let K, M and I" be as in Theorem 5, and let 6 € M with
M = K(0) and with (absolute) height at most A (> e). Then for all « € K
we have

(4.2) I 16— elo > ra(h(a)) Fdtm/2
vel
while for all a € Og we have

(43) H |(9 _ a|v > K4(h(a))k(—d+r1+2r2)+‘rl/2’
vel

where kg = k1 (2A%) T2 it the choice m = 1.

5. Auxiliary results. In this section, we introduce some notation. Fur-
ther, we formulate some lemmas and two estimates for linear forms in loga-
rithms which will be used in the next section, in the proofs of our theorems.

For an algebraic number field K, we denote by Ok the ring of integers of
K and by 2k the set of places on K. Put k = [K : Q]. We choose a valuation
| - |» for every v € 2 in the following way : if v is infinite and corresponds
to o : K — C then we put, for a € K, |a|, = |o(a)|**, where k, = 1 or 2
according as o(K) is contained in R or not; if v is finite and corresponds to
the prime ideal p in K then we put |a, = N(p)~ % (@) for o € K\ {0} and
|0], = 0. The set of valuations thus normalized is uniquely determined and
satisfies the product formula for valuations

(5.1) H lal, =1 for any v in K\ {0}.

vE K

We shall assume throughout the paper that the valuations under con-
sideration are normalized in the above sense. Further, it will be frequently
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used that if a place w on a finite extension M of K is an extension of a place
v on K then

(5.2) oy = oMo for 0 e K
and, if the place v is finite,
(5.3) INwx(@)s =[] lolw foraeM

w place on M
w|v

Here K, and M,, denote the completions of K and of M at the places v and
w, respectively.
The (absolute) height of a € K is defined by

h(a) = H max{1, |a|, /¥
vE Kk

It depends only on «, and not on the choice of K. We shall frequently use
that h(a™1) = h(a) for « € K\ {0}, and

h(ar...am) < h(oq)...h(am), hlar+... 4+ am) <mh(ag)... h(am)

for aq,...,a, € K. Further, we have
(5.4) Y |loglaly| = 2klogh(a) for a € K\ {0}.
VENK

There exists a A(d) > 0, depending only on d, such that log h(a) > A(d)
for any non-zero algebraic number « of degree d which is not a root of unity.
For d = 1, we can take A(d) = log2. For d > 2, Stewart, Dobrowolski and
others gave lower bounds for A(d); very recently, Voutier [23] has improved
these bounds by showing that one can take

2
(5.5) Ad) = A02(3d))? for d > 2.

Let S be a finite subset of f2x containing the set of infinite places S.
Denote by Og the ring of S-integers, and by O the group of S-units in K.
For a € K\ {0}, the ideal («) generated by «a can be uniquely written in the
form a;ay where the ideal a; (resp. ag) is composed of prime ideals outside
(resp. inside) S. The S-norm of «, denoted by Ng(«), is defined as N(aq).
The S-norm is multiplicative, and, for S = S, Ns(a) = |Ng/g(a)|. For
any o € K\ {0}, we have Ns(a) = [[,cg lal,. Further, if a € Og\ {0}, then
Ng(a) is a positive integer and Ng(a) < (h(a))*.

Let ¢ be the cardinality of S. Let vy,...,v4—1 be a subset of S, and let
{€1,...,€4-1} be a fundamental system of S-units in K. Denote by Rg the
absolute value of the determinant of the matrix (log|ei|v; )i j=1,...,q—1- It is

easy to verify that Rg is a positive number which is independent of the choice
of v1,...,v4-1 and of the fundamental system of S-units {e1,...,e4-1}. Rg
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is called the S-regulator of K. If in particular S = S, then Rg is just the
regulator, Ry, of K.

For the proofs of Lemmas 1 to 3 below we refer the reader to [3].

Put

cr = cr(k,q) = ((g— 1))?/(29 k7 1)

and
cs = cs(k,q) = ci(Mk))*™%,  cog = co(k,q) = crkT 2 /().
LEMMA 1. There exists in K a fundamental system {ei,...,eq-1} of
S-units with the following properties:
q—1
(i) H log h(e;) < c7Rs;
=1
(11) logh(gz) SCSRSa Zzlavq_L

(iii)  the absolute wvalues of the entries of the inverse matriz of
(log [ei|v, )i,j=1,....q—1 do not exceed cy.

This is a slight improvement of a theorem of Hajdu [15].

Denote by hxg and r = rg the class number and unit rank of K. Let
p1,...,ps be the prime ideals corresponding to the finite places in S, and
denote by P the largest of the rational primes lying below pq,...,ps. Put
clgo = Clo(k, T) = T’T+1(l{?)\(k))_(r_1)/2.

LEMMA 2. For every o € Og \ {0} and every integer n > 1 there exists
an S-unit € such that

h(e"a) < Ng(a)'/* exp{n(cioRx + shg log*P)}.
LEmMA 3. If s > 0, then we have

Rs < Rghg [ [log N(p:) < Rxh(klog*P)°
=1

and

Rs > Ry | [log N(p:) > c11(log 2)(log* P),
i=1

where c11 = 0.2052.

We remark that, in our Theorems 1 and 2, the improvements of the
previous bounds in terms of Ry, hy and P are mainly due to the use of
fundamental systems of S-units, S-regulators as well as Lemmas 1 to 3.

We also need an explicit version of a lemma due to Sprindzuk [22]. Let
M be an extension of K with [M : K] = n. Denote by d, Ry, hy and ry the
degree, regulator, class number and unit rank of M.
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LEMMA 4. With the above notations, we have
hg < nhy  and Ry < ryg!n(2X(d)) ™Y Ry,

Proof. For the first inequality, see [22], page 21; the second inequality
can be easily derived from Lemma 2.3 in Chapter II of [22]. m

The application of Propositions 1 and 2 below enables us to considerably
improve the previous bounds for the solutions of equation (2.1) in terms of d,
r, n and t. Moreover, we shall pay a particular attention to the dependence
on these parameters.

Let aq,...,a,, (m > 2) be non-zero algebraic numbers such that K =
Q(a1, ..., ). Let Hy, ..., H,, be real numbers such that

|log i 1 -
5.6 log H; > log h(), b =1, m,
(5.6) og _max{ og h(ay) 395 'k i m
where log denotes the principal value of the logarithm. Let bq,...,b,, be
rational integers and put B = max{|b1],...,|bm|,3}. Further, set

A=abr . abr 1.

In Proposition 1, it will be convenient to use the following technical condi-
tions :

(5.7) B > log H,, exp{4(m + 1)(7 + 3log(m + 1))},
(5.8) 7+ 3log(m +1) > logk.

As was shown in [3], Proposition 1 is a consequence of Corollary 10.1 of
Waldschmidt [24].

ProprosITION 1 (M. Waldschmidt [24]). If A # 0, b,, = 1 and (5.7),
(5.8) hold, then

2mB
4] > exp{‘cw(m)’fm+2 log H, ... log Hr 1°g<10g Hm> }

where ¢1o(m) = 1500 - 38"+ (m, + 1)3m+9,

In Proposition 2, let v = v, be a finite place on K, corresponding to
the prime ideal p of Ok. Let p denote the rational prime lying below p, and
denote by |- |, the non-archimedean valuation normalized as above. Instead
of (5.6), assume now that Hy,..., H,, are real numbers such that

log H; > max{log h(o;), |log ;| /(10k),logp}, i=1,...,m.

The following proposition is a simple consequence of the main result of
Kunrui Yu [25].

PROPOSITION 2 (Kunrui Yu [25]). Let
® = c13(m)(k/\/log p)2 ™V p* log H, .. . log H,y, log(10mklog H),



282 Y. Bugeaud and K. Gyéry

where c13(m) = 22000(9.5(m + 1))2™*Y) and H = max{Hy,..., H,,,e}. If
A #0 then

| Al > exp{—k(log p)®log(kB)}.
Further, if b,, = 1 and H,, > H; fori =1,...,m — 1, then H can be
replaced by max{Hy,...,Hy,_1,e} and for any 6 with 0 < 6 < 1, we have

|A], > exp{—k(log p) max{®log(6~'®/log H,,), s B}}.

Remark. We remark that, in Propositions 1 and 2, the condition K =
Q(a, - .., ) can be removed. It is enough to assume that K is an algebraic
number field of degree k which contains aq, ..., a,,. This observation will
be needed in Section 6.

6. Proofs

Proof of Theorem 1. We keep the notation of Section 2 and use
some ideas of [3]. Further, we generalize some arguments of [14]. We may and
shall assume that aq, . .., o, are algebraic integers in (2.1) with o;; € Z\{0}.
This can be achieved by multiplying equation (2.1) by the nth power of the
product of the denominators of s, ..., a, and replacing the bounds A, B
for the heights of the a; and 3 by A; = A=+ and B; = BAd(m—1),
respectively, and the bound B* for the S-norm of 8 by B} = B* Akdn(m=1),
Further, we assume that 3 € Og \ {0} since otherwise (2.1) is not solvable.

Let now x = (21,...,2y) € O% be an arbitrary but fixed solution of
(2.1) with z,, # 0. Denote by L the number field K(a,...,am—1), by T,
the set of all extensions to L of the places in S, and by Op 1, the ring of
Tr-integers in L. Putting

r=r101 + ... +Tm-1Qm_1, Y=2T;m and T = Qm,
equation (2.1) can be written as
(6.1) Npg(Nvy(z+y7)) =06 inzeOrgn, y < Os\ {0},
whence
(6.2) NyyL(z +y7) = B
with some (31 € Op, 1, \ {0}. Since 3 is a divisor of § in Oy, 7, its Ti-norm
satisfies N7, (81) < Np (8) < (BY)Y*, where | = [L : Q]. It follows from

Lemmas 2 and 4 that there exist a unit € in Op, 7 and B2 € O, 7, such that
B2 = 1™ with ny = [M: L] and

(6.3)  h(f2)

< (BH)Y* exp{n?(rlr" 1 (dN?(d)) """ YV27 " Ry + shylog* P)} =: C.
From (6.2) we get
(6.4) NyyL((ez) + (ey)T) = Bo.
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We are going to give an upper bound for h(ey) and h(ex). Denote by
G the normal closure of M over K, and by T the set of all extensions to
G of the elements of S. Putting ¢; = Card(7;) and g = [G : K], we have
t; <tg/n and g < n!l. Assume that

(6.5) h(ey) > max{C?'*, (21 A2)3mti}

Let 7, u; = (ex) + (ey)m, i = 1,...,nq, denote the corresponding con-
jugates of 7 and p = (ex) + (ey)7, respectively, over L. There is no loss of
generality in assuming that pg,..., puy, are distinct, where, by assumption,
ng > 3. Let v* € Tg for which |ey|,~ is maximal. We may assume that
lpea o < oot < peng o= Then |p1 — piilox < 2|pify+ for i =1,...,ng, and so
(6.6) |pilor > i — pilor = 3ley e h(ey) TR/t
Hence it follows from (6.4) and (6.5) that

no -1
v (bl ) < hewyobron
1=2

Fix a v € Tg with v # v*, and take j € {1,...,no} for which |u;|, is
minimal. Then, by (6.4) and (6.3), |u;|s < |Ba|s/™ < h(B2)9%/m < /™

and so, using (6.5) and |pu1 — p;]y = |ey|v|on — a;,, we obtain

(6.8) lualo < lp1 — 5o + 15l < h(ey)?ok.

Further, |y < |p1 — o + |10 < 2h(sy)?9F for each i and v € Tg. Hence,
for each v € T, we have

(69 ke = 1Bl (T o)~ 2 ) 2007,
1=2

1
o |71 = Tilos 2 511 — T

(6.7) l1]oe < |B2

Let Op denote the ring of T-integers in M. Since, by (6.4), u; is a divisor
of By in O, we have Np(u1) < Np(B2) < h(B2)? < C{. We recall that t
denotes the cardinality of T. Let e1,...,6;—1 be T-units in M with the
properties specified in Lemma 1. By Lemma 2, there are rational integers
21, .-.,2t—1 and v € Op such that

(6.10) w1 =mept..e
and that
(6.11) h(y1) < Cyexp{cio(d, r) Ry + nshylog™ P} =: Cs.

It follows from (6.10) that

ziloglet]w + .. + ze—1log |er—1|w = log |11 /71 |w

for each w € T. Put Z = max{|z1],...,|z—1],3} and T' = {wy,...,w}. On
applying now Lemma 2 and Lemma 1(iii) and using (6.8), (6.9), (5.4), (6.5)
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and (6.11), we infer that ()
t—1

(6.12) Z < ey [loglm/n

i=1
< 2deyg(log h(pe) +log h(y1)) < c15log h(ey),
where c14 = ¢9(d, t) and ¢15 = 5d(tg/n)nici4.
Consider the identity

wq

(6.13) (t2 — T3)p1 + (13 — T1)p2 + (11 — T2)pz = 0.
In view of (6.6), (6.7) and (6.5), we get
1+ (Tl - 7-2)”3 _ (7-2 - 7_3)1“1 < h(8y)_gk/t1~
(13 = )2 |pe | (T3 = T1) 12 |,

Denote by ¢; ; and v; the conjugates of ¢; and v; over K corresponding to
i, and put

=T s,

T3 —T1 72

772‘:61'73/81'72 fOI“iZl,...,t—l and e =

Then h(n;) < 4A1C3 =: Cs. Further, putting

A=ni oo it — 1 with z, =1
we get
(6.14) 0 < |Aly- < h(ey)~ 9%/t

Denote by u* the restriction of v* to the field Mjo3 = M(7q, 72, 73), and
normalize | - |, as above. Then, by (6.14) and (5.2), we have

(6.15) 0 < |Aly+ < h(ey)=9%/tr,

First assume that «* is infinite. To apply Proposition 1, we define dy =
[Mlgg : Q] and

log H; = (di\(dy)) " tlogh(n;), i=1,...,t—1,
10g Ht = (dl)\(dl))_l IOg Cg.

Then dy < N. Further, it is easy to check that 7+ 3log(t+ 1) > logd;. We
may assume that

(6.17) Z > log Hyexp{4(t + 1)(7 + 3log(t + 1)) }.
Indeed, it follows from (6.10), (6.11) and Lemma 1(ii) that

(6.16)

t—1
h(p) < Co [T hlen)! < Coexpf{(t — V)16 Rr Z},

i=1

(1) In certain applications, it can be more useful to work with our upper bounds of
Z, provided by (6.12), (6.19), (6.22) and (6.24).
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where c15 = cg(d,t) = ((t — 1)1)2/d(2d\(d))!~2. Hence, if (6.17) does not
hold, we get an upper bound for h(u;) and also for hA(us). Then we can
derive from py = (ex) + (ey)71, u2 = (ex) + (ey)72 an explicit bound for
h(ey) which is better than that occurring in (6.19) below.

We have | - |« = |o(-)|%* for some o : M193 — C and d,,~ < 2. Applying
o to equation (6.13) and then omitting o everywhere, we may assume that
|- -|%«*. On applying now Proposition 1 to |A|,~ and using (6.12) and
Lemma 1(i), we derive that

u* =

(6.18) A

2 1
wr > eXP{—CNRT log H; log(tclg,mgh(sy)) },

IOgHt
where c17 = du*012(t)dt1+2(dl)\(dl))_(t_l)2t_1618, with c¢18 = C7(d1,t> =
((t—1)NH2/(242d™1). Now (6.15) and (6.18) imply that

logh(ey) _ 2tcys log h(ey)
— P <= log| ——7F7—7 ).
log Hy — gkcl7RT o8 log H;

Together with (6.16), (5.5) and the inequalities (t — 1)! < (t — 1)te= 2
t 41 < e'/t, this gives
(6.19) log h(ey) < ci9Rr(log" Ry)log C3 =: Cy
with ¢19 = 3t+22t5t+11N3(10g 3N)3t+1.
When S = S, we have t = r + 1 and we get the upper bound
log h(ey) < cigRm(log” Ry) log C5 =: C
with ¢}y = 3"23(r + 1) 16 N3 (log 3N )37 +4.
Next assume that u* is finite. To apply Proposition 2, we put now
log H; = (diA\(dy)) " log h(n;) +log* P, i=1,...,t—1,
log H; = (d1\(d1)) *log C3 + log* P.
Then we get (cf. [3])
(6.20) log Hy .. .log H; 1 < 2cooRr(log* P)' 2,

where coo = t((t — 1)1)2d7 " (A(dy))~tFL.
We distinguish two cases. First assume that log C3 < c16Rr. Then, by
Lemmas 1 and 3, we have

. = i <
(6.21) log H lrg?%(t log H; < ¢co1 Rt

with co1 = c16(diA(d1)) ™! + (c11log2)~t. We now apply to |Al,~ the first
part of Proposition 2. Putting
d1

W log H1 e log Ht 10g(10td1 log H)

@:CQQ



286 Y. Bugeaud and K. Gyéry

with coo = c13(t)(d3/log 2)! we infer that
| A+ > exp{—d;(log™ P)®log(d,1 Z)}.
Together with (6.15) and (6.12) this implies that

t
log h(ey) < dl—;{(log*P)é log(c15dy log h(ey)).

g
By combining this with (6.20), (6.21), (6.5), (5.5) and the inequalities log C3
<cigRyr and (t —1)! < (t — 1)te "2 we get
(6.22)  logh(ey)

< ¢o3P™ Ry (log* Rr) (log* (PRy)/(log* P)?)(log C3 + log™ P),

where cog = 3iH25¢5tH11 N3t

Finally, assume that log C's > ¢16 Rr. Then, by Lemmas 1 and 3, we have
H,>H;fori=1,...,t—1 and

log H := max logH; < co1Ryp.
1<i<t—1
Consider now the above defined @ with this value of log H. First we give an

upper bound for h(ey) in terms of .
If Z < ®(log"P)/(c16Rr) then, by (6.10), (6.11), Lemma 1(ii) and (6.20),

h(pr) < Coh(e)!#! .. h(gy_q)l7t-1]
< Cyexp{(t — 1)e1gRrZ} < Cyexp{®(log™P)}.
Together with ey = (u1 — p2)/(m1 — 72) this gives
(6.23) log h(ey) < 32(log™ P).

Assume now that Z > ®(log™P)/(c16Rr). We apply the second part of
Proposition 2 to |A|,+. Putting § = @(log"P)/(Zc16Rr) we obtain

* Z616RT
e > —dy (log* P)®log | —a——"— ) &.
- exp{ 1(Og ) Og<log*P10gHt)}

|A

Hence, by (6.12) and (6.15), we get

log h(cy) < —dy (log*P)éﬁlog(

t ciscieRr log h(ey)
gk

log™ P log H;
This implies that

t «
log h(ey) < 29—26[1 (log" P)®log{(t1/gk)d1ci5c16 Rr(P/ log Hy)}.

Together with (6.23) this yields
(6.24) logh(ey)
< ¢o3P™ Ry (log* Ry) (log* (PRy7)/(log* P)?)(log Cs + log* P) =: Cs

with the constant co3 defined above.
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We note that C5 > Cy. In what follows, we denote by Cg the expression
() or C5 according as S = Sy, or S # S . Then Cg is larger than the bound
in (6.5). Thus log h(ey) < Cg in each case considered above.

It follows from (6.7) and (6.8) that h(u;) < h(ey)?9*1 and so, from
w1 = (ex) + (ey)7 we infer that

h(ex) < 2A; exp{(2gkt1 +1)Cs}.
For k = x/y, we have h(k) < 2A; exp{(4gkt1 + 1)Cs}. Then it follows from
(6.1) that y" Nyk(k + 7) = 3, whence
h(y) < 4A3By"" exp{(4gkt: +1)Cs}
and
h(z) < 8A3BL/™ exp{(8gkt, + 2)Cg} =: Cr.
We recall that
Y=Tm, T=T101+ ...+ Tm-10m—1.-

Taking the conjugates of x over K and using Cramer’s rule, we get

N < (1 20m—1) 420m=1)2(m—1)! 1
15%%7}571]1(%)_(0” nh Aj c7 .

Now, using (5.5), it is easily seen that in Theorem 1 the estimate (2.2)
follows with
¢y = 3HT2545+H12 \3t+Ad

Further, if S = S, the bound in (2.2) can be replaced by (2.3) with
Cy = 37‘+26(T + 1)7r+19d4r+2n2(n+7‘+6)

and this completes the proof of Theorem 1. m

Proof of Theorem 2. Let z1,...,z, be a solution of (2.1), and let
m/ be the largest integer for which z,,» # 0. Then (2.1) implies
(625) NM/K(JIlOél + ...+ $m/am/) = ﬁ

For m’ > 2, the estimates occurring in Theorem 2 immediately follow from
Theorem 1. If m’ = 1, then equation (6.25) reduces to z} = [ and the
assertion follows. m

Proof of Theorem 3. Let x, y be a solution of equation (3.1). This
equation can be written as
(6.26) Nyjg(x —ay) =b/ag = inx,ycZ,

where ag is the coefficient of X™ in F(X,Y) and « is a zero of F/(X,1) with
M = Q(c). Then h(a) < (v/n+ 1LH)Y™ (see e.g. [5]) and h(3) < |b| - H.
Now estimate (3.2) follows from the second part of Theorem 2.
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Denote by g the number of complex places on M. Then combining the
estimate n < log |Dy| (see e.g. [8]) with an upper bound for Ryhy in terms
of |[Dy| and n (see [18]) we get

(6.27) Ruthyt < ((n — 1)1~ Dy 2 (log | Dye )" L.

Further, as is known, we have |Dy| < |D(F')|, where D(F') denotes the
discriminant of F'. Finally, it follows from arguments of Lewis and Mahler
[19] that |D(F)| < n?"~1H?"~2, Now, combining estimate (3.2) with these
inequalities, we obtain (3.3). m

Proof of Theorem 4. Let x, y, 21,...,2s be a solution of (3.4). Put
zi = nu; + v; with ug, v; € Z, 0 <wv; <nfori=1,...,s. Further, let
V1 Vg
’ L Y / Py ---Ps°
=" —— and b =b——"-.
Pyt ... ps® Pt ... pst aop
Using the above notation, denote by S the set of places on Q consisting of

the ordinary absolute value and the finite places corresponding to the primes
P1,-..,Ps. Let Og be the ring of S-integers in Q. Then (3.4) takes the form

I __
z 7y_

Nujo(z' —ay') =b" i’y € Og.

Denote by T the set of extensions to Ml of the places in S, and let Ry denote
the T-regulator of Ml. Then Theorem 2 implies that

(6.28)  max{h(z'), h(y")}
< exp{cas PN Ry (log* Ry)(log* (PRr)/ log* P)( Ry + shy + log(HB'))}
=: Cy,
where N =n(n—1)(n —2), cas = c1(n,s+1,N) and B’ < BHP*".
By assumption, x or y is relatively prime to p; for each i. Hence (6.28)
gives p;'" < Cy and so
max{|z], [y, py" ... Py} < C3.
By Lemma 3, we have Ry < Rythy(nlog™P)™*. Thus we obtain
(6.29)  max{l|z|, ly[,p7" ... p:"}
<o

< exp{eas PN (log* P)"* 2 Ryghyy

X (log* (RMhm))Q(RM + shy + 10g<HB))}
with co5 = 1.8n"5 4 (logn)?s3ca4, whence (3.5) follows. Finally, using the
above upper estimates for Ryhy, |Dy| and |D(F')|, we deduce from (6.29)

the estimate (3.6) of Theorem 4. m

Proof of Theorem 5. We keep the notation of Section 4. Let a
denote the product of the leading coefficients of the minimal defining poly-
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nomials of ag = 1,1, ...,y over Z. Then o := aa; € Oy, |a| < A%™ and
h(al) < AT+ for 4 = 0,...,m. Let x = (20,...,2,) € O\ {0} and
write {(x) = zoay+. . . +Tmal,. Denote by p1, ..., p, the prime ideals in Ok

corresponding to the finite places in S. Obviously, we have u < tg. Consider
in Ok the following decomposition into ideals:

(M (1(x))) = apy* - py,

where a is an integral ideal in Ox which is relatively prime to py,...,py.
We recall that Rk, hx and rg denote the regulator, class number and unit
rank of K. Let 7; be a generator of the principal ideal p;“K forj=1,...,u.
In view of Lemma 2, 7; can be chosen so that

(6.30) h(mj) < Cg exp{hx log™ P},

where Cy = exp{cio(k,rx)Rx}. Denoting by w; the quotient in the Eu-
clidean division of v; by hk, we obtain

(6.31) Ny (l(x)) = oy ..o,
where § € Ok and p;”“(é, ji=1,...,u.

For j =1,...,u, set w; = g;n+ z; with rational integers g;, z; for which
0 < z; < n. Further, denote by d; the greatest non-negative integer for

which d; < ¢; and 7'['?'7 divides z; in Ok for ¢ = 0, ..., m. By Lemma 2, there
are a unit  and a § in Ok such that én7* ... 72 = n" (3 and
(6.32) h(B) < [Neso(B)/£C3.

Put e = prl . qd, g = 7. 7wé with e; = q; —d; and X' = (xh, ..., 2",

= ¢7'x. Then ¢ is an S-unit in Og and x’ € Ot \ {0}. Further, (6.31
implies that

(6.33) Ny (I(e™'x")) = 8.

It follows that

|NK/Q(5)| = NS(@) H ‘5|p_]1 < Ns(ﬁ)PuknhK,

j=1
Hence, in view of (6.32), we infer that
(6.34) h(B) < Ns(B)/*kpumh=Cy.
We have o~'x’ € O%!\ {0}. On applying now Theorem 2 to equation
(6.33) and using Lemma 4 and (6.34), we get the estimate

-1,/
(6.35) Jmax h(o™ x;) < exp C1y

with C1; = Cio(Rm + tohm + (dm + 1)log A + log Ng(5)) and Cy9 =
3¢1 PN Ry (log* Ry)?.



290 Y. Bugeaud and K. Gyéry

Write v = 80". Then, by (6.33), v € Ok and Ng(v) = Ng(3). We recall
that for each j, either e; = 0 or there is an x} such that m; does not divide
x;. Hence it follows from (6.35) that e; < 2C41, whence, by (6.30),

(6.36) h(Q) < eXp{2t0011(610(k, TK)R]K + hK log*P)}.
Putting X = maxo<;<m )], from (6.35), (6.36) and [2/] < h(x})* we get
X <exp{(2to + 1)kC11(c10(k, k) Rx + hx log™ P)}
whence, using ¢1o(k, rx) Rk + hx log" P < 2k_4k2(k_1)RKhK(log*P), it fol-
lows that
(6.37) Ng(y) > XYz g=ldm+) oy
where C1o = (to + 1)2871k2¢~1c; PN (log* P) R (log* Rr)? Rxhx and C3 =
exp{—(Rm + tohm)}. Further, in view of (6.33),
(6.38) Nuggae(U(x')) = 7.
Put 20 = 2y \ 2 and Ty = T\ 2. By the product formula (5.1) in
M, we have
639 [T 1eDw="TI weOE I1 et I et
wel’ wero\Foc UJEQQ\TQ ’U)ET()\FO
We can bound [],co \r. [[(x')|w from above by Hwegm\Fm(2m)dw

x Addm+1) xdw where d,, = 1 or 2 according as w is a real or complex
place. Further, using (5.3), (6.37) and the product formula in K, from (6.38)
we obtain

(6.40) I &)= 11 ;! = Ns(v)

weRo\To p prime ideal in Og
PFEPL s Pu

> X1/012 A*(d?’ﬂ‘f’l)Cls.

Finally, we have |[(x")|, < 1 for each w € Ty \ I'y. Hence, using (6.39), (6.40)
and [],cplalw < A%T™ e infer that

H |Z(X/)/a’w > /ilX_d+T1+2T2+'rl
wel’

with k1 = (2m)_d+’"1+2’”2A_(d2+1)(dm+1)013 and 71 = 1/C12, which is just
estimate (4.1) of our theorem.

The second part (when I' = I'y,) of Theorem 5 follows in a similar way
from the bound (2.3) occurring in Theorem 1. m

Proof of Corollary 1. Let (z1,...,2,) € Z™ \ {0}. Denoting by
—y the nearest rational integer to z1a1 + ... 4+ Ty, we have

|Tr01 + ... F || = |y F 2100 + .+ T, > 0.
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We may obviously assume that ||zia1+. ..+ Zpma.,|| < 1. Then, noting that
ly] <1+mA"X <2mA"X and applying the second part of Theorem 5, we
get

ly+x100 + ... + T | > Ky X ~(no—Ts)/o
with the constants k3, 73 specified in our Corollary 1. m
Proof of Corollary 2. We follow the proof of Corollary 3 of [10].
Let ag denote the leading coefficient of the minimal defining polynomial of

a over Z. Then aga € Ok. Consider x160 + x5 with 1 = ag, 2 = —aga. By
Theorem 5 there exists an S-unit € in Ok such that e 'z, e 2y € Og and

(6.41) I 1 20— ()l > mX™, X =maxlea;
1=1,
veEl'UN

with m = 1in ;. However, we have [, c -0 |e7 ', < 1. Further, it follows
that
8_1$2

h(a) :h<

and |agf — agal, < 2% A%h(a)*? where d, is defined as in the proof of
Theorem 5. Thus, we deduce from (6.41) that

(6.42) [T 16 = alo > rah(a)k-dtrtratn/2qoiter)
vel

with kg = k1 (249) 7414272 and if a € Ok, (4.3) follows. If « is not integral,
then ag < (h(a))¥ and (6.42) implies (4.2). =

) < he " ao)h(e ) < X7

el
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