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1. Introduction. Let σa(n) denote the nth coefficient of the Dirichlet
series ζ(s)ζ(s− a), where ζ(s) is the Riemann zeta-function. Thus

σa(n) =
∑
d|n

da.

We define
Da(y) =

∑
n<y

σa(n) + σa(y)/2

with the convention that σa(y) = 0 unless y is an integer. We also define

∆a(y) = Da(y)− ζ(1− a)y − ζ(1 + a)
1 + a

y1+a +
1
2
ζ(−a).

In these definitions a may be any complex number. We prove

Theorem. Suppose x ≥ 1. Then
x∫

1

∆a(y)2 dy =

 c1x
3/2+a + O(x) for −1/2 < a < 0,

c2x log x + O(x) for a = −1/2,
O(x) for −1 < a < −1/2,

where
c1 = (6 + 4a)−1π−2ζ(3/2− a)ζ(3/2 + a)ζ(3/2)2ζ(3)−1,

c2 = ζ(3/2)2/(24ζ(3))

and the constants implied by the O-symbols may depend on a.

This improves and generalizes a special case of a result of Kiuchi [3].
Kiuchi studied the situation in which σa(n) is multiplied by e2πinh/k, where
h and k are coprime integers. In the case k = 1 he proved that

x∫
1

∆a(y)2 dy = c1x
3/2+a + O(x5/4+a/2+ε)

for −1/2 < a < 0 and any positive ε.
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It is also interesting to record the situation in the case a = 0. We have

∆0(y) = D0(y)− y(log y + 2γ − 1)− 1/4,

where γ is Euler’s constant. Tong [11] proved that
x∫

1

∆0(y)2 dy = c0x
3/2 + O(x log5 x),

where c0 = ζ(3/2)4/(6π2ζ(3)). A simpler proof of this was later given by
Meurman [6], and subsequently Preissmann [9] improved the error term to
O(x log4 x).

Our theorem is analogous to what has been proved by Matsumoto and
Meurman [4, 5] for E(1−a)/2(T ), the error term in the asymptotic formula
for

∫ T

1
|ζ((1− a)/2 + it)|2 dt. However, in the special case a = −1/2 it is in

fact sharper than what is suggested by the result just referred to.
The mean square estimates above show that the average order of ∆a(y)

is O(y1/4+a/2) for −1/2 < a ≤ 0, O(
√

log y) for a = −1/2 and O(1) for −1 <
a < −1/2. They also show that ∆a(y) = Ω(y1/4+a/2) for −1/2 < a ≤ 0
and ∆−1/2(y) = Ω(

√
log y). All this agrees with Pétermann’s [8] conjecture

(S) concerning individual values of ∆a(y). As to the latter problem, a
simple elementary argument starting with the definition of ∆a(y) shows
that ∆a(y) � y(1+a)/2. Pétermann [8] has a better result which is stated
in terms of exponent pairs. Suffice it to say that it implies at least that
∆a(y) � y(1+a)/3+ε for any positive ε. However, the true order of magnitude
of ∆a(y) is as yet unknown. In the case a = 0 this problem is called the
Dirichlet divisor problem.

It is not obvious in view of existing proofs in the case a = 0 how to prove
our theorem. One of the difficulties is that the “Voronöı series” for ∆a(y)
may diverge for a ≤ −1/2.

Our argument may be generalized to a wider set of real and complex
values of a including a = 0. In the case a = 0 it clearly gives Preissmann’s
result mentioned above. But to keep it as simple as possible and referring
also to the remarks in Section 4 we assume −1 < a < 0. Moreover, this
assumption, being equivalent to 1/2 < (1 − a)/2 < 1, is suggested by the
analogy between ∆a(x) and E(1−a)/2(T ).

It seems difficult to improve the O-terms in our theorem. In fact, we
believe that they are Ω(x). For −1/2 < a < 0 the O-term is Ω(x3/4+3a/2).
This can be seen by following the proofs of Theorem 3 in [5] and Theo-
rem 13.6 in [2].

Acknowledgements. I am grateful to Professor Kohji Matsumoto for
encouragement and for comments concerning this work.
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2. Proof of the Theorem. We begin by stating our main lemma. Its
proof will be given in Sections 3–5.

Lemma 1. For −1 < a < 0, y ≥ 1, X ≥ y , Z ≥ 2y and y not an integer
we have

∆a(y) = ∆a(y, X) + Ra(y, X,Z) + O(y−1/4+a/2) + O(y−1/2),

where

∆a(y, X) =
1

π
√

2
y1/4+a/2

2∫
1

∑
n≤uX

σa(n)n−3/4−a/2 cos(4π
√

ny − π/4) du

and

Ra(y, X,Z) =
1
2π

∑
n≤Z

σa(n)
2∫

1

∞∫
uX

t−1 sin(4π(
√

y −
√

n)
√

t) dt du.

R e m a r k. The expression Ra(y, X,Z) accounts for the jumps of ∆a(y)
at integers. Therefore the easy estimate Ra(y, X,Z) � yε—which is not
good enough for our purpose—cannot be improved in general. But it can
be improved if y is not near an integer and X is large. This way of argument
is successful in the case a = 0 (see [6]) but not here. That is why we need
the explicit expression for Ra(y, X,Z) as given above.

Suppose that x ≥ 2, x/2 ≤ y ≤ x, Z = 2x and y is not an integer. We
apply Lemma 1 with two different values of X, viz. 4x and x. We abbreviate
just for a moment Ra(y, X,Z) = Ra(y, X). Then

∆a(y)2 = ∆a(y, 4x)2 + 2∆a(y, 4x)Ra(y, 4x) + Ra(y, 4x)2

+ O(y−1/4(|∆a(y, 4x)|+ |Ra(y, 4x)|) + y−1/2)

and
∆a(y, 4x) = ∆a(y, x) + Ra(y, x)−Ra(y, 4x) + O(y−1/4).

We combine these formulas to obtain
∆a(y)2 = ∆a(y, 4x)2 + 2∆a(y, x)Ra(y, 4x) + 2Ra(y, x)Ra(y, 4x)

−Ra(y, 4x)2 + O(y−1/4(|∆a(y, 4x)|+ |Ra(y, 4x)|) + y−1/2).

Now we integrate for y and use Cauchy’s inequality to obtain
x∫

x/2

∆a(y)2 dy = I1 + 2I2 + O(
√

I3I ′3 + I3 + x1/4(
√

I1 +
√

I3) + x1/2),

where

I1 =
x∫

x/2

∆a(y, 4x)2 dy, I2 =
x∫

x/2

∆a(y, x)Ra(y, 4x, 2x) dy,
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I3 =
x∫

x/2

Ra(y, 4x, 2x)2 dy and I ′3 =
x∫

x/2

Ra(y, x, 2x)2 dy.

Obviously it suffices to prove that

(2.1) I1 =

 c1(x3/2+a − (x/2)3/2+a) + O(x) for −1/2 < a < 0,
c2(x log x− (x/2) log (x/2)) + O(x) for a = −1/2,
O(x) for −1 < a < −1/2,

(2.2) I2 � x,

(2.3) I3 � x and I ′3 � x.

P r o o f o f (2.1). We square out the expression for ∆a(y, 4x) given by
Lemma 1 and get I1 = I10 + I11, where

I10 =
1

2π2

x∫
x/2

y1/2+a
∑

n≤8x

b(n)2 cos2(4π
√

ny − π/4) dy,

I11 =
1

2π2

x∫
x/2

y1/2+a
∑

m,n≤8x
m6=n

b(m)b(n) cos(4π
√

my−π/4) cos(4π
√

ny−π/4) dy,

b(n) = σa(n)n−3/4−a/2
2∫

max(1,n/(4x))

du.

We first prove that I11 � x (which is acceptable in view of our claim
(2.1)). This reduces to showing that J± � x, where

J± =
x∫

x/2

y1/2+a
∑

m,n≤8x
m6=n

b(m)b(n)e4πi(
√

m±
√

n)
√

y dy.

By the second mean value theorem there exist ξ1 and ξ2 between x/2 and
x such that

J± � x1+a
∣∣∣ ξ2∫

ξ1

y−1/2
∑

m,n≤8x
m6=n

b(m)b(n)e4πi(
√

m±
√

n)
√

y dy
∣∣∣

� x1+a
2∑

j=1

∣∣∣ ∑
m,n≤8x

m6=n

b(m)b(n)(
√

m±
√

n)−1e4πi(
√

m±
√

n)
√

ξj

∣∣∣.
Trivially J+ � x. Similarly we get trivially J− � x log x, but this does not
suffice. So, following Preissmann [9], we invoke a generalization of Hilbert’s
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inequality, viz. the Montgomery–Vaughan inequality (see [2], (5.34)). We
have

min
m6=n

|
√

m−
√

n| � n−1/2

for any positive integer n and it follows that

J− � x1+a
∑

n≤8x

b(n)2n1/2 � x1+a
∑

n≤8x

σa(n)2n−a−1 � x

so that I11 � x as claimed.
Consider I10. Since cos2(4π

√
ny − π/4) = (1 + sin(8π

√
ny))/2, and∑

n≤8x

b(n)2
x∫

x/2

y1/2+a sin(8π
√

ny) dy � x1+a

(see [10], Lemma 4.3), we have

I10 =
1

(6 + 4a)π2
(x3/2+a − (x/2)3/2+a)

∑
n≤8x

b(n)2 + O(x1+a).

Here ∑
n≤8x

b(n)2 =
∑
n≤x

σa(n)2n−3/2−a + O(x−1/2−a),

which is O(x−1/2−a) for −1 < a < −1/2 so that I10 � x in this case. For
−1/2 < a < 0 we have (see [10], (1.3.3))∑

n≤x

σa(n)2n−3/2−a = ζ(3/2− a)ζ(3/2 + a)ζ(3/2)2ζ(3)−1 + O(x−1/2−a)

so that I10 = c1(x3/2+a − (x/2)3/2+a) + O(x) in this case. In the remaining
case a = −1/2 we use Perron’s formula to obtain∑

n≤x

σa(n)2n−1 = ζ(3/2)2ζ(2)ζ(3)−1 log x + O(1).

Since ζ(2) = π2/6 we conclude that I10 = c2(x − x/2) log x + O(x) in this
case. This completes the proof of (2.1).

P r o o f o f (2.2). By the second mean value theorem there exists ξ
between x/2 and x such that

I2 = x3/4+a/2
x∫

ξ

y−3/4−a/2∆a(y, x)Ra(y, X, 2x) dy,

where X = 4x. Lemma 1 then gives

I2 � x3/4+a/2
∑

m≤2x

σa(m)m−3/4−a/2
∑

n≤2x

σa(n)|J(m,n,X)|,
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where

J(m,n,X)

=
x∫

ξ

y−1/2 cos(4π
√

my − π/4)
2∫

1

∞∫
uX

t−1 sin(4π(
√

y −
√

n)
√

t) dt du dy.

Then for the proof of (2.2) it clearly suffices to show that

(2.4)
∑

n≤2x

σa(n)|J(m,n,X)| � 1.

For Y ≥ X we have

J(m,n,X)− J(m,n, Y ) � x−1/2 max
y∈{ξ,x}

min(1, |y − n|−1)

uniformly in Y , since

uY∫
uX

t−1e−4πi
√

nt
x∫

ξ

y−1/2e4πi(
√

t±
√

m)
√

y dy dt

� max
y∈{ξ,x}

∣∣∣ uY∫
uX

t−1(
√

t±
√

m)−1e−4πi(
√

nt−(
√

t±
√

m)
√

y) dt
∣∣∣

= max
y∈{ξ,x}

∣∣∣ uY∫
uX

t−1(
√

t±
√

m)−1e4πi(
√

y−
√

n)
√

t dt
∣∣∣

� max
y∈{ξ,x}

min(X−1/2, X−1|√y −
√

n|−1).

In the last step we applied Lemma 4.3 in [10], and made use of the fact
that m ≤ 2x = X/2. (At this point one can see why Lemma 1 was applied
with two different values of X.) On the other hand, limY→∞ J(m,n, Y ) = 0
by applying the same lemma to the innermost integral. Now (2.4) follows
easily.

P r o o f o f (2.3). We need the following lemma, the proof of which is a
simple application of partial integration.

Lemma 2. For X ≥ 1 and any real k we have

2∫
1

∞∫
uX

t−1 sin(k
√

t) dt du � min(1, X−1k−2).

Lemma 1, Lemma 2 and Cauchy’s inequality give
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I3 �
x∫

x/2

( ∑
n≤2x

σa(n) min(1, (n− y)−2)
)2

dy

�
x∫

x/2

∑
n≤2x

σa(n)2 min(1, (n− y)−2) dy

�
∑

n≤2x

σa(n)2
x∫

x/2

min(1, (n− y)−2) dy

�
∑

n≤2x

σa(n)2 � x.

The integral I ′3 is estimated similarly and (2.3) follows.

3.Analytic continuation. In the following sections we prove Lemma 1.
Let z be a complex variable and let p be a real variable, which will

eventually tend to ∞. Let w be a sufficiently many (three will suffice) times
continuously differentiable function supported on the interval [−2/3, 2/3]
such that w(v) = 1 for v ∈ [−1/3, 1/3]. It is clear that the function z 7→
∆z(y) is entire. Hence, defining

(3.1) ∆z,p(y) = p
∞∫

−∞
w(v)e−π(pv)2(1 + v)1/2−z∆z(y(1 + v)2) dv,

the function z 7→ ∆z,p(y) is entire. We define

Bz(t) = sin(πz/2)J1+z(4π
√

t)+cos(πz/2)(Y1+z(4π
√

t)+(2/π)K1+z(4π
√

t))

in the usual notation of Bessel functions. Oppenheim [7] has proved that

∆z(y) = −y(1+z)/2
∞∑

n=1

σz(n)n−(1+z)/2Bz(ny)

for −1/2 < z < 0. The series here is boundedly convergent in any finite
y-subinterval of (0,∞), as shown by Hafner [1]. Hence we may integrate
term-by-term to obtain

∆z,p(y) = − py(1+z)/2
∞∑

n=1

σz(n)n−(1+z)/2(3.2)

×
∞∫

−∞
w(v)e−π(pv)2(1 + v)3/2Bz(ny(1 + v)2) dv.

We now only know that (3.2) holds for real values of z satisfying −1/2 <
z < 0.



358 T. Meurman

Consider the expression

(3.3) py−1/4+z/2
∞∑

n=1

σz(n)n−5/4−z/2
∞∫

−∞
w(v)e−π(pv)2hz(ny(1 + v)2) dv,

where

hz(t) =
1

π
√

2

(√
t cos(4π

√
t− π/4)− 4z2 + 8z + 3

32π
sin(4π

√
t− π/4)

)
.

By partial integration (this is where we need the function w) and the familiar
formula

∞∫
−∞

eAv−Bv2
dv =

√
π/BeA2/(4B) (<(B) > 0)

(see e.g. [2], (A.38)), we get

(3.4) p
∞∫

−∞
w(v)e−π(pv)2+4πiv

√
ny dv = e−4πny/p2

+ O((ny)−3/2e−p)

and (using (3.4))

(3.5) p
∞∫

−∞
w(v)ve−π(pv)2+4πiv

√
ny dv

= 2i(ny)1/2p−2e−4πny/p2
+ O((ny)−1e−p).

Let C be a compact subset of D = {z | −3/2 < <(z) < 3/2}. It follows
that the series in (3.3) is absolutely and uniformly convergent in C and
hence that the expression (3.3) defines a holomorphic function z 7→ ∆∗

z,p(y),
say, in D.

By (3.2) and (3.3) we get a series representing ∆z,p(y) − ∆∗
z,p(y) for

−1/2 < z < 0. It has holomorphic terms in D. It is absolutely and uni-
formly convergent and O(|y−3/4+z/2|) in C, since, by well-known asymptotic
formulas for Bessel functions (see [12], Sec. 7.21, 7.23),

t3/4Bz(t) + hz(t) � t−1/2

uniformly in C. Hence it is holomorphic and represents ∆z,p(y)−∆∗
z,p(y) in

the whole D, and we get ∆z,p(y)−∆∗
z,p(y) � |y−3/4+z/2| for z in D.

Finally, we evaluate ∆∗
a,p(y) using (3.4) and (3.5) and conclude that

(3.6) ∆a,p(y) = ∆(1)
a,p(y) + ∆(2)

a,p(y) + O(|y−3/4+a/2|),
where

∆(1)
a,p(y) =

1
π
√

2
y1/4+a/2

∞∑
n=1

σa(n)n−3/4−a/2e−4πny/p2
(3.7)

× cos(4π
√

ny − π/4),
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∆(2)
a,p(y) = y−1/4+a/2

∞∑
n=1

σa(n)(c3 −
√

2π−1ny/p2)n−5/4−a/2(3.8)

× e−4πny/p2
sin(4π

√
ny − π/4)

and c3 = −(4a2 + 8a + 3)/(32π2
√

2).

R e m a r k s. The quantity c3 vanishes at a = −1/2. The implied constant
in (3.6) does not depend on p and the formula is valid for any a in D.
This range can be further extended by replacing −hz(t) with a sharper
approximation of t3/4Bz(t).

4. Lemmata

Lemma 3. For X ≥ 1, Y ≥ X, V > 0, l fixed and any real k we have
2∫

1

uY∫
uX

t−le−t/V +ik
√

t dt du �
{

X−l min(V, k−2) for l ≥ 0,
X−l min(X, k−2) for l > 1.

P r o o f. Partial integration gives O(X−lk−2) if k 6= 0. The alternative
estimates are trivial.

Lemma 4. For −3/2 < a < 3/2 we have
y∫

0

∆a(v) dv = c4 + y3/4+a/2
∞∑

n=1

σa(n)n−5/4−a/2g(ny) + O(y−3/4+a/2),

where

g(t) =
2∑

ν=0

eνt−ν/2 cos(4π
√

t + π/4 + πν/2),

e0 = 1/(2π2
√

2), e1, e2 and c4 may depend on a only and the series here is
uniformly convergent on any finite closed subinterval of (0,∞).

P r o o f. The lemma is based on Theorem B and Lemma 2.1 of Hafner [1].
See also Section 2 of [5].

Lemma 5. For −1 < a < 1/2 we have
y∫

0

∆a(v) dv � y3/4+a/2 + y1/2 log y.

P r o o f. The integral is O(y3/4+a/2) for −1/2 < a < 1/2 by Lemma 4,
whereas the case −1 < a ≤ −1/2 is covered by Lemma 2 of [5].

R e m a r k s. The restriction −3/2 < a < 3/2 in Lemma 4 is essential.
Since the number r in Hafner’s Definition 1.1 is real, our a must be real.
It is, however, possible to generalize Lemma 4 to complex values of a. The
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assumption a > −1 in Lemma 5 is not essential, but we have to accept it
because it occurs in Lemma 2 of [5].

5. Transformation. The idea now is to truncate the series in (3.7) and
(3.8), transform the remainder using Lemma 4 and then let p →∞ along a
suitable sequence. The constants implied by the symbols O and � will be
independent of p.

We define

(5.1) fp(t) = t−3/4−a/2e−4πty/p2
cos(4π

√
ty − π/4).

Let 1 ≤ u ≤ 2. We have∑
n>uX

σa(n)fp(n) = −
∞∫

uX

f ′p(t)(Da(t)−Da(uX)) dt

= −
∞∫

uX

f ′p(t)
[
ζ(1− a)v +

ζ(1 + a)
1 + a

v1+a

]t

v=uX

dt

−
∞∫

uX

f ′p(t)(∆a(t)−∆a(uX)) dt

=
∞∫

uX

fp(t)(ζ(1− a) + ζ(1 + a)ta) dt

− fp(uX)∆a(uX) +
∞∫

uX

f ′′p (t)
t∫

uX

∆a(v) dv dt.

Hence

(5.2)
2∫

1

∑
n>uX

σa(n)fp(n) du = S1(p) + S2(p) + lim
Y→∞

S3(p, Y ),

where

S1(p) = −
2∫

1

fp(uX)∆a(uX) du,

S2(p) =
2∫

1

∞∫
uX

fp(t)(ζ(1− a) + ζ(1 + a)ta) dt du,

S3(p, Y ) =
2∫

1

uY∫
uX

f ′′p (t)
t∫

uX

∆a(v) dv dt du.

We claim that

(5.3) S1(p) � y−1/2, S2(p) � y−1/2.
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Concerning S2(p) this is clear, since Lemma 3 gives S2(p) � y−1X−3/4−a/2.
Consider then S1(p). We have

S1(p) = −X−1
[
fp(t)

t∫
0

∆a(v) dv
]2X

t=X
+ X−1

2X∫
X

f ′p(t)
t∫

0

∆a(v) dv dt

= X−1S11 + X−1S12,

say. Lemma 5 gives S11 � 1 + X−1/4−a/2 log X, which is acceptable. Lem-
ma 4 gives

S12 �
∞∑

n=1

n−3/4
∣∣∣ 2X∫

X

f ′p(t)t
3/4+a/2g(nt) dt

∣∣∣ +
2X∫

X

|f ′p(t)|t−3/4+a/2 dt

+
∣∣∣ 2X∫

X

f ′p(t) dt
∣∣∣

= S121 + S122 + S123,

say. By (5.1) we have

f ′p(t) = t−3/4−a/2(−2πy1/2t−1/2 sin(4π
√

ty − π/4)(5.4)
+ (c5yp−2 + c6t

−1) cos(4π
√

ty − π/4))e−4πty/p2
,

where c5 = −4π and c6 = −3/4− a/2, so that

2X∫
X

f ′p(t)t
3/4+a/2g(nt) dt � y1/2 min(X1/2, |

√
n−√y|−1)

either trivially or by Lemma 4.3 of [10]. Hence S121� y1/4 log y+X1/2y−1/4.
Finally, it is plain that S122 � y1/2X−1, S123 � X−3/4−a/2 and (5.3) has
been proved.

Consider S3(p, Y ). We apply Lemma 4 and integrate term-by-term to
get

S3(p, Y ) =
∞∑

n=1

σa(n)n−5/4−a/2
2∫

1

uY∫
uX

f ′′p (t)[y3/4+a/2g(ny)]ty=uX dt du

+ O
(
X−3/4+a/2

2Y∫
X

|f ′′p (t)| dt
)
.

The O-term here is O(yX−3/2), since (5.4) implies that f ′′p (t) � yt−7/4−a/2.
Then we integrate by parts and note that the integrated term is

2∫
1

f ′p(uY )
( uY∫

uX

∆a(v) dv + O(X−3/4+a/2)
)

du �y Y 2e−Y y/p2
.
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Hence

S3(p, Y ) = −
∞∑

n=1

σa(n)n−5/4−a/2
2∫

1

uY∫
uX

f ′p(t)(t
3/4+a/2g(nt))′ dt du

+ O(yX−3/2) + Oy(Y 2e−Y y/p2
).

We have

(t3/4+a/2g(nt))′ = t3/4+a/2((π
√

2)−1n1/2t−1/2 cos(4π
√

nt− π/4)

+ c7t
−1 sin(4π

√
nt− π/4) + O(n−1/2t−3/2)),

where c7 may depend on a only. Hence, by (5.4), Lemma 3 and using the
formula sin α cos β = (sin(α + β) + sin(α − β))/2, we get (assuming that
p2 > Xy)

2∫
1

uY∫
uX

f ′p(t)(t
3/4+a/2g(nt))′ dt du

= − (1/
√

2)(ny)1/2I(n, p, Y )

+ O((y + n)1/2X−3/2 min(X, (
√

n−√y)−2))

+ O(y1/2X−1n−1/2),

where

I(n, p, Y ) =
2∫

1

uY∫
uX

t−1e−4πyt/p2
sin(4π(

√
y −

√
n)
√

t) dt du.

For n > Z we have I(n, p, Y ) � (Xn)−1 by Lemma 3, since Z ≥ 2y by
assumption. Hence

S3(p, Y ) =
1√
2
y1/2

∑
n≤Z

σa(n)n−3/4−a/2I(n, p, Y )(5.5)

+ Oy(Y 2e−Y y/p2
) + O(y1/2X−1) + O(y−3/4−a/2+εX−1/2)

for any ε > 0.
We combine (3.7), (5.2), (5.3) and (5.5). This gives

∆(1)
a,p(y) =

1
π
√

2
y1/4+a/2

2∫
1

∑
n≤uX

σa(n)fp(n) du(5.6)

+
1
2π

y3/4+a/2
∑
n≤Z

σa(n)n−3/4−a/2 lim
Y→∞

I(n, p, Y )

+ O(y−1/4+a/2).
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Concerning ∆
(2)
a,p(y), as defined by (3.8), we argue similarly with X re-

placed by y and estimate trivially the contribution of the terms with n � y.
Here it is to be noted that c3 = 0 at a = −1/2. The result is that

(5.7) ∆(2)
a,p(y) � y−1/4+a/2 + y−1/2.

Next, we show that

(5.8) lim
p→∞

∆a,p(y) = ∆a(y)

unless y is an integer. First of all we have

p
∞∫

−∞
w(v)e−π(pv)2(1 + v)1/2−a dv = 1 + O(p−1).

It follows that (see (3.1))

∆a,p(y)−∆a(y)

= p
∞∫

−∞
w(v)e−π(pv)2(1 + v)1/2−a(∆a(y(1 + v)2)−∆a(y)) dv

+ O(|∆a(y)|/p)

� p

2/3∫
−2/3

e−π(pv)2 |∆a(y(1 + v)2)−∆a(y)| dv + yp−1

� p

2/3∫
0

e−π(pv)2
(
yv +

∑
|n−y|≤2yv

σa(n)
)

dv + yp−1

�
2p/3∫
0

e−πv2 ∑
|n−y|≤2yv/p

σa(n) dv + yp−1.

Clearly this tends to zero as p →∞ unless y is an integer, as claimed.
We combine (3.6), (5.6)–(5.8) and let p →∞. This gives

∆a(y) = ∆a(y, X) +
1
2π

y3/4+a/2
∑
n≤Z

σa(n)n−3/4−a/2 lim
p→∞

lim
Y→∞

I(n, p, Y )

+ O(y−1/4+a/2) + O(y−1/2)

unless y is an integer. It is easy to show that

lim
p→∞

lim
Y→∞

I(n, p, Y ) =
2∫

1

∞∫
uX

t−1 sin(4π(
√

y −
√

n)
√

t) dt du.



364 T. Meurman

Finally, we replace n−3/4−a/2 in the sum by y−3/4−a/2. By Lemma 2, this
produces a term O(y−1/4+a/2) to the whole expression. The proof of Lem-
ma 1 is thus complete.
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